氟碳铈矿处理工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
详细综述了近几十年来处理氟碳铈矿的工艺,经过比较分析后,认为直接从浸出液中提取四价铈的“氧化焙烧-稀硫酸浸出-萃取法”工艺是处理氟碳铈矿的最佳流程。
     对从含氟体系中萃取铈过程中产生第三相的原因进行了深入研究,认为产生第三相是由于有机相中稀释剂的不饱和成分对四价铈的还原造成的,采用自制的S-溶剂可以避免产生这一现象——这是前人所没有根本解决的。以民用煤油和SHELLSOL D70为例研究了稀释剂对四价铈还原动力学研究,认为还原反应是零级反应。提高温度对还原有利,可更快地达到反应平衡,并且反应程度也会增加。
     采用斜率法和饱和法结合研究了在不同的初始氟铈比条件下的萃取机理,认为从含氟硫酸溶液中萃取四价铈的过程属于阳离子交换机理,但不同氟铈比条件下有所区别,有不同反应共存。在任何萃取条件下均未发现硫酸根进入有机相参与反应,但硫酸根影响了四价铈在溶液中的赋存状态,从而会影响四价铈的萃取比。在不同温度条件下进行了萃取过程热力学研究,认为萃取反应为放热反应并获取了热力学参数。
     从含氟硫酸溶液中萃取四价铈的工艺研究表明其最佳工艺条件为:萃取剂浓度1.0~1.2mol·L~(-1),采用S-溶剂为稀释剂、初始水相酸度为1.0mol·L~(-1)、初始水相四价铈浓度≤55g·L~(-1)、流比为2:1,萃取时间为>10min,经两级逆流萃取。全部的钍进入有机相,铁分散于两相中,铈的萃取率达到98%,CeO_2/REO>99%。有机相中铈的浓度可以达到52.50g·L~(-1),长时间放置情况良好,萃取剂反复使用效果好。
     提出了新的从含氟负载铈的有机相中反萃铈的方法,即沉淀(综合)反萃法,并进行了试验。探明了不同操作条件对反萃效果的影响。在Lewis槽中进行了反萃过程动力学研究。发现搅拌速度达到600rpm后,初始反应速率不再随着搅拌速度变化。受有机相中活化配合物形成过程控制,研究了温度对沉淀(综合)反萃动力学的影响,得到反应活化能为25.4616 kJ·mol~(-1)。
Reviewing the issued processes about Bastnaesite in the past decades, it is believed that the "Oxidative calcinations-dilute sulfuric acid leaching-extraction" process, which includes the following three steps: oxidative calcination in the air and leaching with dilute sulfuric acid and finally extracting and separating Cerium from the other Lanthanide, is the best method to recover Rare Earth from Bastnaesite. But it is not so consummate and still has some problems urgently need to be solved.
    The reason of the formation of the third phase in the process of extracting cerium from the Rare Earth Sulfate Solution containing of fluorine was investigated in this paper. The dominant reason is the reduction of the diluent. Taking the self-made S-solvent as diluent can decrease the reductive effect of diluent and avoid forming third
    phase--which couldn't be resolved before. The reductive reaction kinetics in the
    common kerosene and SHELLSOL D70 was studied. It shows that their reactive order is approximately zero. Increasing the reaction temperature can speed up the reaction equilibrium to a new level.
    Extraction mechanism of eerie from the sulfuric acid solution with different initial ratio of fluoric vs. eerie ion by the P507 diluted in inert diluent was researched by the Slope Method and Saturated Solution Method in this paper. It shows that extraction is cation exchange mechanism but the extracted complexes are different with the different initial ratio of fluoric vs. eerie ion. There is not any evidence showing that the SO42- takes part in the extraction reaction. The reactive entropy and the reactive enthalpy at different temperature were calculated when the ratio of fluoric vs. eerie ions equal to 2. It shows that the extraction reaction is the exothermic reaction and increase the system temperature is not favorable to eerie extraction.
    The optimal extraction operational condition obtained in this paper shows that the extractant concentration of 1.0-1.2 mol-L"' P507 diluted in self-made S-solvent, eerie ion concentration in aqueous phase is less than 55g-L-1 with acidity about 1.0 mol-L-1, counter-current with current ratio of 1:1, mixing time of two phase is less than 10 minutes. More than 98% eerie ion along with all of the thorium and part of
    
    
    
    ferric ion in initial feed enter into organic phase in extraction.and the concentration of eerie in organic is up to 52g-L-1. with the 99% purity vs. the other Rare Earth. The phase separation is easy at the mentioned extraction conditions and the used circularly extractant still possesses good extractive performance.
    New method to re-extract the cerium from the fluorine-bearing eerie-loaded organic phase were put forward in this paper. That is the precipitation stripping associating with coordinative (named as PAC method in shortened). And the influence of the opertation condition to the effect of stripping had been obtain. The kinetics research of stripping in PAC system was carried out in a Lewis cell in a constant temperature bath. The result shows that the reaction speed never depends on the agitation rate when the agitation rate up to 600 rpm. It was obtained from kinetics research that the rate-controlling step is the formation of the intermediate complex. The active energy is about 25.4616 kJ-mol-1.
引文
[1] 徐光宪主编 稀土(上) 北京:冶金工业出版社,1995.8:170~171
    [2] Smart J. V. Rare Earths, Department of Natural resource and mine Mineral Information Leaflet, No. 2, 1999. 7
    [3] M. Fleischer, Relative Proportions of the Lanthanides in the minerals of the Bastnaesite group Can. Mineral., 1978, 16(3): 361
    [4] 徐光宪主编 稀土(上) 北京:冶金工业出版社,1995.8:360~361
    [5] 张国成,黄小卫 氟碳铈矿冶炼工艺述评 稀有金属,1997,21(3):193~199
    [6] Alain Leveque; Jean Luc Le Loarer. Recovery of Neodymium/Didymium Values from Bastnaesite Ores, US Patent 5, 338, 520, 1994. 8
    
    
    [7] 希土类元素分离方法,日本公开特许公报,昭62-275020
    [8] Leveque Alain Procédé de séparation de terres rares, FR0238402
    [9] Larry K. Duncan Challanooga T. Process for separation Cerium Concentrate from ore, US Patent 3, 812, 233, 1974. 5
    [10] George L. Tilley, Littleton C., William E. D., Recovery of Lanthanides, US Patent 4, 973, 475, 1990. 11
    [11] Bosserman P. J. Recovery of Cerium, US Patent 5, 433, 931, 1990. 9
    [12] 博塞曼 P.J.从含氟化物矿石中回收铈,中国专利CN1093115,1999.2
    [13] 徐光宪主编 稀土(上) 北京:冶金工业出版社:381~382
    [14] 稀土编写组 稀土(上):北京:冶金工业出版社:1985
    [15] 张国成,黄小卫,一种从含氟硫酸稀土溶液中萃取分离铈的工艺,中国专利 CN1133346,1996.10
    [16] Leo Hafner, Method of preparing fluorine-free rare earth metal compounds from such compounds containing fluorine, US Patent 4, 051, 219, 1977. 9
    [17] 郭西林,郭强直接从浸矿液中萃取高价铈的方法中国专利CN1114365,1996.1
    [18] 颜克昌,王淑琴,王振达,浸出萃取法分离氧化铈和少铈混合稀土,中国专利 CN1038261,1998.5
    [19] 周静,徐燕,陈龙明 攀西德昌氟碳铈矿精矿氧化焙烧反应制备碳酸稀土研究,稀土 2000,21(2):19~25
    [20] 张国成,黄小卫,顾保江等 从硫酸体系中萃取分离稀土元素,中国专利 CN1016877, 1990.12
    [21] Topkaya, Y. Akkurt, S. Acid curing and baking of Bastnaesite ore and concentrate, Materials Science Forum, 1999, vol. 315-317: 530~506
    [22] 周静,严纯华,王治仲,由氟碳铈矿原料除氟并分离制取铈的方法,中国专利 CN1205363,1999.1
    [23] 周静 由氟碳铈矿原料制取铈的除氟处理方法,中国专利CN1261107A,2000.7
    [24] 陆军,稀土分离过程的平衡反应和动力学研究,长春应用化学研究所博士学位论文,1998.11
    [25] 平岛克亨,塩川二朗,鉱酸希土类元素抽出,日本化学会志,1973 No.3:496—499
    [26] Toshio I., Kazukiro K., Toyohiko K. et al Cerium concentrate and mixed rare earth chloride by the oxidative decomposition of Bastnaesite in molten sodium hydroxide Ind. Eng. Chem. Res., 1993, 32(4): 733~737
    
    
    [27] 冯婕,潘明友,李德虎液碱法分解氟碳铈矿生产氯化稀土的研究,矿冶工程,1998,18(2):53~56
    [28] 姚亚东,李华民,李瑶等一种高收率,低能耗生产混合氯化稀土的工艺—高温烧碱法矿产综合利用,1999,1:7~11
    [29] 加藤和裕,尾崎义则,饭岛敏夫等,NaOH-KOH融液中分解·酸化机构,日本化学会志,1993,5:580~585
    [30] 丰田祥一,伊藤公久,德田昌则等,鉱希土类元素水热抽出,资源素材,1991 107(4):231~235
    [31] Zhang Qiwu, Saito Fumio, Non-thermal process for extracting Rare earth from Bastnaesite by means of mechanochemical treatment, Hydrometallurgy 1998 47(3): 231~241
    [32] 郑伟,王树茂,樊玉斌等从氟碳铈矿中制取稀土原料液,中国专利CN1103111
    [33] Urbain, K. et al., In annuals de chimie et de physique(7th series), 1958 vol 19: 202~206
    [34] John B. K. Process for recovering Rare-Earth Oxides, GB 825305 1959. 11
    [35] 徐光宪主编 稀土(上) 北京:冶金工业出版社:377~379
    [36] 葛新芳,混合氯化稀土的生产方法,中国专利CN1202460 1998.12
    [37] 徐光宪主编 稀土(上) 北京:冶金工业出版社:381~382
    [38] Bruggerw, G. A precess for direct chlorination of rare earth ores at high temperatures on aproduction scale J. Metals, 1967, 19(2): 32~35
    [39] Mark M. Woyski, La Habra, James L. B. et al. Process for treating rare earth-fluorine materials, US Patent 3353928, 1967. 11
    [40] Ozakit, M. Murasek et al Vaporphase extraction and separation of rare earths from Bastnaesite concentrate mediated by vapor complexes[J]. J., Alloys and Comp. 1996, 245(1): 10~14
    [41] 张丽清,王军,范世华等 氟碳铈矿精矿的分步氯化-气相传输反应,中国稀土学报 2001,19(3):217~220
    [42] 朱国才,田君,池汝安等 氟碳铈矿提取稀土的绿色化学进展,化学通报,2000
    [43] 朱国才,一种氯化铵焙烧法分解氟碳铈矿回收碳酸稀土的方法,中国专利 CN1237539A
    [44] Tian jun, Chi ru'an Zhu Guocai hydrodynamics of weathered elution-deposited rare earth oreTransactions of Nonferrous Metals Society of China 2001, 11(3): 434~439
    [45] 朱国才,田君,池汝安等 氯化铵焙烧法从中品位氟碳铈矿精矿提取稀土的研究,稀土 2001 22(3):30~33
    
    
    [46] 朱国才,田君,池汝安等 氯化铵法处理氟碳铈矿原矿制取稀土,中国有色金属学报 200010(5):701~704
    [47] 朱国才 池汝安 周静 氯化铵分解氟碳铈矿回收稀土的研究,有色金属 2000 52(1):66~68
    [48] 田中昭,田山喜志雄分解方法,日本公开特许公报,昭58-67836 1983.4
    [49] Robert M. Healy, Warrenville I. Lamar T. Royer Prohydrolytic Attack of Rare Earth Fluorocarbonates Ores, US Patent 3 375 061 1968. 3
    [50] Nonmaker Frederick C. Process for preparing a polishing compound, GB953636, US Patent 3, 131, 039, 1964, 4
    [51] Robert M. Hedges Improvements in preparation of polishing powders from bastnaesite, GB 1 137 557 1968. 12
    [52] Richard M. Mandle, Pompoton L., William T. StrachleProcess for preparing a polishing compound and product, US Patent 3298807 1967. 1
    [53] 何松,精矿稀土抛光粉制备工艺研究,稀土,1998 19(6):31~34
    [54] 何松,高勇,曾清华 氟碳铈矿稀土抛光粉与氟碳酸盐稀土抛光粉性能研究,稀有金属 1998 22(4):304~307
    [55] He Song, Gao Y. Zeng Q. Comparsion of properties of Bastnaesite and Fluorocarbonate Rare earth polishing powder, Rare Metals, 1998 17(3): 166~171]
    [56] 马鹏起,罗汇,马小可,氟碳铈精矿直接电解制备混合稀土金属,中国专利CN 1288077
    [57] Demmel; Edward J. Processes for reacting Bastnaesite with alkaline-earth metals, US Patent 5, 618, 406, 1997. 4
    [58] Demmel; Edward J. Processes for reacting bastnaesite with metal oxides, US Patent 5, 422, 332, 1995. 6
    [59] Upson L. ; Van De G. ; PIETER J. et al. Metal-tolerant FCC catalyst and process, US Patent 5, 173, 174, 1992. 12
    [60] Mester Z. C., Aitken E. J. Sorbent for reducing sulfur oxide emissions from catalytic cracking units and process for producing the sorbent, US Patent 4686204, 1987. 8
    [61] Petru Gordes, Niels Christiansen Fluorite Ceramic Material, US Patent 5, 994, 254
    [62] Staggers J. O. Rare earth metals silicide alloys, US Patent 4018597 1977. 4
    [63] Morrice Process for the preparation of rare-earth-silicon alloys, US Patent 4135921 1979. 1;
    [64] Erich P. Trostberg, Franz K., Erwin V. Production of alloys, US Patent 3256087 1966. 6
    
    
    [65] Hirschhom I. S., Commercial production of rare earth metals by fused salt electrolysis, J. O. M. 1968, 20(3): 19~22
    [66] 单茂林,冶炼稀土硅铁合金提高稀土收率的新方法,稀土,1995,16(4):63
    [67] 希土类-珪素合金制造方法,日本公开特许公报,昭54-124815
    [68] 张成祥,任存治,李春材,碳热还原氟碳铈矿制取稀土硅铁合金的工艺,中国专利 CN 1071205
    [69] 涂赣峰,碳热还原氟碳铈矿生产稀土硅化物—基础理论,工业生产及应用,东北大学博士学位论文,沈阳:1998.9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700