大跨径钢箱梁桥面沥青铺装设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨径钢箱梁桥面沥青铺装是国际性工程难题与研究热点。缺乏系统的设计、合理的选材、规范的施工与科学的管理是造成国内钢桥面沥青铺装使用寿命短的重要原因,设计模型与计算方法是解决问题的基础之一。本文以大跨径钢箱梁悬索桥的沥青铺装荷载效应计算方法为研究对象,以整桥、节段、局部三层次模型与温度应力计算模型的荷载效应计算方法、铺装疲劳破坏模式、设计指标体系、设计计算方法、铺装设计可靠度等为研究内容,完成如下工作与研究成果:
     (1)三层次活载效应计算模型的建立与求解
     以弹性叠层连续梁为基本计算模型,分析推导了悬索桥吊杆对钢箱梁与U肋对钢面板支承刚度的计算公式、钢箱梁截面畸变翘曲刚度计算公式,根据影响线加载的原理、梁的弯曲理论与平截面假定得到铺装活载应力的解析计算方法。本文解析公式的计算结果与常用的有限元方法接近,简化了沥青铺装设计指标计算中繁琐的建模过程。计算结果表明,悬索桥钢箱梁的最不利负弯矩产生一般不发生在跨中,具体位置与弹性支承刚度的分布有关。节段钢箱梁扭转畸变角的变化具有明显局部特征,影响范围约为5~6块横隔板。局部轮载弯矩的影响范围约6个U肋,可不考虑同轴左、右轮载效应的相互影响。
     (2)温度应力叠层梁模型的建立与求解
     将钢板——沥青铺装叠层梁模型界面应力函数展开为傅里叶级数,推导得到铺装体系温度应力的计算公式。采用Maxwell模型计算铺装松弛模量,得到考虑材料粘弹性的铺装温度应力计算方法。计算结果表明,沥青铺装表面最大温度应力出现在叠层梁端部,温度应力计算需考虑沥青材料松弛特性,极端低温条件下的温度变化导致沥青铺装产生最不利温度应力。
     (3)疲劳破坏模式与设计控制指标的确定
     通过大量钢桥面沥青铺装破损状况调研与直道足尺疲劳试验,得到沥青铺装表面弯拉疲劳与铺装界面弯曲剪应力疲劳两种铺装疲劳模式。分析表明,交通量较轻半幅桥产生较多纵桥向疲劳开裂的机理是节段钢箱梁扭转畸变在沥青铺装表面产生的横桥向弯拉应力。肋间最大正弯矩区域出现纵桥向疲劳开裂则是由于界面剪切破坏后,铺装底部产生的弯拉应力疲劳裂纹向上扩展。横桥向裂缝是活载应力与温度应力最不利组合的结果。铺装结构弯拉应力与界面剪应力可作为设计控制指标且应考虑荷载效应的最不利组合;
     (4)钢桥面沥青铺装设计方法
     提出了基于动态设计指标体系的“验算模式”铺装设计方法,综合考虑铺装材料疲劳性能、桥面板承载规律以及行车特征等,推导了典型铺装材料轴载换算公式,采用三层次模型活载应力与温度应力组合的方法,得到横桥向最不利应力为活载应力控制,纵桥向最不利应力为温度应力控制,疲劳设计应以活载应力为主,温度应力为验算指标。对沥青铺装高温稳定性、低温抗裂性、水稳定性等进行了讨论。
     (5)钢桥面沥青铺装可靠度计算方法
     采用本文推导的荷载应力计算公式,利用Monte Carlo随机抽样的原理,分析铺装结构应力疲劳可靠度,结果表明,活载应力控制的不利组合应力作为材料设计控制指标,疲劳设计能够满足规范要求的可靠度水平。验算温度应力控制的荷载组合可靠度时,沥青铺装材料强度需考虑温度修正。
The steel deck asphalt pavement on large-span steel box beam bridges is adifficult engineering problem and research focus at home and abroad. The importantreasons for short service life of asphalt pavement on steel deck in China are thedefects of systematic design method, reasonable selection of materials, standardizeconstruction and scientific management. The design model and calculation methodare base for solving this problem. In this thesis, the calculation methods of loadaffects in asphalt pavement on long span steel suspension bridge have beenresearched as the objective. The researches include the calculation methods of loadaffects in asphalt pavement system using full-bridge model, section model and localmodel, which is called three hierarchies’ structure model and thermal stress model.The researches also include the fatigue type of asphalt pavement on steel deck, andits design indexes system, design calculation method and fatigue reliability analysis.The research works and new developments are as follows:
     (1) The three hierarchies’ structure models for live load effects have beenmodeled and solved.
     Based on elastic laminated continuous beam as the basic model, the formulas ofsupport stiffness of suspender in suspension bridge acting on steel box beam andU-stiffener acting on steel deck have been derived. The formulas of cross-sectionwarping stiffness of steel box beam have been derived too. Based on the theory ofinfluence-line loading, bending theory of beam and plane section assumption, theanalytic calculation methods for live loads stress in asphalt pavement have been got.The calculation results based on analytical formulas in this paper agree with theresults using finite element method, and the tedious modeling process can besimplified in calculation for design index of asphalt pavement. The calculationresults show that the most dangerous sagging moment of steel box girder inlong-span suspension bridges do not occur in midspan. Its position depends on thestiffness distribution of elastic support. The distortion angle being caused bysegment distortion of steel box girders show obvious local characteristic. Theinfluence scope is about five to six times distance between diaphragms. Theinfluence scope of local loads moment is about six times distance betweenU-stiffeners. So the interact of two wheel load on one axle can be ignored.
     (2) The laminated beam models for thermal stress have been modeled and solved.
     The stress functions of interface between steel deck and asphalt pavement havebeen expanded by Fourier series. The analytical formulas of thermal stress of asphaltpavement have been derived. The maxwell model has been used in calculation forrelaxation modulus, and the calculation method of pavement thermal stressconsidering viscoelasticity of material has been got. The calculation results showthat the max thermal tensile stress occurs in the end of beam. The calculation ofthermal stress must take the relaxation of asphalt material into consideration. Theconditions of most dangerous thermal stress are extreme low temperature and rangeof temperature change.
     (3) The asphalt pavement fatigue types and design indexes system have beendetermined.
     The two fatigue types of asphalt pavement have been got based on lots ofdamage investigation and full-scale fatigue experiment in straight track test. One isbending fatigue in asphalt pavement surface. Another one is shear fatigue ininterface between steel deck and asphalt pavement. The analysis showed that themechanism of longitudinal fatigue crack in pavement, which half bridge crosssection has less traffic volume, is the transverse flexural stress in asphalt pavementsurface caused by segment distortion of steel box girders. The pavement longitudinalfatigue cracks appeared on the region of sagging moment between U-stiffeners iscaused by interface bond destroys. The shear failure will cause the bending tensionstress in bottom of asphalt pavement and the flexure fatigue cracking can expandupward. Load combinations of live load stress and thermal stress cause thetransverse cracking. The flexural stress in pavement and shear stress in interface canbe used as design indexes and the most unfavorable stress combination should beconsidered.
     (4) The design method of steel deck asphalt pavement
     The design method of asphalt pavement, which being called checking mode, hasbeen proposed based on dynamic design indexes system. The axle-load-conversionformulas for typical pavement materials have been derived considering fatigueproperty of pavement material, bearing capacities of steel deck and trafficcharacteristic. Using method of load combination, which including live load stress inthree hierarchies’ models and thermal stress, the results show that the transversestress is controlled by live load effect and the longitudinal stress is controlled bytemperature effect. The fatigue design for pavement should use live load effect as the design index and thermal stress as the checking index. The performances ofasphalt pavement, which including high temperature stability, low temperature crackresistance, water stability and so on, have been analyzed.
     (5) The computer method for reliability of steel deck asphalt pavement
     The reliability of asphalt pavement has been analyzed based on formulas in thisthesis and random sampling principle of Monte Carlo method. The result show that thereliability of fatigue design can satisfy the code requirement using the mostdangerous combination of live load effect and the material strength of asphaltpavement should consider temperature correction when checking the most dangerouscombination of thermal stress.
引文
[1]逯彦秋,陈宜言,孙占琦.钢桥桥面铺装层的温度场分布特征.华南理工大学学报(自然科学版),2009,37(8):116-121
    [2]康海贵,郑元勋,蔡迎春.实测沥青路面温度场分布规律的回归分析.中国公路学报,2007,20(6):13-18
    [3]季节,徐世法,罗晓辉.桥面铺装病害调查及成因分析.北京建筑工程学院学报,2000,16(3):33-39
    [4]覃淑媛.广东省北江马房大桥正交异性钢桥面板沥青铺装层通过技术鉴定.石油沥青,1992,(1):55
    [5]杨秀飞,盛赛华,陈仕周.虎门大桥钢桥面铺装热稳性病害的原因分析与处治.公路,2001,(1):59-62
    [6]余继军.号称中国第一的厦门海沧大桥出现破损裂缝. www.people.com.cn,2002-08-18
    [7]樊叶华,王敬民,陈雄飞.浇注式沥青混凝土钢桥面铺装养护对策分析.中外公路,2005,25(1):81-83
    [8]姜从盛,姚永永,丁庆军.白沙洲大桥钢桥面铺装层修复方案受力分析与材料设计.公路工程,2007,32(4):87-90
    [9]李浩天,关永胜,贾渝.环氧沥青钢桥面铺装长期性能演变研究.中外公路,2010,30(6):230-233
    [10]姜厚荣,李春雷.环氧沥青混凝土在钢桥面铺装层中的应用研究.交通标准化,2006,(2):64-67
    [11]重庆中交科技股份有限公司.环氧沥青混凝土铺装及环氧粘结剂使用状况说明及分析. blog.sina.com.cn,2009-07-29
    [12]陈仁福.大跨悬索桥理论.成都:西南交通大学出版社,1994,2-3
    [13]杨俊,王霜.悬索桥结构受力特性和计算理论综述.长江大学学报(自然科学版),2009,6(1):281-283
    [14]李国豪.桥梁与结构理论研究.上海:上海科学技术文献出版社,1983,1-13
    [15]陈仁福,张金平.运用重力刚度法求大跨悬索桥内力和位移的影响线与包络图.见:全国索结构学术交流会论文集.无锡:《中国学术期刊(光盘版)》电子杂志社,1991,77-82
    [16] Shin-ichi Kimbara, Yukikazu Yanaka, Renji Kiyota. Dynamic properties of asuspension bridge constructed with trapezoidalsteelboxgirders. Journal ofConstructional Steel Research,1994,30(3):283-304
    [17] Sandy Schubert, Daniel Gsell, René Steiger. Influence of asphalt pavement ondamping ratio and resonance frequencies of timber bridges. EngineeringStructures,2010,32(10):3122-3129
    [18] Pedro Albrecht, William Wright. Fatigue and fracture of steel bridges. EuropeanStructural Integrity Society,2000,26:211-234
    [19]杨建军,周志刚,刘晓燕.正交异性钢桥面铺装结构理论研究进展.中外公路,2006,26(4):179-184
    [20] Y.L.Mo, Yu-Lin Fan. Torsional Design of Hybrid Concrete Box Girders. Journalof Bridge Engineering,2006,11(3):329-339
    [21] D.R.Popp, E.B.Williamson. Stability Analysis of Steel Trapezoidal Box-GirderBridges. In:Metropolis&Beyond Proceedings of the2005Structures Congressand the2005Forensic Engineering Symposium. New York,2005,1-10
    [22] Shin-ichi Kimbara, Shigeru Shimizu. Elasto-plastic large deflection analysis ofend support diaphragms in skew steel box girders. Journal of ConstructionalSteel Research,1995,32(2):191-206
    [23] Kyungsik Kim, Chai H.Yoo. Ultimate strengths of steel rectangular box beamssubjected to combined action of bending and torsion. Engineering Structures,2008,30(6):1677-1687
    [24] Byung H. Choi, Young-Suk Park, ae-yang Yoon. Experimental study on theultimate bending resistance of steel tub girders with top lateral bracing.Engineering Structures,2008,30(11):3095-3104
    [25]王增荣,李之榕,李仰训.箱梁扭转畸变的分析.铁道学报,1985,7(4):87-98
    [26]王清泉,吴冲.非对称外倾式钢箱拱桥扁平弯钢箱梁扭转与翘曲.结构工程师,2006,22(1):34-37
    [27]陈向阳.正交异性桥面钢箱梁扭转刚度研究.公路,2010,(5):54-56
    [28]张长青,安永日,安里鹏.组合结构箱梁扭转极限承载力计算方法研究.重庆交通大学学报(自然科学版),2011,30(3):369-371
    [29]黄海云,刘爱荣,张俊平.蝴蝶拱桥扁平钢箱弯梁的约束扭转分析.暨南大学学报(自然科学版),2010,31(1):43-47
    [30] Shanmugam N.E. Strength of Axially Loaded Orthotropic Plates. Journal ofStructure Engineering,1987,113(2):322-333
    [31] Z.A.Siddiqi, A.R.Kukreti. Analysis of eccentrically stiffened plates with mixedboundary conditions using differential quadrature method. Applied MathematicalModelling,1998,(22):251-275
    [32] T.O. Medani, X. Liu, M. Huurman, et al. Experimental and numericalcharacterization of a membrane material for orthotropic steel deck bridges: Part1: Experimental work and data interpretation. Finite Elements in Analysis andDesign,2008,44(9):552-563
    [33] X. Liu, T.O. Medani, A. Scarpas, et al. Experimental and numericalcharacterization of a membrane material for orthotropic steel deck bridges: Part1: Development and implementation of a nonlinear constitutive model. FiniteElements in Analysis and Design,2008,44(10):580-594
    [34] Mich è le S. Pfeil, Ronaldo C. Battista, Alu í sio J.R. Mergulhao. Stressconcentration in steel bridge orthotropic decks. Journal of Constructional SteelResearch,2005,61(8):1172-1184
    [35] Ren é Tinawi, Richard G. Redwood. Orthotropic bridge decks with closedstiffeners—Analysis and behaviour. Computers&Structures,1977,7(6):683-699
    [36] Luca Bruno, Davide Fransos. Probabilistic evaluation of the aerodynamicproperties of a bridge deck. Journal of Wind Engineering and IndustrialAerodynamics,2011,99(6):718-728
    [37] Ronaldo C. Battista, Mich è le S. Pfeil, Eliane M.L. Carvalho. Fatigue lifeestimates for a slender orthotropic steel deck. Journal of Constructional SteelResearch,2008,64(1):134-143
    [38]杨建军,周志刚,刘晓燕.正交异性钢桥面板厚度对铺装层荷载响应敏感性分析.湖南理工学院学报(自然科学版),2006,19(3):56-59
    [39]孙旭霞.钢箱梁正交异性桥面板的构造对铺装的影响研究.[同济大学硕士学位论文].上海:同济大学土木工程学院,2006,23-33
    [40] David J.White, Mohamed M.Mekkawy, Sri Sritharan, et al.“Underlying”Causes for Settlement of Bridge Approach Pavement Systems. Journal ofPerformance of Constructed Facilities,2007,21(4):273-282
    [41] Tatsuo Nishizawa, Kenji Himeno, Kenichiro Nomura, et al. Development of aNew Structural Model with Prism and Strip Elements for Pavements on SteelBridge Decks. The International Journal of Geomechanics,2001,1(3):351-369
    [42] G.H.G ü nther, S.Bild, G.Sedlacek. Durabilidy of asphaltic pavements onorthotropic decks of steel bridges. Journal of Constructional Steel Research,1987,7(2):85-106
    [43]黄卫,张晓春,胡光伟.大跨径钢桥面铺装理论与设计的研究进展.东南大学学报(自然科学版),2002,32(3):480-487
    [44]黄卫,林广平,钱振东.正交异性钢桥面铺装层疲劳寿命的断裂力学分析.土木工程学报,2006,39(9):112-116
    [45]黄卫,刘振清.大跨径钢桥面铺装设计理论与方法研究.土木工程学报,2005,38(1):51-59
    [46]黄卫,钱振东,程刚.环氧沥青混凝土在大跨径钢桥面铺装中的应用.东南大学学报(自然科学版),2002,32(5):783-787
    [47]黄卫,刘振清,钱振东.基于疲劳等效的钢桥面铺装体系轴载换算方法.交通运输工程学报,2005,5(1):14-18
    [48]黄卫.大跨径桥梁钢桥面铺装设计.土木工程学报,2007,40(9):65-77
    [49]黄卫,胡光伟,张晓春.大跨径钢桥面沥青混合料特性研究.公路交通科技,2002,19(2):53-55
    [50]黄卫,钱振东,张磊.钢桥面铺装局部修复方案试验研究.土木工程学报,2006,39(8):87-90
    [51]钱振东,罗剑,敬淼淼.沥青混凝土钢桥面铺装方案受力分析.中国公路学报,2005,18(2):61-64
    [52]钱振东,罗剑.正交异性钢桥面板铺装层受力分析.交通运输工程学报,2004,4(2):10-13
    [53]钱振东,何长江.钢桥铺面裂缝快速修复材料性能试验研究.东南大学学报(自然科学版),2008,38(2):255-259
    [54]钱振东,刘云,黄卫.考虑不平度的桥面铺装动响应分析.土木工程学报,2007,40(4):49-53
    [55]钱振东,刘云,郑彬.大跨度公铁两用斜拉桥公路桥面铺装层受力特点分析.土木工程学报,2011,44(6):138-142
    [56]钱振东,黄卫,茅荃.南京长江第二大桥钢桥面铺装层受力分析研究.公路交通科技,2001,18(6):43-46
    [57]明图章,胡光伟,黄卫.大跨径钢桥面铺装体系多目标优化设计.土木工程学报,2007,40(2):70-73
    [58]陈先华,黄卫,王建伟.正交异性钢桥面铺装轴载换算的初步研究.公路交通科技,2004,21(11):59-62
    [59]徐勋倩,黄卫,林广平.钢桥面沥青铺装层疲劳损伤分析与车辆轴载换算.东南大学学报(自然科学版),2005,35(6):930-934
    [60]徐勋倩,黄卫,吴国庆.基于损伤-断裂力学的钢桥面铺装体系疲劳特性研究.公路交通科技,2006,23(4):71-75
    [61]徐勋倩,黄卫.钢桥面铺装层结构设计指标近似计算新方法.土木工程学报,2007,40(4):54-59
    [62]刘振清,黄卫,林广平.大跨径钢桥桥面铺装设计方法.公路,2005,(2):32-36
    [63]顾兴宇,吴一鸣.钢桥桥面铺装层间剪应力影响因素及简化计算.交通运输工程学报,2007,7(3):70-75
    [64]顾兴宇,邓学钧,周世忠.钢桥面系统各项参数敏感性分析.公路交通科技,2002,19(3):69-71
    [65]顾兴宇,邓学钧,周世忠.车辆荷载下钢箱梁沥青混凝土铺装受力分析.东南大学学报(自然科学版),2001,31(6):18-20
    [66]顾兴宇,邓学钧,周世忠.不同轮载对钢桥面沥青铺装层受力的影响.公路交通科技,2002,19(2):56-59
    [67]邓强民,倪富健,顾兴宇.钢桥面铺装非均布轮载效应分析.东南大学学报(自然科学版),2007,37(4):676-680
    [68]邓强民,倪富健,顾兴宇.荷载形状对钢桥面铺装力学响应的影响.公路交通科技,2007,24(8):7-11
    [69]邓强民,倪富健,顾兴宇.非均布轮载下钢桥面铺装力学响应分析.公路交通科技,2008,25(2):59-63
    [70]邓强民,倪富健,顾兴宇.大跨钢桥桥面铺装有限元分析合理简化模型.交通运输工程学报,2008,8(2):53-58
    [71]敬淼淼.钢桥面沥青铺装层裂缝病害分析.公路交通科技,2007,24(2):40-43
    [72]林广平,黄卫,方么生.基于BP神经网络的正交异性钢桥面系多目标结构优化设计.公路交通科技,2005,22(5):83-86
    [73]林广平,黄卫,刘振清.正交异性钢桥面板第一体系受力状态对铺装层的影响.公路交通科技,2006,23(1):63-66
    [74]林广平,黄卫,刘振清.正交异性钢桥面铺装层表面裂缝应力强度因子分析.公路交通科技,2006,23(2):74-78
    [75]林广平,刘红飞,朱启建.大跨径钢桥面粘弹性沥青铺装层温度应力求解.嘉兴学院学报,2008,20(6):64-67
    [76] Jacob Uzan, Eyal Levenberg. Advanced Testing and Characterization of AsphaltConcrete Materials in Tension. International Journal of Geomechanics,2007,7(2):158-165
    [77]兰中秋,何川,丹宇.钢箱梁桥SMA沥青路面温度场的数值模型.重庆大学学报,2003,26(6):66-69
    [78]赵锋军,易伟建,李宇峙.桥面沥青铺装设计新方法.土木工程学报,2006,39(10):74-79,86
    [79]赵锋军,李宇峙,易伟建.桥面沥青铺装层间应力分析简化模型.土木工程学报,2007,40(6):100-104
    [80] Mamoru Kagata, Takayoshi Kodama, Mitsugu Nakamaru, et al. SFRC Pavementon the Steel Bridge Deck to Improve its Fatigue Performance. In:IRF15thInternational Conference. Bangkok,2005,1-4
    [81]丁庆军,黄修林,马平.高强次轻混凝土的设计及其在钢桥面铺装中的应用.施工技术,2007,36(12):64-66
    [82] Hee Mun Park, Ji Young Choi, Hyun Jong Lee, et al. Performance evaluation of ahigh durability asphalt binder and a high durability asphalt mixture for bridgedeck pavements. Construction and Building Materials,2009,23(1):219-225
    [83] X.A. Vargas, N. Afanasjeva, M. álvarez, et al. Asphalt rheology evolutionthrough thermo-oxidation (aging) in a rheo-reactor. Fuel,2008,87(13):3018-3023
    [84] Didier Lesueur, Jean-Francois Gérard, Didier Martin, et al. Mise en évidenced’une relaxation dur/mou dans un mélange bitume/polymère. Comptes Rendus del'Académie des Sciences-Series IIB-Mechanics-Physics-Chemistry-Astronomy,1997,325(11):615-620
    [85] Robert Gaul. A Long Life Pavement for Orthotropic Bridge Decks in China.In:GeoHunan International Conference2009. ChangSha,2009,1-8
    [86] N.F. Ghaly. Preparation and Evaluation of Special Hot Mix Asphalt for SteelBridge Paving (Laboratory and Field Study). World Journal of Chemistry,2008,3(1):17-26
    [87] Smail Haddadi, Elhem Ghorbel. Effects of the manufacturing process on theperformances of the bituminous binders modified with EVA. Construction andBuilding Materials,2008,22(6):1212-1219
    [88] P. Partal, F. Martinez-Boza, B. Conde, et al. Rheological characterisation ofsynthetic binders and unmodified bitumens. Fuel,1999,78(1):1-10
    [89] Al AI-Hadidy, Yi-qiu Tan. Performance of the SMA mixes made with the variousbinders. Construction and Building Materials,2011,25(9):3668-3673
    [90] F. Moghadas Nejad, E. Aflaki, M.A. Mohammadi. Fatigue behavior of SMA andHMA mixtures. Construction and Building Materials,2010,24(7):1158-1165
    [91]刘新权,丁庆军,姚永永.高粘度改性沥青配制钢箱梁桥面SMA铺装层的研究.公路,2007,(9):97-100
    [92]彭威雄.钢桥的SMA改性沥青桥面铺装施工.林业建设,2008,(3):32-35
    [93] Youngguk Seo, Omar El-Haggan, Mark King, et al. Air Void Models for theDynamic Modulus, Fatigue Cracking and Rutting of Asphalt Concrete. Journal ofMaterials in Civil Engineering,2007,19(10):874-883
    [94] Hyung Bae Kim, Kwang-Ho Lee. An Innovative Rehabilitation Approach for theBridge Deck Pavement. In:GeoHunan International Conference2009. ChangSha,2009,19-27
    [95] M. Diakhaté, A. Millien, C. Petit, et al. Experimental investigation of tack coatfatigue performance: Towards an improved lifetime assessment of pavementstructure interfaces. Construction and Building Materials,2011,25(2):1123-1133
    [96] Robert Gaul, Steve Pence, Wolfgang Eisenhut, et al. Accelerated Testing forFatigue Crack Resistance of Pavement Systems on Orthotropic Steel BridgeDecks. ASCE Geotechnical Special Publication,2011,(218):35-42
    [97] Ibrahim M. Asi. Evaluating skid resistance of different asphalt concrete mixes.Building and Environment,2007,42(1):325-329
    [98]韩振勇,蒋学奎,刘跃.天津富民桥钢桥面国产环氧沥青混凝土铺装技术.桥梁建设,2008,(5):71-74
    [99]尹祖超,钱振东.国产环氧沥青抗老化性能研究.交通运输工程与信息学报,2009,7(1):111-115
    [100]丛培良,余剑英,吴少鹏.环氧沥青及其混合料性能的影响因素.武汉理工大学学报,2009,31(19):7-10
    [101]徐永刚.杭州湾跨海大桥环氧沥青混凝土试验段铺装.武汉理工大学学报,2008,28(2):125-128
    [102]黄明,王仲侃,黄卫东.环氧沥青固化效果研究.武汉理工大学学报,2009,29(2):225-228
    [103] Kim W, EIHussein M. Variation of fracture toughness of asphalt concrete underlow strain. Construction and Building Materials,1977,11(4):403-411
    [104] Park S W, Kim Y R, Schapery R A. A viscoelastic continuum damage model andits application to uniaxial behavior of asphalt concrete. Mechanics of Material,1996,24(4):241-255
    [105] K. Aravind, Animesh Das. Pavement design with central plant hot-mix recycledasphalt mixes. Construction and Building Materials,2007,21(5):928-936
    [106] A.T.C. Goh. Advisory expert system for flexible pavement design. ArtificialIntelligence in Engineering,1993,8(1):47-56
    [107] Nii O. Attoh-Okine. Uncertainty analysis in structural number determination inflexible pavement design—a convex model approach. Construction and BuildingMaterials,2002,16(2):67-71
    [108] Young-Chan Suh, Nam-Hyun Cho, Sungho Mun. Development of mechanistic–empirical design method for an asphalt pavement rutting model using APT.Construction and Building Materials,2011,25(4):1685-1690
    [109] Abraham Belay, Eugene OBrien, Dirk Kroese. Truck fleet model for design andassessment of flexible pavements. Journal of Sound and Vibration,2008,311(3):1161-1174
    [110]中华人民共和国交通部. JTG B01-2003公路工程技术标准.北京:人民交通出版社,2004,22-25
    [111]苏彦江.钢桥构造与设计(第一版).四川成都:西南交通大学出版社,2006,38-43
    [112]国家技术监督局. GB8923-1988涂装前钢材表面锈蚀等级和除锈等级.北京:中国标准出版社,1988,1-4
    [113]郭金琼,房贞政,郑振.箱形梁设计理论(第二版).北京:人民交通出版社,2008,76-114
    [114]中华人民共和国交通部. JTG D50-2006公路沥青路面设计规范.北京:人民交通出版社,2006,5-7
    [115]赵锋军,李宇峙.匝道钢桥面沥青铺装简化设计方法.公路交通科技,2009,26(12):44-49,55
    [116]徐君兰.桥梁计算示例丛书-悬索桥(第二版).北京:人民交通出版社,2003,99-120
    [117]南京长江第二大桥建设指挥部,东南大学.南京长江第二大桥钢桥面铺装材料试验研究报告.2000,31-41
    [118]邵腊庚,周晓青,李宇峙.基于直接拉伸试验的沥青混合料粘弹性损伤特性研究.土木工程学报,2005,38(4):125-128
    [119]胡光伟.大跨径钢桥面铺装体系力学分析与优化设计.[东南大学博士学位论文].南京:东南大学,2005,67-90
    [120]陆学元,孙立军. AC-13改性沥青混合料劈裂强度的影响因素及其与马歇尔性能指标的相关性.吉林大学学报(工学版),2010,40(3):676-682
    [121]丛培良,余剑英,吴少鹏.环氧沥青及其混合料性能的影响因素.武汉理工大学学报,2009,31(19):7-10
    [122]陈先华,黄卫,杨军.正交异性钢桥面沥青混凝土铺装层的裂缝分类及成因.公路,2008,(4):6-10
    [123]王润寿,余文科,洪丹.环氧沥青混凝土钢桥面铺装病害的原因分析与处治.石油沥青,2011,25(1):13-16
    [124]吴一鸣,李威,秦建军.钢桥面铺装常见病害调查及养护对策.中国科技信息,2011,(13):65-66
    [125]韩超,李浩天,贾渝.基于现代化检测的环氧沥青钢桥面铺装病害研究.公路工程,2011,36(1):50-54
    [126]张磊.江阴大桥钢桥面铺装病害研究:[东南大学硕士学位论文].南京:东南大学,2004,12-13
    [127]李智,钱振东.典型钢桥面铺装结构的病害分类分析.交通运输工程与信息学报,2006,4(2):110-115
    [128]何长江,钱振东,王建伟.环氧沥青混凝土钢桥面铺装病害处治技术研究.交通科技,2007,(5):42-44
    [129]周晓华,宗海,童义和.环氧沥青混凝土钢桥面铺装层病害分析.公路交通科技(应用技术版),2006,(3):105-107
    [130]中华人民共和国交通部. JTJ073.2-2001公路沥青路面养护技术规范.北京:人民交通出版社,2001,5-9
    [131]黄明,黄卫东.级配对环氧沥青混合料高温性能的影响.现代交通技术,2008,5(6):10-11
    [132]李宇峙,徐敏,李家庆.环氧树脂混凝土路用性能及其钢桥面铺装施工工艺研究.公路,2008,(10):103-106
    [133]中华人民共和国交通部. JTJ052-2000公路工程沥青及沥青混合料试验规程.北京:人民交通出版社,2000,345-351
    [134]李宇峙,邵腊庚,吴国平.钢桥面铺装界面粘结剂.中国.发明专利,CN200510031135.5.2007-03-21
    [135]张志宏,陆耀忠,王仁贵.一种钢桥桥面铺装结构.中国.实用新型专利,CN200920196648.5.2010-06-23
    [136]陈团结.大跨径钢桥面环氧沥青混凝土铺装裂缝行为研究:[东南大学博士学位论文].南京:东南大学,2006,1-5
    [137]中华人民共和国交通部. JTG F40-2004公路沥青路面施工技术规范.北京:人民交通出版社,2004,28-31
    [138]周巍,胡松.大跨径钢桥面铺装类型选择.中外公路,2006,26(5):62-64
    [139]黄仰贤.路面分析与设计.余定选,齐诚.第一版,北京:人民交通出版社,1998,236-239
    [140]张洪亮,许金良,郭荣庆.重载沥青路面基于实测荷载图式的轴载换算研究.武汉理工大学学报(交通科学与工程版),2010,34(1):110-112
    [141]中华人民共和国交通部. JTJ014-97公路沥青路面设计规范.北京:人民交通出版社,1997,122-123
    [142]中华人民共和国建设部. CJJ37-90城市道路设计规范.北京:中国建筑工业出版社,2000,85-89
    [143]杨军,丛菱,朱浩然.钢桥面沥青混合料铺装车辙有限元分析.工程力学,2009,26(5):110-115
    [144]颜利,周晓青,李宇峙.基于直道足尺车辙试验的沥青路面重载轴载换算方法研究.公路交通科技,2006,23(3):35-39
    [145]马骉,韦佑坡.高原寒冷地区沥青混合料劈裂强度影响因素.公路,2010,(8):210-213
    [146]贾致荣,樊克恭,赵成泉.沥青路面结构的模糊可靠度分析.中外公路,2001,21(4):15-18
    [147]中华人民共和国建设部. GB/T50283-1999公路工程结构可靠度设计统一标准.北京:中国计划出版社,1999,9-13
    [148]王旭东.沥青路面结构可靠度的计算.公路交通科技,1995,12(1):1-5
    [149]王祺国,徐旭.沥青路面结构可靠度及优化方法研究.中外公路,2007,27(6):47-51
    [150]王选仓,王秉纲,林巧飞.沥青路面结构可靠度计算的全概率法.土木工程学报,1997,30(2):63-67
    [151]查旭东,张起森,卢正宇.沥青路面结构可靠度敏感性分析的研究.长沙交通学院学报,1998,14(3):63-67
    [152]张起森,查旭东.沥青路面结构的可靠度优化设计.中国公路学报,1996,9(4):8-16
    [153]何兆益,战高峰,邓学钧.一种分析沥青路面可靠度的实用优化方法.重庆交通学院学报,1993,12(2):36-40
    [154]董海文,钱勇,毛广湘.模糊优化在柔性路面结构可靠度设计中的应用.湖南城建高等专科学校学报,2002,11(2):19-20
    [155]徐旭,王祺国.基于数值模拟的沥青路面结构可靠度分析.公路交通科技,2008,25(5):18-22
    [156]帅长斌,张银龙,常大民.基于响应面法的桥面结构可靠度近似计算.中国公路学报,2003,16(3):52-57
    [157] AASHTO. Guide for Mechanistic-Empirical Design of New and RehabilitatedPavement Structures Appendix BB: Design Reliability. NCHRP,2003,BB.1-BB.32
    [158]上官兵,胡钊芳,刘英卫.确定性和可靠性分析在桥面铺装设计中的联合运用.公路交通科技,2003,20(5):50-53
    [159]张起森.高等路面结构设计理论与方法(第一版).北京:人民交通出版社,2005,102-113
    [160]逯彦秋,陈宜言,孙占琦.钢桥桥面铺装层的温度场分布特征.华南理工大学学报(自然科学版),2009,37(8):116-121
    [161]徐旭,王祺国.基于数值模拟的沥青路面结构可靠度分析.公路交通科技,2008,25(5):18-22
    [162]何兆益,邓学钧.沥青路面结构可靠度分析与研究.华东公路,1995,(2):25-28
    [163]陈佩林,梁锡三.用蒙特卡罗法分析沥青路面结构的可靠度.广东公路交通,1998,(1):24-27
    [164]邵旭东,曹君辉,易笃韬.正交异性钢板——薄层RPC组合桥面基本性能研究.中国公路学报,2012,25(2):40-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700