基于光谱的烟草生长与品质监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用光谱无损技术进行作物生长状况的实时监测和快速诊断是遥感和信息农学的一个重要课题,具有重要的理论和实践意义。本研究将高光谱手段应用到烟草,在中国主产烟区河南郑州和云南保山进行了烤烟、香料烟两种类型的不同氮肥供应田间试验,使用ASD Fieldspec FR2500光谱仪从田间鲜烟叶单叶水平和冠层两个尺度获取光谱数据,并对成熟鲜烟叶进行了室内光谱测定。分析了烟草光谱与生物物理化学指标之间的关系,旨在筛选烟草光谱与其生化组分之间最佳预测方法,为利用定量遥感技术监测烟草叶片生化组分、遥感品质监测等提供理论依据,为烟叶品质快速无损监测的应用奠定基础。
     首先系统分析了烟草的光谱特性及其影响因素。烟草具有典型的植物反射特征。烟草叶片光谱因施氮因素、烟草类型、测定时期、叶位、叶面、干鲜叶等因素而异。烤烟烟叶室外反射光谱在可见和近红外等波段范围内的变异系数为32.8~58.7%。叶片的反射率,白肋烟类型在可见光、近红外波段都大于香料烟和烤烟。烤烟叶片反射率表现为上部叶>中部叶>下部叶。烤烟同一叶片的8个部位反射率光谱有差异、烤烟烟叶正反面反射率不同、烘烤过的烟叶光谱反射率大于鲜烟叶。随施氮水平的增加,烤烟叶片及香料烟冠层反射光谱均表现为可见光区的反射率逐渐降低,而近红外波段的反射率逐渐升高的趋势。光谱信息包含了许多因素及其相互影响,这些结果为烟草光谱监测的进一步研究提供了理论基础。
     系统分析了田间不离体条件下烟叶光谱与烟叶化学品质指标之间的相关关系,筛选出一些与烟叶氮、烟碱、总糖、钾含量的显著相关的光谱参量,建立了相应的光谱诊断模型。其中氮反射指数NRI与叶片氮含量在各个测定时期都稳定一致的达到显著相关,两者决定系数(R~2)达0.703。由于总糖、还原糖、烟碱、钾各个测定时期的变化较大,分时期建立了总糖,烟碱、钾的估算模型,但是没有适合的还原糖估算模型。田间不离体条件下光谱方法诊断氮、钾含量品质指标最好,其次是烟碱和总糖。总体上田间不离体光谱方法模型的决定系数中等,可以满足一定精度要求下的需要。
     在明确香料烟叶面积指数、叶片产量、生化品质指标变化的基础上,通过大量光谱参量的相关分析,建立了香料烟生长指标和主要化学品质指标的冠层光谱预测模型。各个测定时期各种生长和化学品质指标与冠层反射率的相关性变化较大。采用选用的光谱参量及综合性群体指标,光谱与生物物理化学参量的相关关系得到加强。结构性指标和功能性指标各个阶段均有稳定一致性的显著相关的光谱指数,而成分性指
The nondestructive hyperspectral technology to monitor and detect crop growth status has demonstrated wide applicability in the field of remote sensing and informative agronomy. In this study, hyperspectral technology was applied to tobacco. A series of field experiments with flued-cured variety (FCV) tobacco and oriental tobacco types under nitrogen rates were conducted in Zhengzhou Henan and Baoshan Yunan, which belong to main tobacco production region in China. Leaf-scale and canopy-scale reflectance spectra were measured with ASD Fieldspec FR2500 over the growth stages at the field and laboratory. The objectives of this research were to determine the relationship between spectral characteristics and tobacco biophysical and biochemistry parameters, and to develop models for monitoring growth and quality traits based on spectral characteristics. Therefore, this work would provide theoretical basis for quantitative remote sensing and hyperspectral application on tobacco production. The results showed that:
    1. Spectral characteristics of tobacco were analyzed systemically corresponding to nitrogen rates, tobacco types, growth stages, leaf position at the stem, position within-leaf, adaxial and abaxial leaf surface, fresh and dry leaf. Tobacco has typical vegetation reflectance spectral characteristics. Range of reflectance variation coefficient of FCV tobacco leaf investigated was 32.8-58.7% at field in 350-2500nm. Leaf reflectance of burley tobacco was great than that of oriental tobacco and FCV tobacco in the visible and near-infrared regions. FCV tobacco leaf reflectance was, upper leaf >cutter leaf>lower leaf at the stem. The reflectance varied with positions within-leaf as well as adaxial and abaxial leaf surface in FCV tobacco. The reflectance of dry leaf was great than that of fresh leaf in FCV tobacco. Reflectance of FCV tobacco leaf and oriental tobacco canopy decreased at visible region and increased with nitrogen rates at near-infrared region. Reflectance of FCV tobacco leaf increased with growth progress at 400-1350nm region, of which reflectance varied greatly at visible region. While reflectance of oriental tobacco leaf decreased at visible regions and increased at near-infrared with growth progress. Spectra are the
引文
[1] http://sjk.ztri.com.cn/xiangmu/xmdt0014.htm
    [2] 左天觉著.烟草的生产、生理和生物化学[M].上海:上海远东出版社,1993.433-446,449-463.
    [3] 胡国松,郑伟,王震东,等.烤烟营养生理[M].北京:科学出版社,2000,62-91.
    [4] 朱尊权.烟叶的可用性与卷烟的安全性[J].烟草科技,2000,(8):3-6.
    [5] Abrol Y P(ed.). Nitrogen in Higher Plants[M]. J. Wiley and Sons, NY, 1990: 492.
    [6] Tremola M G, Interll G, Carotenuto R. Colour changes in Burley tobacco curing as affected by N fertilization[C]. CORESTA Meet. Agro-Phyto Groups, 2001, Cape Town, abstr. APOST6.
    [7] Siawash M S, Esfahani M, Rabiei B, Safarzadeh M, Assimi M H. Determining the relation between different levels of nitrogenous fertilizer & chlorophyll content of tobacco leaf (modeling)[C]. CORESTA Congress, New Orleans, 2002, Agro-Phyto Groups, abstr. APPOST12.
    [8] Bailey W A. Influence of nitrogen rate on growth, yield, & leaf chemistry of dark tobacco[C]. CORESTA Congress, Kyoto, 2004, Agro-Phyto Groups, abstr. AP1.
    [9] 曹志洪主编.优质烤烟生产的土壤与施肥[M].南京:江苏科学技术出版社,1991:101-116.
    [10] 韩锦峰,史宏志,官春云,等.不同施氮水平和氮素来源与烟叶碳氮比及其与碳氮代谢的关系[J].中国烟草学报,1996,1:19-25.
    [11] 韩锦峰,史宏志,王彦亭.不同氮量和氮源的烟叶高级脂肪酸及其与香吃味的关系[J].作物学报,1996,24:125-128.
    [12] Prasad Rao J A V, Gopalachari N C. Effect of different crop sequences under rainfed conditions with reference to FCV Tobacco on the chemical and physical quality indexes of Tobacco leaf[J]. Tobacco Research. 1982, 8: 48-59.
    [13] Masclaux C, Valadier M H, Brugiere N, Morot-Gaudry J F, Hirel B. Characterization of the sink/source transition in tobacco(Nicotiana tabacum L.) shoots in relation to nitrogen management & leaf senescence[J]. Planta, 2000, 211: 510-518.
    [14] 江力,张荣铣.不同氮钾水平对烤烟光合作用的影响[J].安徽农业大学学报,2000,27:328-331.
    [15] 李宏志,张福锁,王兴仁.植株氮营养诊断与推荐施肥[A].张福锁主编.土壤与植物研究新动态(第三卷)[C].北京:中国农业出版社,1995,257-261.
    [16] Bonoan R R. Evaluation of a rapid plant test as guide in fertilizer recommendation for tobacco[C]. CORESTA, 1997, 2, 70-71.
    [17] Mills H A, Jones J B Jr. Plant analysis handbook Ⅱ: a practical sampling, preparation, analysis, and interpretation guide. Athens(GA): Micro-Macro Publishing. 1996.
    [18] Miner G S, Tucker M R. Plant analysis as an aid in fertilizing tobacco. In: Westerman RL, editor. Soil testing and plant analysis. 3rd ed. Madison(WI): Soil Science Society of America, Inc [SSSA]. 1990, 645-57.
    [19] Cecil H. Yancy Jr. Tissue analysis can help in harvesting quality tobacco. Farm Press Editorial Staff, www.ncagr.com/agronomi
    [20] Campbell C R. Flue-cured Tobacco, Reference sufficiency ranges, field crops. www.ncagr.com/agronomi.
    [21] Mackown C T, Crafts-Braner S J, & Sutton T G. Early-season plant nitrate test for leaf yield & nitrate concentration of air-cured barley tobacco[J]. Crop Science, 2000, 40: 165-170.
    [22] 王晶,曹一平.植物和土壤中硝酸盐含量的测定方法[A].李晓林,张福锁,米国华.平衡施肥与可持续优质蔬菜生产[M].北京:中国农业大学出版社,2000,2.
    [23] 李志宏,张福锁,王兴仁.我国北方地区几种主要作物氮营养诊断及追肥推荐研究Ⅱ:植物硝酸盐快速诊断方法的研究[J].植物营养与肥料学报,1997,3(3):268-274.
    [24] 冉邦定,刘敬业,李天福.烤烟K326成熟期五种酶动态的研究[J].中国烟草学报,1993(4):13-19.
    [25] 董惠萍.不同施肥量对烤烟烟叶氮碳代谢的影响[J].云南农业大学学报,1992,7(4):237-243.
    [26] 陈锦玉,和丽忠,汪禄祥,等.反射仪法快速测定烤烟硝酸盐作氮素营养诊断及应用[J].中国农学通报,2002,18(6):39-42.
    [27] Irving G C J, and Bouma D. Rapid and simple leaf tissue test for nitrate[J]. Communications in Soil Science and Plant Analysis, 1986, 17: 299-310.
    [28] Nolte C R. Test tobacco leaf maturity by electonic conduction[C]. CORESTA, 1995, 2-9.
    [29] Nicolas C, Maon A, Cazamajour F A. Tool for the monitoring of nitrogen nutrition in Virginia tobacco: the petiole juice method[C]. CORESTA Meet. Agro-Phyto Groups, Montreux, 1997, AP32.
    [30] N. C. Dept. of Agriculture & Consumer Services. Harvesting Tobacco Based on Tissue Analysis, Agronomic Division, www.ncagr.com/agronomi
    [31] Pandeya R S, Rapid estimation of some flue-cured tobacco chemical characteristics by infrared-reflectance spectroscopy[J]. Tob Sci, 1978, 22: 27-31.
    [32] Williamson R E, Sisson V A. Estimation of total nitrogen in tobacco tissue by near-infrared reflectance spectrophotometry[J]. Tobacco Abstract, 1987(2): 299.
    [33] McClure W F, Williamson R E. Rapid computerized near infrared spectrophotometric measurement of total polyphenols in tobacco[C]. CORESTA, 1981(1): 37.
    [34] Tonnia A. Rapid estimation of some tobacco chemical characteristics by infrared reflectance Spectroscopy[C]. CORESTA, 1983(2-3): 159.
    [35] Shinohara T, Tajima T. Application of near-infrared reflectance instrument to the analyses of chemical constituents of tobacco leaves[C]. CORESTA, 1986(2): 35.
    [36] Hanna M. Applying artificial neural networks. Ⅰ Estimating nicotine in tobacco from near infrared data[J]. Anal Abs, 1997, 159(9).
    [37] Bense T. Estimation of total volatile bases in tobacco by near infrared(NIR) reflectance spectrophotometry[J]. Tob Sci, 1983, 27: 92-94
    [38] Bense T, Gastellu C. Estimation of total volatile bases in tobacco by near infrared(NIR) reflectance spectrophotometry[J]. Tobacco Abstract, 1984(1-2): 1.
    [39] McClure W F, Hamid A F, Giesbrecht G, & Weeks W W. Fourier-analysis enhances NIR diffuse reflectance spectroscopy[J]. Applied Spectroscopy, 1984, 38(3): 322-329.
    [40] Tonini A. Rapid estimation of some tobacco chemical characteristics by infrared reflectance spectroscopy[C]. CORESTA, 1983(2-3): 159.
    [41] Willamson R E. Rapid spectrophotometric analysis of the chemical composition of tobacco. Part 4 Total nitrogen[J]. Tob Sci, 1986, 30: 109-111.
    [42] Mcclure W F, Willamson R E. Rapid spectrophotometric analysis of the chemical composition of tobacco. Ⅲ Polyphenos[J]. Tobacco Abstract, 1983(5-6): 294.
    [43] Bouzige M, Vidal B, Biesse J P M, Jousser C, March V, Dumery B. Prediction of a biological variable(Ames test on TPM) & of a chemical variable(TSNAs in smoke) according to the tobacco's chemical & physical characteristics[C]. CORESTA Congress, Kyoto, 2004, Smoke Science/Product Technology Groups, abstr. SS14.
    [44] 王文真.利用IA450近红外分析仪快速测定烟草中的总氮含量[J].仪器仪表与分析监测,1995(2):53-55.
    [45] 闵顺耕,谢秀娟.近红外漫反射光谱的小波变换滤波[J].分析化学,1998(1):34-37.
    [46] 张建平,谢雯燕,束茹欣等.烟草化学成分的近红外快速定量分析研究[J].烟草科技,1999(3):37-38.
    [47] 王东丹,李军会,陈润琼等.FT-NIR法测定青烟叶品质参数的研究[J].西南农业大学学报,2002(1):64-67.
    [48] 王家俊.FT-NIR光谱分析技术测定烟草中总氮、总糖和烟碱[J].光谱实验室,2003(2):181-185.
    [49] 马翔,王毅,温亚东等.光谱仪测定烟草化学成分不同谱区范围对数学模型影响的研究[J].光谱学与光谱分析,2004(4):444-446.
    [50] Chubachi T, Asano I, and Oikawa T. The diagnosis of nitrogen nutrition of rice plants (Sasanishiki) using chlorophyll-meter[J]. Jpn. J. Soil Sci. Plant Nutr, 1986, 57(2): 190-193.
    [51] Hussain F, Bronson K F, Yadvinder-Singh, Bijay-Singh, and Pang S. Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia[J]. Agron J. 2000, 92: 875-879.
    [52] 沈掌泉,王珂,朱君艳.叶绿素计诊断不同水稻品种氮素营养水平的研究初报[J].科技通报(理工农医),2002,18(3):173-176.
    [53] De Roton C, Tancogen J, Bazin R. Effect of maturity on the leaf characteristics of flue-cured varieties K 326 & ITB 31612. CORESTA Meet. Agro-Photo Groups, Montreux, 1997, AP3.
    [54] 童庆禧.中国典型地物波谱及其特征分析[M].北京:科学出版社,1990.
    [55] 陈述彭,童庆禧,郭华东.遥感信息机理研究[M].北京:科学出版社,1998.
    [56] Thomas J R, Gausman H W. Leaf Reflectance vs. Leaf Chlorophyll & Carotenoid Concentration for Eight Crops[J]. Agronomy Journal, 1977, 69: 799-802.
    [57] Thomas J R, Oerther G F. Estimating nitrogen content of sweet pepper leaves by reflectance measurements[J]. Agron. J., 1972, 64: 11-13.
    [58] Al-Abbas A H, Barr R, Hall S D, et al. Spectra of normal and nutrient deficient Maize leaves[J]. Agron J., 1974, 66: 16-22.
    [59] Wessman C A, Aber J. D, and Peterson D L. An evaluation of imaging spectrometry for estimating forest canopy chemistry[J]. International Journal Remote Sensing. 1989, 10: 1293-1316.
    [60] Card D H, Peterson D L, Matson P A, et al. Prediction of leaf chemistry by the use of visible & near infrared reflectance spectroscopy[J]. Remote Sensing of Environment. 1988, 26: 123-147.
    [61] Peterson F. Pennsylvanian to Jurassic aeolian transportation systems in the western United States[J]. Sed. Geol. 1988, 56: 207-260.
    [62] Wessman C A, Aber J D, Peterson D J, et al. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems[J]. Nature, 1988, 335: 154-156.
    [63] Vogelmann T C. Plant tissue optics[J]. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1993, 44: 231-251.
    [64] Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves[J]. International Journal Remote Sensing, 1997, 18: 291-298.
    [65] Walburg G, Bauer M E, Daughtry C S T, et al. Effects of N nutrition on the growth, yield, & reflectance characteristics of com canopies[J]. Agron. J., 1982, 74: 677-683.
    [66] 周启发,王人潮.水稻氮素营养水平与光谱特征的相关研究初报[J].遥感技术与应用,1993,(5):9-16.
    [67] Miller J R, et al. Quantitative characterization of the vegetation red edge reflectance. 1 An inverted Gaussian reflectance model[J], Int. J. Remote Sens., 1990, 11, 1775-1795.
    [68] Miller J R, et al. Season pattems in leaf reflectance red edge characteristics[J]. Int. J. Remote Sens., 1991, 12, 1509-1523.
    [69] Filelia I, et al. The red edge position & shape as indicators of plant chlorophyll content, biomass and hydric status[J]. Int. J. Remote Sens., 1994, 15, 1459-1470.
    [70] Kokaly R F. Investigating a physical basis for spectroscopic estimates of Deaf nitrogen content[J]. Remote Sensing of Environment. 2001, 75: 153-161.
    [71] Demetriades-Shaw et al. High resolution derivative spectra in remote sensing[J]. Remote Sensing Environment, 1990, 33(1), 55-64.
    [72] Penuelas J, Fredeen J A, Merino A L, et al. Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves[J]. Remote Sensing Environment. 1994, 48: 135-146.
    [73] 牛铮,陈永华,隋宏智等,叶片化学组分成像光谱遥感探测机理分析[J],遥感学报,2000,4(2):125-129.
    [74] Demmig-Adams B. and Adams W W. the role of xanthophylls cycle carotenoids in the protection of photosynthesis[J]. Trends in Plant Science, 1996, 1, 21-26.
    [75] Datt B. Visible/near infrared reflectance & chlorophyll content in Eucalyptus leaves[J]. Int. J. Remote Sens., 1999, 20(14): 2741-2459.
    [76] Johnson L F, Billow C R. Spectrometric estimation of total nitrogen concentration in Douglaa fir foliage[J]. Int. J. Remote Sens., 1996, 17(4): 489-500.
    [77] Rouse J W, Haas R H, Schell J A, and Deering D W. Monitoring the vemal advancement of retrogradation of natural vegetation[A]. Prog. Rep. RSC 1978-1. Remote Sensing Cent., Texas A&M Univ., College Station.
    [78] Gitelson, A. A., Kaufman Y J, Stark R, and Rundquist. D. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sens. Environ, 2002, 80: 76-87.
    [79] Penuelas J, Filella I, and Gamon J A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance[J]. New Phytol, 1995, 131: 291-296.
    [80] Metternich G. Vegetation indices derived from high-resolution airborne videography for precision crop management[J]. Int. J. Remote Sens., 2003, 24: 2855-2877.
    [81] Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sens. Environ, 1996, 58: 289-298.
    [82] Schleicher T D, Bausch W C, Delgado J A, et al. Evaluation and refinement of the nitrogen reflectance index(NRI) for site-specific fertilizer management. 2001 ASAE Annual International Meeting, St. Joseph, MI, USA. ASAE (Paper No. 01-11151).
    [83] Huete A R. A soil-adjusted vegetation index(SAVI)[J]. Remote Sens. Environ. 1988, 25: 295-309.
    [84] Daughtry C S T, Walthall C L, Kim M S, et al. Estimating com foliar chlorophyll content from leaf and canopy reflectance[J]. Remote Sens. Environ, 2000, 74: 229-239.
    [85] Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices[J]. Remote Sens. Environ., 1996, 55: 95-107.
    [86] Haboudane D, Miller J, Tremblay N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sens. Environ, 2002, 81: 416-426.
    [87] Jordan C F. Derivation of leaf area index from quality of light on the forest floor[J]. Ecology, 1969, 50: 663-666.
    [88] Pearson R L, and Miller L D. Remote mapping of standing crop biomass for estimation of the productivity of productivity of the short-grass prairie, Pawnee National Grasslands, Colorado, Proceedings of the 8th International Symposium on Remote Sens. Environ., ERIM International, 1972, 1357-1381.
    [89] 王纪华,赵春江,刘良云,等.作物水分和氮素的遥感监测.作物栽培与作物生理学研究进展[M],北京:中国农业大学出版社,2003:56-62.
    [90] Zhou Q F, Wang J H. Comparison of upper leaf and lower leaf of rice plants in response to supplemental nitrogen levels[J]. Journal of Plant Nutrition, 2003. 26(3): 607-617.
    [91] Zhao C J, Huang W J, Wang J H, et al. The Red Edge Parameters of Different Wheat Varieties Under Different Fertilization and Irrigation Treatments[J]. 中国农业科学(英文版), 2002, 1(7): 745-751.
    [92] Zhao C J, Zhou Q F, Wang J H et al. Spectral Indices Redefined in Detecting Nitrogen Availability for Wheat Canopy[J]. Communications in Soil Science and Plant Analysis,, 2004, 35, (5 & 6): 853-863.
    [93] Zhou Q F, Wang R C. Relationship between nitrogen nutrition level and reflectance characteristics of rice[J]. Journal of Zhejiang Agricultural University, 1993, 19(sup): 40-46.
    [94] 薛利红,曹卫星,罗卫红等.2003,基于冠层反射光谱的水稻群体叶片氮素状况监测[J].中国农业科学,36(7):807-812.
    [95] 田永超,朱艳,曹卫星.用冠层反射光谱预测小麦叶片糖氮量及糖氮比[J].作物学报,2005,31(3):355-360.
    [96] Horler D N H, Barber J, Barringer A R. Effects of heavy metals on the absorbance and reflectance spectra of plants[J]. International Journal of Remote Sensing, 1980, 1: 121-136.
    [97] Curran P J, Dungan J L, Gholz H I. Exploring the relationship between reflectance, red edge and chlorophyll content in slash pine[J]. Tree Physiol, 1990, 7: 33-48.
    [98] Tarpley L, Reddy K, Sassenrath-Cole F. Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration[J]. Crop Sci., 2000, 40: 1814-1819.
    [99] 刘伟东,项月琴,郑兰芬,等.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析[J].遥感学报,2000,4(4):279-283.
    [100] 王秀珍,王人潮,李云梅,等.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究[J].浙江大学学报(农业与生命科学版),2001,27(3):301-306.
    [101] 赵春江,黄文江,王纪华,等.不同品种肥水条件下冬小麦红边参数研究[J].中国农业科学,2002,35(8):980-987.
    [102] Curran P J, Dungan J L, Macler B A, Plummet S E, & Peterson D L. Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration[J]. Remote Sensing of Environment, 1992, 39: 153-166.
    [103] Martin M E, & Aber J D. Analyses of forest foliage: Ⅲ Determining nitrogen, lignin and cellulose in fresh leaves using near infrared reflectance data[J]. Journal of Near Infrared Spectroscopy, 1994, 2: 25-32.
    [104] Martin M E, & Aber J D. High spectral resolution remote sensing of forest canopy lignin, nitrogen, and ecosystem processes[J]. Ecological Application, 1997, 7: 431-443.
    [105] Yoder, B. J., & Pettigrew-Crosby, R. E. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra(400-2500 nm) at leaf and canopy scales[J]. Remote Sensing of Environment, 1995, 53: 199-211.
    [106] Johnson L F. Nitrogen influence on fresh-leaf NIR spectra[Y]. Remote Sens. Environ., 2001, 78(3): 314-320.
    [107] Johnson L F, Billow C R. Spectrometric estimation of total nitrogen concentration in Douglaa fir foliage[J]. Int. J. Remote Sens., 1996, 17(4): 489-500.
    [108] Fourty T, Baret F, Jacquemound S, et al, leaf optical properties with explicit description of its biochemical composition: direct & inverse problems[J]. Remote Sens. Environ., 1996, 56: 104-117.
    [109] Grossman Y L, Ustin S L, Jaequemoud S, Sanderson E, Schmuck G, Verdebout J. Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data[J]. Remote Sens. Environ., 1996, 56(3): 182-193.
    [110] Fourty T H, Baret F. On spectral estimates of fresh leaf biochemistry[J]. International Journal of Remote Sensing, 1998, 19(7): 1283-1297.
    [111] Shibayama M, Akiyama T A Spectroradiometer for Field Use. Ⅵ Radiometric estimation for chlorophyll index of rice canopy[y]. Japanese Journal of Crop Science, 1986, 55(4): 433-438.
    [112] Femandez S, Vidal D, Simon E, et al. Radiometric Characteristics of Triticum aestivum cv. Astral under Water and Nitrogen Stress[J]. International Journal of Remote Sensing, 1994, 15(9): 1867-1884.
    [113] Curran P J, Dungan B A, Macler S E, et al. Refectance spectroscopy of fresh whole leaves for the estimation of chemical concentration[J]. Remote Sensing of Environment. 1992, 39: 153-166.
    [114] 浦瑞良,宫鹏.森林生物化学与CASI高光谱分辨率遥感数据的相关分析[J].遥感学报.1997,1(2):115-123.
    [115] 浦瑞良,富鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
    [116] Kokaly R F. Investigating a physical basis for spectroscopic estimates of leaf nitrogen content[J]. Remote Sensing of Environment, 2001, 75: 153-161.
    [117] Stone M L, Solie J B, Raun W R, Whitney R W, Taylor S L, and Ringer J D. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat[J]. Trans. ASAE, 1996, 39: 1623-1631.
    [118] 杨敏华,刘良云,刘团结,等.高光谱遥感反演小麦冠层理化参量的试验研究[J].测绘学报 2002,31(4):316-321.
    [119] Delgado J A, Ristau R J, Dillon M A, et al. Use of innovative tools to increase nitrogen use efficiency and protect environmental quality in crop rotations[J]. Commun. Soil Sci. Plant Anal., 2001, 32: 1321-1354.
    [120] Blackmer T M, Schepers J S, & Varvel G E, et al. 1996. Nitrogen deficiency detection using shortwave radiation from irrigated corn canopies[J]. Agmomy Journal, 88: 1-5.
    [121] Filella I, Serrano L, Serra J, & Penuelas J. Evaluating Wheat Nitrogen Status with Canopy Reflectance Indices & Discriminant Analysis[J]. Crop Science, 1995, 35: 1400-1405.
    [122] Sembiring H, Raun W R, Johnson G V, et al. Detection of nitrogen and phosphorus nutrient status in winter wheat using spectral radiance[J]. J. Plant Nutri., 1998, 21: 1207-1233.
    [123] 小西教夫,志贺弘行,安積大治.美味米作[J]测量,2000,7:14-20.
    [124] 中村憲知,川岛茂人.衡星画像得茶产地环境特性品质关系[J].Japanese Journal of Crop Science,2001,68(3):424-432.
    [125] Hansen P M, Jorgensen J R, and Thomsen A. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression[J]. The Journal of Agricultural Science(2002), 139: 307-318.
    [126] 王纪华,黄文江,赵春江等.利用光谱反射率估算叶片和籽粒品质指标研究[J].遥感学报.2003,7(4):277-284.
    [127] Tian Q, Tong Q, Pu R, Guo X., & Zhao C. Spectroscopic determination of wheat water status using 1650~1850nm spectral absorption features[J]. Int. J. Remote Sens., 2001, 22(12), 2329-2338.
    [128] 秋山侃,福原道一,斎藤元也,等编著.产业[M].东京:养贤堂,ISBN:4842596147,1996,32-34.
    [129] Jago R A, Cutler M E, Curran P J. Estimating Canopy Chlorophyll Concentration from Field and Airborne Spectra[J]. Remote Sensing of Environment, 1999, 68(3): 217-224.
    [130] 杨敏华,赵春江,赵永超,等.用航空成像光谱数据获取田间小麦信息[J].中国农业科学,2002,35(6):626-631.
    [131] 刘良云.高光谱遥感在精准农业中的应用研究[D].中国科学院遥感应用研究所博士后出站报告,2002.
    [132] Lamb D W, Weedon M M, and Bramley R G V. Using remote sensing to predict grape phenolics and colour at harvest in a Cabemet Sauvignon vineyard: Timing observations against vine phenology and optimising image resolution. Predicting grape phenolics and colour at harvest Australian Journal of Grape and Wine Research. 2004, 10: 46-54.
    [133] Johnson L S, Herwitz J, Zheng B, Lobitz, and Parker D. Feasibility of monitoring coffee field ripeness with airborne multispectral imagery. Proc., Twentieth Intl. Conf. on Coffee Science, Herwitz, 2003, Oct. 27-31.
    [134] 薛利红,曹卫星,罗卫红等.基于冠层反射光谱的水稻群体叶片氮素状况监测[J].中国农业科学,2003,36(7):807-812.
    [135] 黄文江,王纪华,刘良云,等.小麦品质指标与冠层光谱特征的相关性的初步研究[J].农业工程学报,2004,20(4):203-207.
    [136] Zhijie Wang, Jihua Wang, Liangyun Liu, Wenjiang Huang. Prediction of grain protein content in winter wheat(Triticum aestivum L.) using plant pigment ratio(PPR)[J]. Field Crops Research, 2004, 90(2-3): 311-321.
    [137] Wright D L, Rasmussen V P, Neale C M U, Harman K, Searle G, Grant D, and Holle C. A comparison of nitrogen stress detection methods in spring wheat[C]. Third International Conference on Geospatial Information in Agriculture and Forestry Conference Proceedings. Denver Colorado. 2001, November 5-7.
    [138] Basnet, Badri B, and Apan, Armando A, and Kelly, Rob M, and Jensen, Troy A. and Strong, Wayne M, and Butler, David G. Relating Satellite Imagery with Grain Protein Content[C]. In Spatial Sciences 2003 Conference, 23-26 September, 2003, pages 1-11, Canberra, Australia.
    [139] Bensen T; Bense G. Satellite remote sensing applied to tobacco monitoring: present and future[C]. New Orleans, 2002, CORESTA Congress Brighton Congress, abstr. APST2.
    [140] Sasmita C, Bimal K B, Vinay K D and JAI S P. Field-scale leaf area index estimation using IRS-1D LISS-Ⅲ data[J]. Int. J. Remote Sens., 2006, 27(3-4), 637-644.
    [1] Analytical Spectral Devices. Inc. FieldSpec Pro User's guide[Z]. 2002.
    [2] LI-COR LI-1800-12 Integrating Sphere Instruction Manual[Z]. 1983. Pub. No. 8305-0034. LI-COR, Inc., Lincoln, NE
    [3] 施润和,牛铮,庄大方.叶片生化组分浓度对单叶光谱影响研究——以2100nm吸收特征的碳氮比反演为例[J].遥感学报,2005,9(1):1-7
    [4] Toshimori Takahashi, Takao Fujii, Yoshifumi Yasuoka. Hyperspectral Remote Sensing of Riparian Vegetation and Leaf Chemistry Contents[C]. The 23rd Asian Conference on Remote Sensing, Kathmandu, Nepal, 2002, 25-29.
    [5] 张振清.植物材料中可溶性糖的测定.植物生理学实验手册[M].上海:上海科学技术出版社,1982:134-138.
    [6] 上海植物生理学会.现代植物生理学实验指南[M].北京:科学技术出版社,1999,12:131-132.
    [7] 白宝璋,王景安,孙玉霞,等.植物生理学测试技术[M].北京:中国科学技术出版社,1993.
    [8] 王瑞新,韩富根,杨素勤,等.烟草化学品质分析法[M].郑州:河南科学技术出版社,1990.108-120
    [9] Prasad S. Thenkabaill, Eden A. Enclonal, Mark S. Ashtonl, and Bauke Van Der Meer. Accuracyassessments and optimal hyperspectral wavebands for vegetation and agriculture in 400~2500 nanometers, love.geology.yale.edu/smith/optimal_hyper._bands.pdf
    [10] Broge N H, and Lebance E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sens. Environ., 2001, 76: 156-172.
    [11] 浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000:92.
    [12] Feng Y. and Miller J R. Vegetation green reflectance at high spectral resolution as a measure of leaf chlorophyll content. Proceedings of the 14th Canadian Symposium on Remote Sensing, pp. 351-355, Calgary, Alberta, 1991, 6-9 May.
    [13] Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression[J]. Remote Sensing of Environment, 1999, 67: 267-287.
    [14] 刘良云.高光谱遥感在精准农业中的应用研究[D],中国科学院遥感应用研究所博士后研究工作报告,2002,12:38-45.
    [15] Baret F, Guyot G, Major D J. TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In: Proc. IGARRS'89. 12th Canadian Symposium on Remote Sensing, (vol. 3, 1355-1358). Vancouver, Canada. 1989, 4(10-14July).
    [16] 王正兴,刘闯,HUETE Alfredo.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J].生态学报,2003,23(5):979-987.
    [17] Zarco-Tejada P J, Ustin S L, and Whiting M L. Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectrat remote sensing imagery[J]. Agron. J, 2005, 97: 641-653.
    [18] Anatoly A, Gitelson Y, Yoram J K, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sens. Environ, 2002, 80: 76-87.
    [19] 田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998,13(4):327-333.
    [20] Curran P J, Dungan J L, Peterson D L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: testing the Kokaly & Clark methodologies[J]. Remote Sens. Environ., 2001, 76(3), 349-359.
    [21] Strachan I B, Pattey E, Boisvert J B. Impact of nitrogen and environmental conditions on com as detected by hyperspectral reflectance[J]. Remote Sens. Environ., 2002, 80: 213-224.
    [22] Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sens. Environ., 2002, 80: 76-87.
    [23] Adams M L; Philpot, W D, Norvel W A. Yellowness index: an application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation[J]. International Journal of Remote Sensing, 1999, 20(18): 3663-3675.
    [24] Lichtenthaler H K, Gitelson A, Lang M. Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements[J]. J. Plant Physiol., 1996, 148: 483-493.
    [25] Yoder B J, Pettigrew-Crosby R E. Predieting nitrogen and chlorophyll content and content from reflectance spectral(400~2500nm)at leaf and canopy scales[J]. Remote Sensing of Environment, 1995, 53: 199-211.
    [26] Penuelasa J and Ustinb S L. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data decomposing biochemical from structural signals Lydia Serrano[J]. Remote Sensing of Environment, 2002, 81(2-3): 355-364.
    [1] 赵德华,李建龙.宋子键.高光谱技术提取植被生化参数机理与方法研究进展[J].地球科学进展,2003,18(2):94-99.
    [2] Curran P J, Dungan J L, Macler B A, Plummer S E and Peterson D L. Reflectance spectroscopy of fresh whole leaves for the estimation of chemical composition[J]. Remote Sensing of Environment, 1992, 39: 153-166.
    [3] Fourty T H and Baret F. On spectral estimates of fresh leaf biochemistry[J]. International Journal of Remote Sensing, 1998, 19: 1283-1297.
    [4] Goel N S. Models of vegetation canopy reflectance & their use in estimation of biophysical parameters from reflectance data[J]. Remote Sensing of Environment, 1988, 4: 1-212.
    [5] Curran P J, Dungan J L, Gholz H L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry[J]. Remote sens. Environ, 2001, 76: 349-359.
    [6] Anser G P. Biophysical and biochemical sources of variability in canopy reflectance[J]. Remote Sens. Environ., 1998, 64: 234-253.
    [7] 杨长明,杨林章,韦朝领,丁超尘.不同品种水稻群体冠层光谱特征比较研究[J].应用生态学报,2002,13(6):689-692.
    [8] 孙雪梅,周启发,何秋霞.利用高光谱参数预测水稻叶片叶绿素和籽粒蛋白质含量[J].作物学报.2005,31(7):844-850.
    [9] 唐延林,王人潮,黄敬峰,孔维姝,程乾.不同供氮水平下水稻高光谱及其红边特征研究[J]. 遥感学报,2004,8(2):185-192.9-11.
    [10] Right D L, Rasmussen V P, Ramsey R D, Baker D J, Ellsworth J W. Canopy reflectance estimation of wheat nitrogen content for grain protein management[J]. GIScience and Remote Sensing, 2004, 41(4): 287-300.
    [11] 朱雨杰,周学秋,严衍禄.不同灌溉条件下小麦冠层的反射光谱特征及其模糊聚类研究[J].激光生物学,1996,5(3):874-877.
    [12] 宋开山,张柏,于磊,王宗明.玉米地上鲜生物量的高光谱遥感估算模型研究[J].农业系统科学与综合研究,2005,21(1):61-65.
    [13] Zarco-Tejada P J, Ustin S L, and Whiting M L. Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery[J]. Agron. J, 2005, 97: 641-653.
    [14] Crosta A P, Souza C R de F. Evaluating AVIRIS hyperspectral remote sensing data for geological mapping in Laterized Terranes, Central Brazil[C]. Proceeding of the Twelfth International Conference and Workshops on Applied Geologic Remote Sensing, Denver, Colorado. 17-19 November, 1997, Volume, 1997, Ⅱ: 430-437,
    [15] 牛铮,陈永华,隋洪智,张庆员,赵春江.叶片化学组分成像光谱遥感探测机理分析[J].遥感学报,2000,4(2):125-130.
    [16] Gitelson A A, Kaufman Y J, Stark R, Rundquist D. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment, 2002, 80: 76-87.
    [17] Burton H R, Dye N K, Bush L P. Distribution of tobacco constitutents in tobacco leaf tissue.1 Tobacco specific nitrosarnines, nitrate, nitrite, and alkaloids[J]. J Agric Food Chem., 1992, 40: 1050.
    [18] Slaton M R, Hunt E R and Smith W K. Estimating near-infrared leaf reflectance from leaf structural characteristics[J]. American Journal of Botany, 2001, 88: 278-284.
    [19] 张树堂,杨雪彪,王亚辉,李荣春,马彦清.不同成熟度烤烟鲜烟叶的组织结构比较[J].烟草科技.2005,1:38-40.
    [20] 陈碧珍.烤烟不同品种叶片结构的解剖观察[J].福建农学院学报(自然科学版),1993,22(2):241-246.
    [21] Zhou Qifa, Wang Jihua. Comparison of adaxial and abaxial surface reflectance under different nitrogen level[J]. 农业工程学报,2002, 18(9): 34-39.
    [22] Gitelson A A, Kaufman Y J, Stark R, Rundquist D. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing Environment, 2002, 80: 76-87.
    [1] Miner G S, Sims J L. Changing fertilization practices and utilization of added plant nutrients for efficient production of tobacco[J]. Recent Adv. Tob. Sci., 1983, 9: 4-76.
    [2] Brunneman K D, Hoffmann D. Pyrolytic origins of major gas phase constituents of cigarette smoke[J]. Recent Adv. Tob. Sci., 1982, 8: 103-140.
    [3] Tso T C, Sims J L, Johnson D E. Some agronomic factors affecting N-dimethyinitrosamine content of cigarette smoke[J]. Beitr. Tabakforsch, 1975, 8: 34-38.
    [4] 薛利红,罗卫红,曹卫星,田永超.作物水分和氮素光谱诊断研究进展[J].遥感学报,2003,7(1):73-80.
    [5] Thomas J R, Gausman H W. Leaf Reflectance vs. Leaf Chlorophyll and Carotenoid Concentration for Eight Crops[J]. Agronomy Journal, 1977, 69: 799-802.
    [6] Gausman H W. Reflectance of leaf components[J], Remote Sens.Environ., 1977, 6:1-9.
    [7] Card D H, Peterson D L, Matson P A, et al. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy[J]. Remote Sensing of Environment, 1988,26:123-147.
    [8] Curran P J, Dungan J L, Gholz H L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine[J]. Tree Physiol., 1990,7:33-48.
    [9] Gerik T J, Oosterhuis D M, Torbert H A. Managing cotton nitrogen supply[J]. Adv. Agron.,1998,64:115-147.
    [10] Williams P. and Norris K. American Association of Cereal Chemists Inc., St Paul, MN,1987,58:201.
    [11] Gillon F D.Dauriac M, Deshayes J C, Valette and Moro C. Estimation of foliage moisture content using near infrared reflectance spectroscopy[J]. Agricultural and Forest Meteorology, 2004, 124:51-62 .
    [12] Kokaly R F, Clark R N Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression[J]. Remote Sensing Environ, 1999, 67:267-287.
    [13] Curran P J. Remote sensing of foliar chemistry[J]. Remote Sensing of Environment, 1989,29:271-278.
    [14] Curran P J, Dungan J L, Macler B A, Plummer S E, & Peterson D L. Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration[J]. Remote Sens Environ., 1992, 39: 153-166.
    [15] Lacaze B, and Joffre R. Extracting biochemical information from visible and near infrared reflectance spectroscopy of fresh and dried leaves[J]. J Plant Physiol, 1994,144 : 277-281.
    [16] Johnson L F and Billow C R. Spectrometric estimation of total nitrogen concentration in Douglas-fir foliage [J]. International Journal of Remote Sensing, 1996,17:489-500.
    [17] Johnson L F, Hlavka C A and Peterson D L. Multivariate analysis of AVIRIS data for canopy biochemical estimation along the Oregon transect[J]. Remote Sensing of Environment, 1994,47:216-230.
    [18] Yoder B J and Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll content and concentration from reflectance spectra (400-2500 nm) at leaf and canopy scales[J]. Remote Sensing of Environment,1995,53: 199-211.
    [19] Peterson D L, Aber J D, Matson P A, Card D H, Swanberg N A, Wessman C A and Spanner M A. Remote sensing of forest canopy leaf biochemical contents[J]. Remote Sensing of Environment,1988, 24: 85-108.
    [20] Fourty T H, Baret F, Jacquemound S, et al. Leaf optical properties with explicit description of its biochemical composition direct and inverse problems[J]. Remote Sensing Environ, 1996, 56: 104-117.
    [21] Fourty T H, Baret E On spectral estimates of fresh leaf biochemistry[J]. International Journal of Remote Sensing, 1998, 19: 1283-1297.
    [22] 牛铮,陈永华,隋洪智等.叶片化学组分成像光谱遥感探测机理分析[J].遥感学报,2000,4(2):125-130.
    [23] 浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000:187-210.
    [24] 小西教夫,志贺弘行,安積大治.美味米作[J],测量,2000,7:14-20.
    [25] 李佛琳,赵春江,刘良云,王纪华,曹卫星.烤烟成熟鲜烟叶生化组分高光谱估算方法筛选[J].农业工程学报,2006,22(3):88-94.
    [26] 王纪华,黄文江,赵春江等.利用光谱反射率估算冬小麦叶片和籽粒生化组分研究[J].遥感学报,2003,7(4):277-284.
    [27] 张金恒,王珂,王人潮,郑洪福,周斌.水稻叶片反射光谱诊断氮素营养敏感波段的研究[J].浙江大学学报(农业与生命科学版),2004,30(3):340-346.
    [28] Tarpley Lee, Keddy K R and Gretchen F. Sassenrath-Cole Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration[J]. Crop Sci., 2000, 40: 1814-1819。
    [28] Johnson L F, Billow C R. Spectrometric estimation of total nitrogen concentration in Douglas fir foliage[J]. Int. J. Remote Sens.,. 1996, 17: 489-500.
    [29] 严衍禄.近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005,1:38-39.
    [30] 韩锦峰,王瑞新,刘国顺.烟草栽培生理[M].北京:农业出版社,1989:78.
    [31] Folin Li, Liangyun Liu, Jihua Wang, Chunjiang Zhao, Weixing Cao. Detection of Nitrogen Status in FCV Tobacco Leaves with the Spectral Reflectance[C]. IGARSS 2005, 8: 1863-1866.
    [1] Dan Walters. Altemative Approaches to Predicting Corn N Adequacy. University of NebraskaLincoln. www.soils.wisc.edu/extension/FAPM/approvedppt2004/Walters2.pdf
    [2] Lydia Serrano, Iolanda Filella, and Josep Penuelas. Remote Sensing of Biomass and Yield of Winter Wheat under Different Nitrogen Supplies[J]. Crop Sci., 2000, 40: 723-731.
    [3] 王纪华,赵春江,刘良云,黄文江,王之杰,周启发.作物水分和氮素的遥感监测.作物栽培与作物生理学研究进展[M].北京:中国农业大学出版社,2003:56-62.
    [4] 黄文江,王纪华,刘良云,赵春江,宋晓宇,马智宏.小麦品质指标与冠层光谱特征的相关性的初步研究[J].农业工程学报,2004,20(4):203-207.
    [5] 王珂,沈掌泉,王人潮.利用冠层及叶片反射光谱分析速测水稻氮素含量的研究[A].生命科学研究与应用[C].杭州:浙江大学出版社,1996,523-526.
    [6] 薛利红,曹卫星,罗卫红,姜东,孟亚利,朱艳.基于冠层反射光谱的水稻群体叶片氮素状况监测[J].中国农业科学,2003,36(7):807-812.
    [7] 周启发,王人潮.水稻氮素营养水平与光谱特征的相关研究初报[J].遥感技术与应用,1993,(5):9-16.
    [8] Zarco-Tejada P J, Ustin S L, and Whiting M L. Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery[J]. Agron. J, 2005, 97: 641-653.
    [9] 马亚琴,黄春燕,包安明,冯宪伟,王登伟,肖春华,孙莉,杨新军.水分胁迫下棉花冠层叶片氮素状况的高光谱估测研究[J].干旱区地理,2003,26(4):408-412.
    [10] 王登伟,李少昆,田庆玖,黄春燕,曹连莆,肖春华,马亚琴,杨新军.棉花主要栽培生理参数的高光谱估测研究[J].中国农业科学,2003,36(7):770-774.
    [11] Read J J, Tar pley L, McKinion J M, and Reddy K R. Narrow-waveband reflectance ratios for remote estimation of nitrogen status in cotton[J]. In J. Environ., 2002, 31: 1442-1452.
    [12] Shibayama M, Akiyama T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass[J]. Remote Sensing of Environment, 1989, 27: 119-127.
    [13] 刘伟东,项月琴,郑兰芬,等.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析[J],遥感学报,2000,4(4):279-283.
    [14] Zhao C J, Zhou Q F, Wang J H et al., Spectral indices redefined in detecting nitrogen availability for wheat canopy[J]. Communications in Soil Science and Plant Analysis, 2004, 35, (5 & 6): 853-863.
    [15] Blackmer T M, Schepers J S, Meyer G E. Remote sensing to detect nitrogen deficiency in com. In: Robert P C, Rust RH, Larson WE.(Eds.). Proceedings of the Second International Conference on Site-specific Management for Agricultural Systems. ASA/CSSA/SSSA, Madison, WI, 1994: 505-512.
    [16] 宋开山,张柏,李方,段洪涛,王宗明.高光谱反射率与大豆叶面积及地上鲜生物量的相关分析[J].农业工程学报,2005,(21)1:36-40.
    [17] 杨邦杰,裴志远.农作物长势的定义与遥感监测[J].农业工程学报,1999,15(3):214-218.
    [18] 刘良云,王纪华,黄文江,等.利用新型光谱指数改善冬小麦估产精度[J].农业工程学报,2004,20(1):172-175.
    [19] 刘良云.高光谱遥感在精准农业中的应用研究[D].中国科学院遥感应用研究所博士后出站报告,2002.
    [20] 宗会,张燕,宋玉川,温华东,杜绍明,杨世波.影响香料烟糖和烟碱含量的因素[J].中国烟草学报,2004,3:42-46.
    [21] Lichtenthaler H K, Gitelson A A, Lang M. Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tabacco by reflectance measurements[J]. J. Plant Physiol, 1996, 148: 483-493.
    [22] 王正兴,刘闯,HUETE Alfredo.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J].生态学报,2003,23(5):979-987.
    [23] Andrew D. R, Shane E D, and Graeme P. B. An evaluation of noninvasive methods to estimate foliar chlorophyll content[J]. New Phytologist, 2002, 153: 185-194.
    [1] Johnson L F. Nitrogen influence on fresh-leaf NIR spectra[J]. Remote Sensing of Environment, 2001, 78: 314-320.
    [2] 王纪华,黄文江,赵春江,等.利用光谱反射率估算叶片和籽粒品质指标研究[J].遥感学报,2003,7(4):277-284.
    [3] Zarco-Tejada P J, Ustin S L, and Whiting M L. Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery[J]. Agron. J, 2005, 97: 641-653.
    [4] 王正兴,刘闯,HUETE Alfredo.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J].生态学报,2003,23(5):979-987.
    [5] Anatoly A, Gitelson Y, Yoram J K, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sens. Environ, 2002, 80: 76-87.
    [6] 刘良云,王纪华,黄文江,等.利用新型光谱指数改善冬小麦估产精度[J].农业工程学报,2004,20(1):172-175.
    [7] Folin Lee, Liangyun Liu, Jihua Wang, et al. Detection of nitrogen status in FCV tobacco leaves with the spectral reflectance[C]. IEEI International geoscience and remote sensing symposium preceedings, 2005, 1863-1866.
    [8] LI-COR LI-1800-12 Integrating sphere instruction manual[Z]. 1983. Pub. No.8305-0034. LI-COR, Inc., Lincoln, NE.
    [9] 白宝璋,王景安,孙玉霞,等.植物生理学测试技术[M].北京:中国科学技术出版社,1993.
    [10] 王瑞新,韩富根,杨素勤,等.烟草化学品质分析法[M].郑州:河南科学技术出版社,1998.
    [11] George A B. Quantifying chlorophylls and carotenoids at leaf and canopy scales: an evaluation of some hyperspectral approaches[J]. Remote Sens. Environ, 1998, 66: 273-285.
    [12] Chappelle E W, Kim M S, and McMurtrey J E. Ⅲ Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a ratio from leaf chlorophyll a, chlorophyll b and the carotenoids in soybean leaves[J]. Remote Sens. Environ, 1992, 39: 239-247.
    [13] 田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998,13(4):327-333.
    [14] 浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000,8:87-93.
    [15] 唐延林,王秀珍,黄敬峰,等.水稻微分光谱和植被指数的作用探讨[J].农业工程学报,2003,19(1):145-150.
    [16] 王秀珍,黄敬峰,李云梅,等.水稻生物化学参数与高光谱遥感特征参数的相关分析[J].农业工程学报,2003,19(2):144-148.
    [17] 唐延林,王纪华,黄敬峰,等.水稻成熟过程中高光谱与叶绿素、类胡萝卜素的变化规律研究[J].农业工程学报,2003,19(6):167-172.
    [18] Boochs F, Kupfer G, Dockter K, and Kuhbauch W. Shape of the red-edge as a vitality indicator for plants[J]. Int. J. Remote Sens., 1990, 11(10): 1741-1753.
    [19] Peng S, Garcia F V, Laza R C, et al. Adjustment for specific leaf weight improves chlorophyll meter's estimate of rice leaf nitrogen concentration[J]. Agron. J., 1993, 85: 987-990.
    [20] Datt B. Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves[J]. Int. J. Remote Sens., 1999, 20: 2741-2759.
    [21] Kokaly R F, and Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression[J]. Remote Sensing of Environment, 1999, 67: 267-287.
    [22] Curran P J, Dungan J L, Macler B A, et al. The effect of a red leaf pigment on the relationship between red-edge and chlorophyll concentration[J]. Remote Sens. Environ, 1991, 35: 69-75.
    [23] Elvidge C D, and Chen Z. Comparison of broad-band and narrow-band red and near-infrared vegetation indices[J]. Remote Sens. Environ, 1995, 54: 38-48.
    [24] 严衍禄主编,近红外光谱分析基础与应用[M].北京,中国轻工业出版社,2005,1:38-39.
    [25] Lichtenthaler H K, Gitelson A A, Lang M. Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tabacco by reflectance measurements[J]. J. Plant Physiol, 1996, 148: 483-493.
    [26] 刘良云,靳志伟,王纪华,等.光谱法预测烟叶中的烟碱、钾和氮素[J].烟草科技,2005,6:26-29.
    [27] Andrew D R, Shane P D, and Graeme P B. An evaluation of noninvasive methods to estimate foliar chlorophyll content[J]. New Phytologist, 2002, 153: 185-194.
    [1] 高汉杰,陈汉新,彭世阳,等.烟叶成熟度鉴别方法与实用五段式烘烤新工艺应用研究的回顾[J].中国烟草科学,2002,4:39-41.
    [2] 韩锦峰.烟草栽培生理[M].北京:中国农业出版社,2003,7:226-245.
    [3] Peedin G F. Effects of nitrogen rate and ripeness at harvest on some agronomic and chemical characteristics of flue-cured tobacco[C]. CORESTA, 1995.
    [4] Hwang K J, Kim C W, Kim C H. Studies on the change of chemical components of flue-cured tobacco with maturity[C]. CORESTA, 1981.
    [5] Walker E K. Some chemical characteristics of the cured leaves of flue-cured tobacco relative to time of harvest, stalk position and chlorophyll content of the green leaves[J]. Tobacco Science, 1968, 12: 58-65.
    [6] 李跃武,陈朝阳,江豪,等.烤烟品种云烟85烟叶的成熟度Ⅰ.成熟度与叶片组织结构、叶色、化学成分的关系[J].福建农林大学学报,2002,31(1):16-21.
    [7] 李志宏,刘宏斌,张福锁.应用叶绿素仪诊断冬小麦氮素营养状况的研究[J].植物营养与肥料学报,2003,9(4):401-405.
    [8] Alina Kowalczyk-Jusko, Bogdan Kocik. Possible use of the chlorophyll meter(SPAD-502) for evaluating nitrogen nutrition of the Virginia tobacco[J]. Electronic Journal of Polish Agricultural Universities, Agronomy, 2002, 5(1): 1-10.
    [9] De Roton C, Tancogne J and Bazin R. Effect of maturity on the leaf characteristics of flue-cured varieties K326 & ITB 31612[C]. CORESTA Congress,. Agro-Photo Groups, 1997, AP3.
    [10] 王峰吉,陈朝阳,江豪,等.烤烟品种云烟85烟叶的成熟度Ⅱ.成熟度与保护酶活性及膜脂过氧化作用的关系[J].福建农林大学学报,2003,32(2):162-166.
    [11] 韩锦峰,林学梧,黄海棠,等.烟叶成熟阶段的生理生化变化[J].华北农学报,1990(1),63-67.
    [12] 杨树勋.准确判断烟叶采收成熟度初探[J].中国烟草科学,2003(4):34-36.
    [13] LI-COR LI-1800-12 Integrating Sphere Instruction Manual[Z]. Pub No.8305-0034. LI-COR. Inc., Lincoln, NE, 1983.
    [14] Richardson A D, Duigan S P and Berlyn G P. An evaluation of non-invasive methods to estimate foliar chlorophyll content[J]. New Phytologist, 2002, 153: 185-194.
    [15] Anatoly Gitelsona and Mark N. Merzlyak. Quantitative estimation of chlorophyll-using reflectance spectra: Experiments with autumn chestnut and maple leaves[J]. Journal of Photochemistry and Photobiology B: Biology, 1994, 22(3): 247-252.
    [16] 卢纹岱.SPSS for Windows统计分析[M].北京:电子工业出版社,2000.6:379-404.
    [17] 徐希孺.遥感物理[M].北京:北京大学出版社,2005,2:13.
    [1] 李佛琳,王纪华,刘良云,赵春江,曹卫星.农业高光谱遥感的研究现状与展望[J].西南农业大学学报,2005,27(7):124-130.
    [2] 王正兴,刘闯,HUETE Alfredo.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J].生态学报,2003,23(5):979-987.
    [3] 田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998,13(4):327-333.
    [4] Fourty T H, Baret F. On spectral estimates of fresh leaf biochemistry[J]. International Journal of Remote Sensing, 1998, 19: 1283-1297.
    [5] 杨邦杰,裴志远.农作物长势的定义与遥感监测[J].农业工程学报,1999,15(3):214-218.
    [6] 韩湘玲.作物生态学[M].北京:气象出版社,1991:15-18.
    [7] 王珂,沈掌泉,王人潮.胁迫因子的光谱植物营养胁迫与光谱特性[J].国土资源遥感,1999,1:9-12.
    [8] Carter GA, Knapp A K. Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration[J]. American Journal of Botany, 2001, 88, 677-684.
    [9] Chappelle E W, Kim M S, and MeMurtrey J E. Ⅲ Ratio Analysis of reflectance spectra(PARS): an algorithm for the remote estimations of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves[J]. Remote Sensing of Environment, 1992. 39: 239-247.
    [10] 严衍禄.近红外光谱分析基础与应用[M].北京,中国轻工业出版社,2005,1:38-39.
    [11] Curran P J. Remote sensing of foliar chemistry[J]. Remote Sensing of Environment, 1989, 29: 271-278.
    [12] 王忠.植物生理学[M]北京:中国农业出版社,2000,28.
    [13] 马斯纳.高等植物的矿质营养学[M].北京:北京农业大学出版社,1991.
    [14] Jacquemoud S, Baret F. PROSPECT: a model of leaf optical properties spectra[J], Remote Sens. Environ., 1990, 34: 75-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700