振动攻丝机理及典型难加工材料小孔振动攻丝试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
攻丝几乎是小螺孔加工唯一完全可行的工艺方法。由于攻丝是半封闭容屑的多刀齿切削过程,切削液不能有效进入切削区,排屑又困难,故切削条件十分恶劣。难加工材料小孔攻丝,由于攻丝扭矩大,丝锥易崩齿和折断导致攻丝无法进行。随着现代工业对零件性能要求的提高,高性能材料大量被采用,迫切需要解决难加工材料小孔攻丝难题。而振动攻丝具有攻丝扭矩小、螺纹精度高以及丝锥使用寿命长等特点,故在难加工材料攻丝领域得到了广泛应用。但对其机理及应用的研究还不够十分充分,因此对振动攻丝机理及实际应用进行深入系统研究,具有重要的理论意义和应用价值。
     首先,在综述国内外振动攻丝技术的基础上,对攻丝过程中切削扭矩在攻丝扭矩中所占的比率进行了试验研究,可以认为切削扭矩是影响加工难易的重要因素之一。基于动态断裂力学理论,分析了振动攻丝中丝锥刀齿对切削区中随机分布的微裂纹呈三维脉冲力的作用导致应力出现了跃动,这种跃动随作用时间的持续将趋于静载荷作用的效果,且还随作用距离的增大呈减弱趋势,从而给出了振动攻丝中切削扭矩的减小使攻丝扭矩减小的机理。通过对试验所获得振动攻丝扭矩波动的分析,验证了上述机理研究的合理性。并基于此机理研究的结论,理论分析了工艺参数对攻丝扭矩的影响规律。
     然后,为了进行振动攻丝试验,研制了单片机控制的步进电机式低频振动攻丝试验系统SZ48-HIT,它包括攻丝机的机械系统、控制系统及扭矩测量系统。控制系统采用单片机来控制步进电机,用汇编语言编制了振动攻丝需要的各功能子模块及其服务程序,对各子功能模块的控制模型进行了分析,并对软、硬件进行了综合测试。还设计了不同放大倍数、不同滤波频率的滤波放大电路,建立了可以同步存储并实时显示的扭矩测量系统。
     再后,在SZ48-HIT试验系统及原试验系统下对奥氏体不锈钢1Cr18Ni9Ti、钛合金TC4、镍基高温合金GH4169及45钢(淬火50HRC)4种典型难加工材料,进行了大量的小孔(M3)振动攻丝试验。用单因素法的振动攻丝试验,研究了各工艺参数对攻丝扭矩的影响规律,所得结果与前述扭矩减小的机理分析是一致的。用正交设计法的振动攻丝试验,研究了各工艺参数对攻丝扭矩影响的显著性问题。还探讨了不同物理力学性能的典型难加工材料振动攻丝中,工艺参数对扭矩影响的差异。从而为振动攻丝技术在难加工材料小孔攻丝中的应用提供了依据。
     最后,对不同材料及螺孔尺寸参数进行了振动攻丝试验研究,尺寸范围M3~M8,材料为45钢(正火)、1Cr18Ni9Ti、TC4及GH4169。并基于神经网络技术,建立了多参数的振动攻丝扭矩模型,对其进行了数值计算,分析了工艺参数、螺孔尺寸和材料力学性能对振动攻丝效果的影响。还基于该扭矩模型,采用遗传算法,以扭矩最小为目标函数,进行了工艺参数优化。
     大量试验的结果表明,对于物理力学性能不同的难加工材料及尺寸不同的螺孔,振动攻丝均获得了良好效果,所攻螺纹齿形平直、完整且精度高。故振动攻丝是解决难加工材料小螺孔加工的有效手段。
Internal thread tapping is one of the most demanding machining operation. Inthe tapping process, multiple cutting edge cut workpiece at the meantime with thechip in the tap pocket. Process can’t continue result from cutting ?uid penetratinginsufficiently and chip clogging. Tapping small-hole in difficult-to-cut materials, tapbreakage appears to be one of the major problems in the process, possibly due toexcessive torque and tap tooth tipping. With the rapid development of modern man-ufacturing technologies, superalloys are frequently used for components, it is clearthat conventional process could not fulfill the requirement of small-hole tapping insuch materials. Vibration tapping has been applied to difficult-to-cut materials to in-crease the tapping efficiency, reduce the overall tapping torque and improve threadquality. However, theoretical analysis and experimental research on vibration tappingare insufficiency. A systematic investigation is therefore of great importance.
    
     Firstly, the present status of investigation on vibration tapping is analyzed. Ex-perimental results indicate that the effect of cutting torque is one of most vital rolein tapping processing. The mechanism impulsive force of cutting tooth generation invibration tapping is shown. Theoretical analysis the three-dimensional stress-intensityfactor history with fracture mechanics. The analysis is performed for a solid contain-ing a half plane crack subjected to suddenly applied concentrated point forces actingat a finite distance from the crack edge. Upon sudden force application, the stress-intensity factor is of the singularity. Thereafter, the transient stress-intensity factordecays gradually towards its equilibrium stress-intensity. And the singularity decayswith range of action. And the impulsive force in vibration tapping leads to reducedcutting forces and a much lower tapping torque. Tapping torque wave is measuredin vibration tapping, and the theoretical results are confirmed by experiments. Basedon the theoretical results, a simulation is proposed to describe the relation betweenvibration tapping torque and processing parameters.
     Secondly, in order to expand the experimental research, the low-frequency vi-bration tapping system SZ48-HIT is developed successfully. Strength and rigidity ofmachine key component are checked, and the spindle circular runout is measured. On the vibration tapping machine, a torsional vibration is imposed on the spindle by astepping motor under the control of a microcomputer. A simulation is carried out toverify the mathematical model. The service module and control programming moduleare developed with assembly language. Hardware and software of the control systemare tested integrally. With the amplifier-filter circuit, the torque transducer is used tomonitor tapping torque.
     Thirdly, experimental research on vibration tapping small-hole(M3) in typicaldifficult-to-cut materials, such as austenlitic stainless steel(1Cr18Ni9Ti),α+βphasetitanium alloy(TC4), nickel-base superalloys(GH4169) and hardened steel(hardness50HRC). With single factor trial of vibration tapping, the tapping torque variationby processing parameters changed is investigation. And the experimental results areconfirmed by theoretical analysis. With orthogonal design trial, it is shown that, vari-ation of decreasing vibration tapping torque results from diversity material. So that itprovides fundamental application of vibration tapping.
     Lastly, large quantity trial of vibration tapping in different materials with differ-ent thread dimension are researched. The thread dimension range from M3 to M8, andmaterials of test include C45 steel, 1Cr18Ni9Ti, TC4 and GH4169. Neural networkwith back propagation algorithm has been applied to predict the tapping torque modelin vibration tapping. A numerical calculation of the tapping torque is carried out. Thevariable regular is researched, which of varied result from varied of processing param-eters, thread dimension and mechanical properties of the materials. Based on tappingtorque model, the study investigated the application of genetic algorithm for tappingtorque minimization.
     The experimental results show that, complete machined teeth are acquired, andthe screw fulfils the requirement of a screw plug gauge. According above, vibrationtapping is proved to be a practical solution to the problem of small-hole tapping indifficult-to-cut materials.
引文
1肖诗钢,董仁扬,高则列.螺纹刀具.机械工业出版社. 1993:170–189
    2 T. Cao, J. W. Sutherland. Investigation of Thread Tapping Load CharacteristicsThrough Mechanistic Modeling and Experimentation. International Journal ofMachine Tools and Manufacture. 2002, 42:1527–1538
    3 E. O. Ezugwu. Key Improvements in the Machining of Difficult-to-cutAerospace Superalloys. International Journal of Machine Tools and Manufac-ture. 2005, 45:1353–1367
    4 E. O. Ezugwu, Z. M. Wang. The Machinability of Nickel-based Alloys: AReview. Journal of Materials Processing Technology. 1999, 86:1–16
    5 E. O. Ezugwu, J. Bonney, Y. Yamane. An Overview of the Machinability ofAeroengine Alloys. Journal of Materials Processing Technology. 2003, 134:1–16
    6 E. O. Ezugwu, Z. M. Wang. Titanium Alloys and Their Machinability-a Review.Journal of Materials Processing Technology. 1997, 68:262–274
    7 E. O. Ezugwu. High Speed Machining of Aero-engine Alloys. Journal of Brazil-ian Society of Mechanical Science and Engineering. 2004, 26(1):1–11
    8 E. O. Ezugwu, J. Bonney. Finish Machining of Nickel-base, Inconel 718, Al-loy with Coated Carbide Tool under Conventional and High-pressure CoolantSupplies. Tribiology Transactions. 2005, 48(1):76–81
    9周泽华.金属切削原理(第2版).上海科学技术出版社. 1991:130–136
    10 E. M. Trent. Metal Cutting. 1991:230–239
    11 M. C. Shaw. Metal Cutting Principles. 1984:411–426
    12韩荣第. Ni基变形高温合金小孔攻丝扭矩的试验研究.工具技术. 2003,37(5):12–14
    13曹玉泉. 1cr18ni9ti不锈钢细长孔的钻削攻丝工艺研究.长安大学学报(建筑与环境科学版). 2004, 24(3):79–80
    14林峰,顾烨,陶德华.水溶性抗磨剂在水基切削液中的应用性试验研究.润滑与密封. 2002, (6):62–63
    15顾成军,袁安富.钛合金小直径盲孔攻丝加工.机械设计与制造. 2000,(6):60–61
    16 X. Wu, H. Chen, S. Yang, et al. In Situ Triboreduction of Organo-copper Com-pound in Titanium Alloys Tapping. Wear. 2001, 250:362–365
    17 W. Belluco, L. D. Chiffre. Surface Integrity and Part Accuracy in Reamingand Tapping Stainless Steel with New Vegetable Based Cutting Oils. TribologyInternational. 2002, 35:865–870
    18隈部淳一郎.精密加工–振动切削(基础与应用).机械工业出版社.1985:12–106
    19韩荣第,王扬.现代机械加工新技术.哈尔滨工业大学出版社. 2002:67–96
    20 M. Jin, T. Watanabe, T. Kohinata, et al. Study on Inclined Ultrasonic Vibra-tion Cutting(1st Report)-development of a Cutting Tool Capable of MountingCommercial Throw-away Inserts of Various Shaps.精密工学会志. 2001,67(4):618–622
    21 E. Usui, J. Wu, T. Obikawa. Obikawa. Chatter Suppression Effects of Toolswith Restricted Tool-chip Contact Length(part I)-analyses of Chatter Growthand Suppression Mechanism.精密工学会志. 1990, 56(2):95–100
    22 E. Shamoto, Y. Morimoto, T. Moriwaki. Elliptical Vibration Cutting(2thReport)-study on Effects of Vibration Conditions.精密工学会志. 1999,65(3):411–417
    23 E. Shamoto, T. Ma, T. Moriwaki. Elliptical Vibration Cutting(3th Report)-application to Three-dimensional Cutting and Investigation of Practical Effects.精密工学会志. 1999, 65(4):586–591
    24 E. Shamoto, N. Suzukl, T. Moriwaki, et al. Elliptical Vibration Cutting(4thReport)-development of Tool Vibration Control System and its Application toUltraprecision Cutting.精密工学会志. 2001, 67(11):1871–1877
    25 J. Masahiko, M. Masao. Development of a Practical Ultrasonic Vibration Cut-ting Tool System. Journal of Materials Processing Technology. 2001, 113:342–347
    26 F. H. Japitana, K. Morishige, Y. Takeuchi. Six-axis Controlled Ultrasonic Vibra-tion Cutting in Fabrication of a Sharp Corner. International Journal of AdvancedManufacturing Technology. 2003, 21:564–570
    27 V. K. Astashev, V. I. Babitsky. Ultrasonic Cutting as a Nonlinear (vibro-impact)Process. Ultrasonic. 1998, 36:89–96
    28 L. Grzegorz. Vibrations in a Regenerative Cutting Process. Solitons and Frac-tals. 2002, 13:1531–1535
    29王勇.超声振动车削的研究.哈尔滨工业大学硕士学位论文. 1985
    30卢泽生,杨亮.精密超声振动切削频率对切削力影响的规律与仿真.航空精密制造技术. 2006, 42(5):10–14
    31季远,季勋,张德远.超声椭圆振动精密切削.航空制造技术. 2005,(4):92–95
    32 C. Ma, E. Shamoto, T. Moriwaki. Study of Machining Accuracy in UltrasonicElliptical Vibration Cutting. International Journal of Machine Tools and Manu-facture. 2004, 44:1305–1310
    33 G. Ya, H. W. Qin, S. C. Yang. Analysis of the Rotary Ultrasonic MachiningMechanism. Journal of Materials Processing Technology. 2002, 129:182–185
    34 C. S. Liu, B. Zhao, G. F. Gao. Research on the Characteristics of the CuttingForce in the Vibration Cutting of a Particle-reinforced Metal Matrix CompositesSicp/al. Journal of Materials Processing Technology. 2002, 129:196–199
    35 K. Ishikawa, H. Suwabe, T. Nishide. A Study on Combined Vibration Drillingby Ultrasonic and Low-frequency Vibrations for Hard and Brittle Materials.Precision Engineering. 1998, 22(4):196–205
    36 J. Roukema, Y. Altintas. Generalized Modeling of Drilling Vibrations, Part I:Time Domain Model of Drilling Kinematics, Dynamics and Hole Formation.International Journal of Machine Tools and Manufacture. 2007, 47(9):1455–1473
    37 J. Roukema, Y. Altintas. Generalized Modeling of Drilling Vibrations, Part Ii:Chatter Stability in Frequency Domain. International Journal of Machine Toolsand Manufacture. 2007, 47(9):1474–1485
    38 P. Thomas, V. Babitsky. Experiments and Simulations on Ultrasonically As-sisted Drilling. Journal of sound and vibration. 2007, 308:815–830
    39 V. Babitsky, V. Astashev, A. Meadows. Vibration Excitation and Energy Trans-fer During Ultrasonically Assisted Drilling. Journal of sound and vibration.2007, 308:805–814
    40王昕.振动钻削新钻削力学模型及定、变参数振动钻削的研究.吉林大学博士学位论文. 2004
    41 X. Wang, L. Wang, J. Tao. Investigation on Thrust in Vibration Drilling ofFiber-reinforced Plastics. Journal of Materials Processing Technology. 2004,148(2):239–244
    42 L. Zhang, L. Wang, X. Wang. Ultrasonic and Electric Discharge Machiningto Deep and Small Hole on Titanium Alloy. Journal of Materials ProcessingTechnology. 2002, 120(1-3):641–657
    43 G. Chern, H. Lee. Using Workpiece Vibration Cutting for Micro-drilling. In-ternational Journal of Advance Manufacture Technology. 2005, (2):104–108
    44 G. Chern, J. Liang. Study on Boring and Drilling with Vibration Cutting. Inter-national Journal of Machine Tools and Manufacture. 2007, 47:133–140
    45 M. Hashimoto, E. Marui, S. Kato. Experimental Research on Cutting ForceVariation During Regenerative Chatter Vibration in a Plain Milling Operation.International Journal of Machine Tools an Manufacture. 1996, 36(10):1073–1092
    46 Y. Wu, Y. Fan, M. Kato, et al. Development of an Ultrasonic Elliptic-vibrationShoe Centerless Grinding Technique. Journal of Materials Processing Technol-ogy. 2004, 155-156:1780–1787
    47 Z. Li, L. Cai, Z. Pei, et al. Edge-chipping Reduction in Rotary Ultrasonic Ma-chining of Ceramics: Finite Element Analysis and Experimental Verification.International Journal of Machine Tools and Manufacture. 2006, 46:1469–1477
    48 B. Behera, B. Mishra, C. Murty. Experimental Analysis of Charge Dynamicsin Tumbling Mills by Vibration Signature Technique. Minerals Engineering.2007, 20:84–91
    49 B. N. Mordyuk, G. I. PorkopenkoMordyuk, G. I. Porkopenko. Mechanical Al-loying of Powder Materials by Ultrasonic Milling. Ultrasonics. 2004, 42:43–46
    50焦锋,高国富,赵波,等.超声纵振研磨的切削模型及其临界速度研究.金刚石与磨料磨具工程. 2002, 129(3):43–45
    51焦锋,铁瑛,赵波,等.超声纵振研磨表面微观特性的试验研究.金刚石与磨料磨具工程. 2002, 130(4):48–50
    52张立丽,赵波,卞平艳.纳米复合陶瓷超声振动平面磨削温度的试验研究.金刚石与磨料磨具工程. 2007, 159(3):76–80
    53高国富,赵波,刘传绍,等.超声椭圆振动磨削zta的表面完整性研究.金刚石与磨料磨具工程. 2006, 156(6):59–62
    54 T. Saotome, F. Yokoi. Precision Internal Threading of Stainless Steel. PrecisionEngineering. 1984, 6(2):73–78
    55 J. Kumabe, A. Nishio, T. Takayama. Precision Tapping for Ceramics by UsingUltrasonic Super Position Vibration. JSPE. 1989, 55(11):1981–1986
    56 Y. Suzuki, S. Kamo, M. Uno. Study on Machining by the Use of Ultra-sonic Screw Vibration(4th Report)-mechanism of Ultrasonic Vibration Tapping.JSPE. 1991, 57(6):1023–1028
    57 Y. Suzuki, S. Kamo, M. Uno. Study on Machining by the Use of UltrasonicScrew Vibration(5th Report)-ultrasonic Vibration Tapping for Natural Rubber.JSPE. 1994, 60(1):148–152
    58 S. Patil, S. Pande. Somasundaram. some Investigations on Vibratory Tapping.International Journal of Machine Tools and Manufacture. 1987, 27(3):343–350
    59 E. Nilkitin, G. Tregubov. Ultrasound Speeds up Thread Tapping Jobs. SovietEngineering Research. 1989, 9(4):118–119
    60 M. Jin, K. Ogasawara, M. Murakawa. Basic Study on Step Vibration Tapping.Technical Paper-society of Manufacturing Engineers. 1998, SME:1–6
    61 X. Wang, B. Zhang. Vibration-assisted Tapping with Piezoelectric Actuation.纳米技术与精密工程. 2006, 4(1):25–37
    62 B. Zhang, F. Yang, J. Wang. Fundamental Aspects in Vibration-assisted Tap-ping. Journal of Materials Processing Technology. 2003, 132:345–352
    63韩荣第,刘建,韩滨. Sicw/al铝复合材料振动攻丝扭矩的试验研究.哈尔滨工业大学学报. 2002, 34(2):352–355
    64韩荣第,蔄靖宇,韩滨.紫铜小孔振动攻丝扭矩的试验研究.制造技术与机床. 2003, (12):65–67
    65崔永鹏.难加工材料小孔振动攻丝的试验研究.哈尔滨工业大学硕士学位论文. 2006
    66 R. Han, B. Yin. Research on Vibration Tapping of Hardened Steel. Key Engi-neering Materials. 2006, 315-316:51–55
    67李海林,王贵成.振动攻丝的控制与数据采集系统.仪器仪表用户. 2002,9(5):13–15
    68李海林.振动攻丝机理及其应用基础的研究.江苏大学硕士学位论文.2003
    69李海林,王贵成.低频振动攻丝技术.机械设计与制造. 2003, (1):87–89
    70王贵成,李海林,王树林.低频振动攻丝丝锥动态角位移的研究.中国机械工程. 2003, 14(18):1593–1596
    71陈学永,蔡兰,何聪惠.振动攻丝的实验系统设计.福建农业大学学报.1999, 28(2):223–228
    72陈志同,张德远.斜楔式扭转振动器原理研究.北京航空航天大学学报.2001, 28(2):58–62
    73陈志同.扭转振动机构学及振动攻丝技术研究.北京航空航天大学博士学位论文. 2001
    74李光军,姜兴刚,张德远.新型振动攻丝机及其应用.航空制造技术. 2006,(8):87–90
    75韩凤起,李光军,徐永利.实用化振动切削技术-振动攻丝工艺及装备.新技术新工艺. 2006, (11):76–79
    76姜大志,孙俊兰.低频振动攻丝机的研制和使用效果分析.盐城工学院学报. 1998, 11(3):6–8
    77冯启高,马利杰.关于振动攻丝提高工艺系统刚度的研究.机械设计与制造. 2005, (10):31–32
    78张春哗,李海林.采用振动攻丝提高工艺系统刚度的机理研究.工具技术.2003, 37(3):11–13
    79 J. Williams, D. Tabor. The Role of Lubricants in Machining. Wear. 1977,43:275–293
    80苟琪,孙忠义.钛合金振动攻丝切削液作用机理研究.机械研究与应用.2000, 13(3):1–2
    81 Q. Gou, D. Chen, J. Lan. Research on Vibratory Tapping of Small and DeepThread in Titanium Alloys. 5th IMCC. GuangDong, Chian. 1991, Apr.:198–204
    82 V. Madhavan. Investigation Into the Mechanics of Metal Cutting. Purdue Uni-versity. Thesis of Ph. D. 1996
    83 H. A. Kishawy. Chip Formation and Surface Integrity in High Speed Machiningof Hardened Steel. Mcmaster University. Thesis of Ph. D. 1998
    84韩荣第,杨荣福,李秀英.钛合金攻丝扭矩和切削温度的研究.哈尔滨工业大学学报. 1985, (6):146–153
    85 H. Chen, X. Wu. The Tribological Bechaviors of Various Metallic Cations inTapping of a Titanium Alloy. Wear. 2001, 243:120–123
    86 Q. Gou, D. Chenand. Research on Machining Titanium Alloys Blind Fastener.青岛大学学报. 1997, 10(3):55–60
    87 D. Zhang, D. Chen. Relief-face Friction in Vibration Tapping. InternationalJournal of Mechnical Science. 1998, 40(12):1209–1222
    88张德远,陈鼎昌.钛合金振动攻丝降低攻丝扭矩的研究.机械工程学报.1994, 30(1):18–23
    89陈志同,张德远.振动攻丝最大扭矩的计算模型.航空学报. 2002,23(4):312–316
    90李光军,张德远.难加工材料的低频振动攻丝研究.中国机械工程. 2004,15(6):494–497
    91北京市《金属切削理论与实践》编委会.金属切削理论与实践.北京出版社. 1985:99–126
    92陈志同,李光军,张德远.低频扭转振动攻丝基本工艺参数组研究.中国机械工程. 2001, 14(6):467–470
    93陈学永,何允纪,蔡兰.工艺参数对振动攻丝加工影响的试验研究.江苏理工大学学报(自然科学版). 2001, 22(1):4–7
    94陈学永,王贵成,何聪慧.神经网络在振动攻丝工艺参数匹配中的应用.工具技术. 2003, 37(3):22–24
    95马利杰,王贵成.振动攻丝扭矩的研究.工具技术. 2004, 38(8):3–5
    96马利杰,王贵成.低频振动攻丝工艺参数的优化.机械制造. 2004,42(3):49–50
    97苟琪,陈鼎昌.钛合金振动攻丝的切削扭矩模型.机械研究与应用. 1997,(3):18–19
    98苟琪,陈鼎昌.振动攻丝工艺研究.航空精密制造技术. 1998, 34(2):11–14
    99 .正夫, .雅彦.ステツプ振動ㄆツピソグ法の開み.機械と工具. 2001,(5):89–93
    100蔄靖宇.振动攻丝机控制系统改进及紫铜小孔振动攻丝试验研究.哈尔滨工业大学硕士学位论文. 2002
    101苟琪,陈鼎昌.振动攻丝动态切削力研究.中国机械工程. 1998, 9(4):15–18
    102陈学永,王贵成,任家隆.不锈钢攻丝技术的研究.华东船舶工业学院报(自然科学版). 2001, 15(1):92–94
    103任家隆,陈学永,王贵成.不锈钢材料的振动攻丝技术.机械工程师. 2001,(11):44–46
    104李海林,王贵成.低频振动攻丝提高加工精度的试验研究.现代制造工程.2001, (11):47–49
    105苟琪,陈鼎昌.振动攻丝轴向力对螺纹精度的影响.航空工艺技术. 1998,(5):14–16
    106李光军,裴东升.振动攻丝对钛合金螺纹质量的影响.航天制造技术.2002, (3):8–11
    107叶大鹏,何聪慧,吴昭同.基于小波包的振动攻丝特征提取方法.福建农林大学学报(自然科学版). 2004, 33(2):362–365
    108叶大鹏.基于小波分析的振动攻丝动态切削力提取.福建农林大学学报(自然科学版). 2002, 31(4):542–544
    109叶大鹏,何聪慧.振动攻丝扭矩信号的最优估计.福建农林大学学报(自然科学版). 2006, 35(1):106–108
    110苟琪,陈鼎昌.动态信号检测振动攻丝刀具磨损研究.航空工艺技术.1999, (2):30–32
    111赵建生.断裂力学及断裂物理.华中科技大学出版社. 2003:98–100
    112范天佑.断裂动力学原理与应用.北京理工大学出版社. 2005:20–29
    113徐芝纶.弹性力学(第三版上册).高等教育出版社. 1982:387–394
    114李湘平,柳春图.三维冲击载荷下半无限裂纹的动态应力强度因子.中国科学(A辑). 1994, 24(3):262–268
    115赵晓华.集中载荷作用下三维裂纹问题的动态应力强度因子.中国科学(A辑). 1997, 27(1):1–8
    116 X. Zhao. The Stress-intensity Factor History for a Half Plane Crack in a Trans-versely Isotropic Solid Due to Impact Point Loading on the Crack Fraces. In-ternational Journal of Solids and Structures. 2001, 38:2851–2865
    117赵晓华.复合型运动荷载作用下横观各向同性体三维裂纹的应力强度因子.固体力学学报. 2001, 22(6):191–198
    118徐永利,李光军,韩凤起,等.电流法在钛合金攻丝中的参数优化研究.机床与液压. 2007, 35(8):54–56
    119李春胜.钢铁材料手册. 2004:38 173–177 599–601 497–500
    120徐自立.工程材料及应用.华中科技大学出版社. 2006:127–136
    121王宝祥.信号与系统.哈尔滨工业大学出版社. 2000:273–278
    122张成军.实验设计与数据处理及其应用.哈尔滨工程大学出版社.2000:70–84
    123 W. Mcculloch, W. Pitts. A Logical Calculus of the Ideas Immanent in NervousActivity. Bulletin of Mathematical Biophysics. 1943, 5:115–133
    124 L. Veelenturf. Analysis and Applications of Artificial Neural Networks. Pren-tice Hall International(uk) Lid. 1995:76–91
    125 K. Patra, S. K. Pal, K. Bhattacharyya. Artificial Neural Network Based Predic-tion of Drill Flank Wear from Motor Current Signals. Applied soft computing.2007, (7):929–935
    126 S. Kumar, S. K. Choudhury. Prediction of Wear and Surface Roughness inElectro-discharge Diamond Grinding. Journal of materials processing technol-ogy. 2007, 191:206–209
    127沈艳军.多输出神经元模型的多层前向神经网络及其应用.华中科技大学博士学位论文. 2004
    128靳蕃.神经计算智能基础——原理·方法.西安交通大学出版社. 2000:114–121
    129 J. Holland. Adaptation in Natural and Artificial System. Mit Press. 1992
    130 Z. Lee, S. Su, C. Chuang. Genetic Algorithm with Ant Colony Optimization(ga-aco) for Multiple Sequence Alignment. Applied Soft Computing. 2008, 8:55–78
    131陈海虹,殷国富,陈伦军.基于遗传模拟退火算法的电磁齿轮结构参数优化.华中科技大学学报. 2007, 35(11):9–12
    132 T. Yang, H. C. Lin, M. L. Chen. Metamodeling Approach in Solving the Ma-chine Parameters Optimization Problem Using Neural Network and Genetic Al-gorithms. Robotics and Computer-Integrated Mannufacturing. 2006, 22:322–
    331133 N. K. Jain, V. K. Jain, K. Deb. Optimization of Process Parameters of Mechan-ical Type Adbanced Machining Processes Using Genetic Algorithms. Interna-tional Jouranal of Machine Tools and Manufacture. 2007, 47:900–919

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700