电子束辐照对小麦理化性质及加工品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子束辐照技术杀虫防霉具有高效、安全、环保、经济等优点,在粮食贮藏上具有良好的应用前景和经济社会效益。本论文以电子束辐照灭菌、杀虫贮粮技术理论及实践为基础,主要研究不同辐照剂量杀虫、灭菌处理贮备粮对小麦理化性质、加工特性和食用品质的影响,并研究了辐照后小麦淀粉和蛋白质分子及其性质的变化,从分子角度探讨了电子束辐照导致小麦品质改变的原因。
     结果表明,小麦经过0-5 kGy不同剂量辐照后其主要营养成分变化不大,但能够引起脂肪水解,脂肪酸大幅增加,α-淀粉酶活性显著下降。经5 kGy剂量辐照的比未经辐照的小麦其α-淀粉酶活性下降了41%。因此,对加工品质会有一定程度的影响。且电子束辐照能够导致种子损伤,增加膜透性,对种子活力有一定影响。同时,经过辐照的小麦粉的降落数值、峰值粘度及回生值显著低于对照样品,当辐照剂量达到5 kGy时,降落数值下降了56.2%,峰值粘度下降至42.7%,回生值下降至35.2%。此外,电子束辐照对拉伸特性亦有较大影响,当辐照剂量达到5 kGy时,最大拉伸阻力随剂量增加而逐渐降低,且降幅随着辐照剂量的增大而增大,延伸度却逐渐增大,吸水量略有提高,拉伸曲线面积则先增后减。
     电子束辐照能显著影响小麦淀粉的流变学特性。随着辐照剂量的增加,小麦淀粉的Brabender峰值黏度显著降低,冷稳定性升高,凝沉性减弱,当辐照剂量达到4.4 kGy时,小麦淀粉的峰值黏度由85 BU减小到42 BU,下降了50.6%,回生值下降了88.2%。当辐照剂量达到4.4 kGy时,小麦淀粉的峰值粘度下降了50.6%,回生值下降了88%。电子束辐照能部分破坏小麦面粉中的淀粉颗粒,且破坏的形式以表观结构破损增加和破损淀粉含量增加来表示。当辐照剂量达到4.4 kGy时,破损淀粉含量增加了38.5%。利用凝胶渗透色谱分析结果显示,辐照后小麦淀粉分子量降低,且当辐照剂量达到4.4 kGy时,分子量降低了一个数量级,说明电子束辐照引起了小麦中淀粉分子的降解,平均分子量减小,导致小麦淀粉流变学特性改变,粘度降低,从而进一步阐释了经电子束辐照的小麦淀粉流变学特性的变化确实与分子结构的改变有关。在本实验剂量条件下,醇溶蛋白大分子发生了部分降解,而辐照过的麦谷蛋白低分子量亚基含量下降较大,剂量越高影响越大。在5.0 kGy时候,减少了一半。电子束辐照的作用破坏了小麦中的低分子量麦谷蛋白,从而也影响了面粉的加工品质。物性测试仪测定结果表明,剂量在1.75 kGy以下时,辐照对馒头的粘附性影响较小,但达到2.75 kGy以上时,馒头的粘附性迅速增大,达到对照样品3倍以上;感官评定结果表明,当小麦所受辐照剂量达到5 kGy时,由其所制作的馒头感官评分低于60分,表明馒头的感官食用品质已显著下降。一定剂量范围内,辐照处理有可能改善和提高曲奇饼的烘焙品质。在较高剂量下,淀粉黏度和面筋弹性的下降,制作的面包、馒头、面条等的品质下降。在高剂量下,辐射对小麦及其制成品造成的不利影响可以通过常规配粉方法加以克服或削弱。
Because of high-efficiency, safety, environmental protection and economy, electron-beam irradiation has been broadly used in grain storage, and have good application prospect and economic and social benefits. This paper was based on the storage technology theory and practice of sterilization, insecticidal by electron-beam irradiation, mainly researched on physicochemical property, processing property and edible quality of stored wheat after treated by different doses, and then discussed the changes of starch and protein molecule and their properties, from a molecular perspective, approached the reason of wheat quality changes by electron-beam irradiation.
     The investigation result demonstrated that the basic nutritive composition of wheat irradiated with doses among 0-5 kGy had not been changed while the fat hydrolysis and the fatty acid value increased greatly,α-amylase activity decreases rapidly. 41% ofα-amylase activity was decreased severely than lack of electron beam irradiation under 5 kGy doses. Thus, there will be certain degree of influence on processing qualities. Besides, electron-beam irradiation led to seed damage, increased membrane permeability, impacted seed vigor. Meanwhile, the falling number, the maximum viscosity and setback were lower than control samples significantly. When it increased to 5 kGy, the falling number reduced by 56.2%, the maximum viscosity and setback reduced to 42.7% and 35.2% separately. Furthermore, effects of electron-beam irradiation on tensile properties were great too. When treated with 5 kGy doses, the water absorption increased slightly; the maximun resistance of dough decreased gradually, the decreasing range enlarged with the increase of irradiation doses, extensibility reduced gradually, while extensograph area increased first and then decreased.
     Electron beam irradiation can significantly affected the rheological properties of wheat starch. With the increasing of irradiation doses, the Brabender peak viscosity of wheat starches decreased significantly and the cold stability increased, while the retrogradations were weakened. When the irradiation dose reached 4.4 kGy, the peak viscosity reduced from 85 BU to 42 BU, decreased by 50.6%, the setback reduced by 88.2%. The starch granules of wheat flour were damaged by electron-beam irradiation. And the damage was presented with the appearance of increasing surface damages and the contents of damaged starches. The contents of damaged starch increased with increasing dose and the contents raised 38.50% compared with native samples when the dose achieved 4.4 kGy. As determined by HPSEC-MALLS-RI, the molecular masses of wheat starches degraded gradually with increasing irradiation dose, when the irradiation dose upped to 4.4 kGy the molar mass of starch decreased by one order of magnitude. The results indicated that the electron-beam irradiation made wheat starch degradation and lead to the changes of rheological properties and the decrease of viscosity of wheat starches. Furthermore, this explains the relationship between rheological properties and molecular structure changes on wheat starches.
     In this experiment, gliadin degraded partly, while low molecular weight glutenin decreased significantly with the dose increasing. When it reached 5.0 kGy, low molecular weight glutenin reduced to 50%. Electron-beam irradiation destroyed the low molecular weight glutenin, thus affected the processing quality of wheat flour. TPA test results showed that the adhesiveness was slightly affected when the irradiation doses below 1.75 kGy, but it rose to 3 times of the sample when it above 2.75 kGy; The result of Sensory Evaluation suggested that the quality of Chinese steamed breads made with these flours were decreased significantly when treated with 5 kGy doses, for the score was lower than 60. In some doses, irradiation probably improved baking quality of cookies. In higher doses, starch viscosity and gluten elastic decreased, the quality of bread, steamed bread and noodles made by irradiated wheat flour decreased too. In high doses, the adverse impact of wheat and their products after irradiation can be overcome or weakened by regular flour blending method.
引文
[1]李光涛,曹阳,孙辉等.辐照技术在储粮害虫防治中的应用[J].粮食储藏,2007(2):10~16
    [2]哈益明,周洪杰.辐照食品分析检测技术的研究进展[J].食品科学,2005,6(26):260~265
    [3] Ames I. Irradiation of Grain and Grain Products for Insect Control. Council for Agricultural Science and Technology[C]. 1984,4
    [4]谭华业,黄斌,杨景田等.电子束辐照技术在粮食领域的研究应用[J].粮油仓储科技通讯,2005(2):12~14
    [5]李牧,邢增涛,冯志勇等.电子束辐照在农产品贮藏保鲜中的应用[J].激光生物学报,2007,16(5):640~645
    [6] Elkady E.A. and Hekal A.M. Irradiation Disinfestation of Pulses and Resistance ofPackaging Films to Insect Penetration. In: Insect Disinfestation of Food and Agricultural Products by Irradiation[C]. IAEA, 1991
    [7] Mansour, M. and Al-Bachir, M. Feasibility for the Disinfestation of Pulses and Cereal Grains by Irradiation. In: Food Irradiation in the Middle East and Europe[C]. IAEA, 1994, 7
    [8] Wiesnee L. Lecture Notes on Electron Bean Processing[R], IAEA Regional Training Course, 1989
    [9] Bangladesh G. Nuclear Safety and Radiation Control Act Extraordinary Copy[Z]. 1993, 7, 22
    [10] Adem E., Watters F., Uribe R. et al. Comparison of 60Co gamma radiation and accelerated electrons for suppressing emergence of Sitophilus spp. in stored maize[J]. Journal of Stored Products Research, 1978, 14: 135~142
    [11]杨景田,李建萍.乌克兰敖德萨粮食辐射检疫处理装置[J].粮食储藏,2002,31(1):45~47
    [12] Josephson S. and Dymsza H.A. An Historical Review of Food Irradiation[J]. Food Irradiation Technology. 1999, 6: 235~238
    [13] Salimov R.A. The use of electron accelerators for radiation disinfestation of grain[J]. Radiation Physics and Chemistry, 2000, 57: 625~627
    [14]呼玉山,陈双兴,王经权等.电子加速器辐照大米防霉技术研究[J].中国粮油学报,1999,14(1):55~58
    [15]王圆,吴品珊,陈克.电子辐照灭活小麦矮腥黑穗菌[J].植物检疫,2000,14(2):73~74
    [16] Caswell G.H. Proceedings of the 2nd International Working Conference on Stored-Product Entomology[C]. 1978, 9: 10~16
    [17]李淑荣,王殿轩,高美须等.电子束处理对玉米象繁殖力的影响[J].核农学报,2005,19(1):46~48
    [18] Vijayalaxmi, and Srikantia S. G. A review of the studies on the wholesomeness of irradiated wheat conducted at the National Institute of Nutrition, India[J]. Radiation Physics & Chemistry. 1989, 34(6): 941~952
    [19] Lin W. D. A., Lookhart G. and Hoseney R. C. Partially Purified Proteolytic Enzymes from Wheat Flour and Their Effect on Elongational Viscosity of Cracker Sponges[J].Cereal Chemistry, 1993, 70(4): 448
    [20] Tilton E. W. Status of U S department of agriculture research on irradiation disinfestation of grain and grain products, in radiation preservation of food[C]. IAEA Conference, 1973
    [21] PALOMA S. N. Oil Quality and Sensory Evaluation of Almond (Prunus amygdalus) Stored after Electron Beam Processing[J]. Journal of Agricultural and Food Chemistry, 2005, 53, 2567~2573
    [22] Migdal W. Microbiological decontamination of natural honey by irradiation. Radiation Physics and Chemistry, 2000, 57: 285~288
    [23] Maria A.M. Quality of electron beam irradiation of blueberries (Vaccinium corymbosum L.) at medium dose levels (1.0-3.2 KGy). Food Science and Technology, 2007, 40: 1123~1132
    [24] Rajeev B., Sridhar K. R. Nutritional quality evaluation of electron beam irradiated lotus (Nelumbo nucifera) seeds[J]. Food Chemistry, 2008, 107: 174~184
    [25] Aymerich T., Picouet P.A., Monfort J.M. Decontamination technologies for meat products[J]. Meat Science, 2008, 78: 114~129
    [26]李淑荣,王殿轩,高美须.电子加速器辐照对稻谷品质影响的研究[J].河南工业大学学报(自然科学版),2006,27(5):30~32
    [27]卢志恒,王安泉.不同剂量电子辐照对小麦品质影响的研究[J].中国粮油学报,2001,16(1):20~22
    [28] Byun M. Improvement of physical properties of soybeans by gamma irradiation [J]. Radiat Physics Chemistry, 1993, 42(3): 313~317
    [29]包劲松,舒庆尧,吴殿星等.γ辐照对稻米蒸煮和食用品质的影响[J].核农学报,1998,12 (6):327~331
    [30] Wu D.X., Shu Q.Y., Wang Z.H. et al. Effect of gamma irradiation on starch viscosity and physicochemical properties of different rice [J]. Radiation Physics and Chemistry, 2002, 65(1): 79~86
    [31] Waje C., Kwon J.H. Improving the food safety of seed sprouts through irradiation treatment[J]. Food Science and Biotechnology, 2007, 16(2): 171~176
    [32]朱承相,郝文川,史海林.伽马辐射对稻谷、小麦品质的影响——粮食的强辐射场辐照中间试验[J].粮食储藏,1981,1:10~27
    [33] Naotsugu N. Radiation crosslinking of carboxymethyl starch[J]. Carbohydrate Polymers, 2004, 58: 109~113
    [34] FAO: FAOSTAT database 2007, http://faostat.fao.org/site/339/default.aspx
    [35]丁建武,兰盛斌,张华昌.减少粮食产后损失对确保我国粮食安全的重要性[J].粮食储藏,2005(2):49~50
    [36]黄曼,刘丹.辐照技术在粮食储藏中的应用[J].粮油食品科技,2005,13(1):26~27
    [1]杨宗渠,朱军,陈海军等.电离辐射对食品品质的影响[J].食品科学,2006,27(8):259~262
    [2]王玮,魏秀英,薛文通.小麦品质与食品品质研究现状[J].食品工业科技,2008,29(9):292~295
    [3] Wen C. S. Effect of gamma irradiation on rice and its food products[J]. Radiation Physics and Chemistry, 2005, 73: 224~228
    [4] Gralik J., Warchalewski J. R. The influence ofγ-irradiation on some biological activitiesand electrophoresis patterns of wheat grain albumin fraction[J]. Food Chemistry, 2006, 99: 289~298
    [5] Marathe S.A., Machaiah J.P., Rao B., et al. Extension of shelf-life of whole-wheat flour by gamma radiation[J]. International Journal of Food Science and Technology, 2002, 37, 163~168
    [6]卢志恒,王安泉.不同剂量电子辐照对小麦品质影响的研究[J].中国粮油学报,2001,16(1):20~22
    [7]王锋,哈益明,周洪杰等.辐照对食品营养成分的影响[J].食品与机械,2005,21(5):45~48
    [8]段笑敏.小麦加工方法对面粉品质的影响[J].粮食与饲料工业,2002,42(1): 5~7
    [9]李猛,何瑰,程备久. 60Co-γ射线辐照对玉米淀粉特性及降解的影响[J].激光生物学报,2009,18(2):241~246
    [10]余泽高,顾正清,蔡金洋. 60Coγ射线辐射小麦种子贮藏效应的研究[J].核农学报,2005,19(2):92~94
    [11]宋松泉,程红焱,龙春等.种子生物学研究指南[M].北京:中国科学出版社,2005, 27(1): 57~61
    [12] Wu D., Shu Q., Wang Z.H., et al. Effect of gamma irradiation on starch viscosity and Physico-chemical properties of different rice[J]. Radiation Physics Chemistry, 2002, 65(1): 79~86
    [13] Lan G., Paul A.S., Robert A.G., et al. Dough rheology and wet milling of hard waxy wheat flours[J]. Journal of Agricultural and Food Chemistry, 2009, 57: 7030~7038
    [14]申瑞玲,董吉林,程姗姗等.麸皮面粉面团的粉质和拉伸特性[J].农业工程学报,2009,25(6):237~240
    [1]汪树生,田植群,苏玉春等.辐射对淀粉作用的研究概况[J].中国粮油学报. 2004,19(5):27~42
    [2] Kilcast D. Food irradiation: current problems and future potential[J]. International Biodeterioration & Biodegradation. 1995: 279~296
    [3] Radley J.A. The effects of irradiation by high energy cathode rays on starch. Starch/St?rke. 1960, 12(7): 201~205
    [4] Bhatty R.S., Macgregor, et al. Gamma irradiation of hulless barley: effect on grain compositionβ-glucans and starch[J]. Cereal Chemistry. 1988, 65(6): 463~470
    [5] Macarthur L.R. Gamma radiation of wheatⅡ. Effect of low-dosage radiations on starch properties[J]. Cereal Chemistry. 1983, 61(4): 321~326
    [6] Rayas-Duarte P., Rupnow, et al. Gamma-irradiated dry bean (phaseolus vulagaries) starch: physicochemical properties[J]. Journal of Food Science. 1993, 58: 389~394
    [7] Saiyavit V. Physico-chemical properties of rice starch before and after gamma-ray irradiation[J]. FFi Journal. 1999, 179: 67~71
    [8] Saadany E.L., Fatah E.I. Effect of gamma irradiation on Egyaptian sweet potato starch[J]. Starch/ St?rke. 1974, 26(6): 190~195
    [9]李淑荣,王殿轩,高美须.电子加速器辐照对稻谷品质影响的研究[J].河南工业大学学报(自然科学版),2006,27(5):30~32
    [10]黄曼,胡碧君,温其标等.电子束辐照对小麦储藏抑菌及加工品质的影响[J].农业工程学报,2010,26(2):342~346
    [11] Nemtanu M. R., Minea R., Kahraman K., et al. Electron beam technology for modifying the functional properties of maize starch[J]. Nuclear Instrument Methods. A. 2007, 580, 795~798
    [12] Yokoyama W., Renner-Nantz J., Shoemaker C. F. Starch molecular mass and size by size-exclusion chromatography in DMSO-LiBr coupled with multiple angle laser light scattering[J]. Cereal Chemistry. 1998, 75, 530~535
    [13] Tester R. F., Patel T., Harding S. E. Damaged starch characterization by ultracentrifugation[J]. Carbohydrate. Research. 2006, 341, 130~137
    [14] Stasio M.D., Vacca P., Piciocchi N., et al. Particle size distribution and starch damage in some soft wheat cultivars[J]. International Journal of Food Science & Technology. 2007, 42, 246~250
    [15] Vansteelandt J., Delcour J. A. Physical behavior of durum wheat starch(Triticum durum)during industrial pasta processing[J]. Journal of Agricultural & Food Chemistry. 1998, 46, 2499~2503
    [16] Wang J., Yu Y. Effect of gamma-ray irradiation on the physicochemical properties of flour and starch granule structure for wheat[J]. International Journal of Food Science & Technology. 2009, 44, 674~680
    [17] Kong X. L., Kasapis S., Bao J. S., et al.: Effect of gamma irradiation on the thermal and rheological properties of grain amaranth starch[J]. Radiation Physics & Chemistry. 2009, 78,954~960
    [18] Bao J. S., Ao Z. H., Jane J. L. Characterization of physical properties of flour and starch obtained from gamma-irradiated white rice[J]. Starch/ St?rke 2005, 57, 480~487
    [19] Duarte P. R., Rupnow J. H. Gamma-irradiation affects some physical properties of dry bean (Phaseolus vulgaris) starch[J]. Journal of Food Science. 1993, 58, 389~394
    [20] Nemtanu M. R., Minea R., Kahraman K., et al. Electron beam technology for modifying the functional properties of maize starch[J]. Nuclear Instrument Methods. A. 2007, 580, 795~798
    [21] Lee Y. J., Kim S. Y., Lim S. T., et al. Physicochemical properties of gamma-irradiated corn starch[J]. Journal of Food Science & Nutrition. 2006, 11, 146~154
    [22] Chung H. J., Liu Q. Effect of gamma irradiation on molecular structure and physicochemical properties of corn starch[J]. Journal of Food Science. 2009, 74(5), 353~361
    [23] Rombo G. O., Taylor J. R., Minnaar A. Irradiation of maize and bean flours: Effects on starch physicochemical properties[J]. Journal of Agricultural & Food Chemistry. 2004, 81, 497~502
    [24] Bao J. S., Corke H. Pasting properties ofγ-irradiated rice starches as affected by pH[J]. Journal of Agricultural & Food Chemistry. 2002, 50, 336~341
    [1] Kokself H., Sapirstein H.D., Celikf S., et al. Effects of gamma-irradiation of wheat on gluten proteins[J]. Journal of Cereal Science. 1998, 28, 243~250
    [2]于勇,王俊,王爱华等. 6oCoγ射线辐照预处理对小麦干燥特性的影响[J].农业工程学报,2005,21(5):145~149
    [3] Fisichella S., Alberghina G., Amato M. E. et al. Conformational studies of wheat flour high relative molecular mass glutenin subunits by circular dichroism spectroscopy[J]. Biopolymers. 2002, 65(2): 142~147
    [4] Liang L., Pinier M., Leroux J. C. et al. Interaction of a-Gliadin with Poly (HEMA -co-SS): Structural Characterization and Biological Implication[J]. Biopolymers, 2008, 99(2): 169~178
    [5] Pauthe E., Dauchez M., Mejri M., et al. Structure studies of a small (linear, cyclic) peptide as a synthetic substrate for thermolysin[J]. Journal of Molecular Structure, 1999, 480-481: 423~426
    [6] Wongsuban B., Muhanmad K., Ghazali Z., et al. The effect of electron beam irradiation on preparation of sago starch/polyvinyl alcohol foams[J]. Nuclear Instrument and Methods in Physics Research. B 2003, 211, 244~250
    [7] Lee J. S., Kumar R. N., Rozman H. D., et al. Pasting, swelling and solubility properties of UV initiated starch-graft-poly(AA)[J]. Food Chemistry. 2005, 91, 203~211
    [8] Southan M. and Macritchie F. Molecular weight distribution of wheat proteins[J]. Cereal Chemistry, 1999, 76(6): 827~836
    [9]李伟莉,刘国琴,Dobraszczyk B. J.面筋蛋白的流变学性质及结构研究[J].郑州工程学院学报,2004,25(2):7~11
    [10]车永和,马晓岗.小麦蛋白质品质研究进展[J].青海农林科技,2001,4:23~25
    [1]刘宏跃,林音,李香玲.γ射线辐照对豆类发芽和谷物类食用品质的影响[J].核农学报,2004,18(2):
    [2]卢志恒,王安泉.不同剂量电子辐照对小麦品质影响的研究[J].中国粮油学报,2001,16(1):20~22
    [3]李淑荣,王殿轩,高美须.电子加速器辐照对稻谷品质影响的研究[J].河南工业大学学报(自然科学
    [4]中华人民共和国国家标准,GB/T 14611-1993.粮油检验:小麦面包烘焙品质试验直接发酵法[M].北京:中国标准出版社,1993
    [5]顾雅娴.面团的形成时间和稳定时间对面包制作的影响[J].粮油检测与加工,2005,6:46~47
    [6]李里特,江正强,卢山.焙烤食品工艺学.北京:中国轻工业出版社,2004
    [7]王放,王报,1999,(8):8~12
    [8]郭波莉,魏益民,张国权.馒头品质评价方法探析[J].麦类作物学报,2002,22 (3):7~10
    [9]师俊玲,魏益民,欧阳韶晖等.蛋白质和淀粉含量对面条品质的影响研究[J].郑州工程学院
    [10]中华人民共和国国家标准,SB/T 10030-1992.蛋糕通用技术条件[M].北京:中国标准出版社,1992
    [11]中华人民共和国国家标准,SB/T 10222-1994.烘焙类糕点通用技术条件[M].北京:中国标准出版社,1
    [12]梁辉,戴志远.物性分析仪在食品质构测定方面的应用[J].食品研究与开发, 2006,27(4):118~121
    [13]楚炎沛.物性测试仪在食品品质评价中的应用研究[J].粮食与饲料工业,2003,7:40~42128~130版),2006,27(5):30~32显伦,张国治等.发酵与无发酵工艺生产馒头的技术研究[J ].中国粮油学学报,2001,22(1):32~35 994
    [14]孙辉,姜薇莉,田晓红等.利用物性测试仪分析小麦粉馒头品质[J].中国粮油学报,2005,20(6):121~125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700