精神分裂症药物基因组学及孕期营养不良大鼠动物模型的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精神分裂症是一种严重的精神疾病,影响着全世界约1%的人口。精神分裂症是一组病因未明的精神疾病,临床表现为思维、情感和行为等多方面的障碍以及精神活动的不协调。该种疾病是由遗传因素和环境因素共同作用而发生,家系研究表明此疾病有较高的遗传性,但又不是简单的孟德尔型遗传。本论文主要围绕精神分裂症的基因组学、药物基因组研究以及可能导致成年精神分裂症的胎源性营养缺乏的大鼠蛋白质组研究。
     HTR2C (5-HT2C)和精神分裂症利培酮治疗疗效的关联研究。该基因位于X染色体长臂2区4带(Xq24),可翻译表达一种后突触G蛋白偶联受体。我们选取了HTR2C的5个SNP位点:rs3813929(-759C/T), rs518147(-697G/C), rs1023574, rs9698290, rs6318(Ser23Cys)在130名接受利培酮单一治疗的精神分裂症患者中进行关联分析,这些患者在接受利培酮治疗前都接受了为期8周的药物清洗期,以避免和其他药物的相互影响。通过研究我们发现位于HTR2C启动子区域的rs518147和邻近的rs1023574以及rs9698290位于同一个基因连锁区域(Gene block),且都和中国女性精神疾病患者利培酮疗效改变有直接联系;进而通过显性模型(Dominant model)和隐性模型(Recessive model)对实验结果进行进一步分析发现,在rs518147和rs1023574位点上含有CC (G-)等位基因的女性患者在服用利培酮后,其疗效比CG或GG(G+)基因型的患者要好,而对于rs9698290的位点来说TT(C-)基因型会比CC或者CT(C+)效果要好。但是遗憾的是以上这些现象在男性患者中均没有发现,这可能是因为该基因位于性染色体,而造成的基因剂量(Dosage)影响不一样造成的。
     早期生长反应基因(Early Growth Response,EGR)是一类重要的转录因子(Transcription factors),其包含4个基因家族成员,分别为EGR1-4,用于调控神经元可塑性(Neuronal plasticity)基因的表达。在我们研究中首次在中国汉族人群中进行了关联研究来探讨EGR基因家族和精神分裂症之间可能的联系。我们一共选取了具有代表性的12个SNP在2044个样品(1022个正常对照样品,1022个精神分裂症样品)中进行了病例-对照实(Case-control)验。我们没有发现有任何SNP同精神分裂症或者其偏执亚型(Paranoid)和未分化亚型(Undifferentiated)有显著关联结果。最后我们用MDR (MultifactorDimensionality Reduction)来检测EGR基因家族之间的相互作用对精神分裂症致病性的研究,也没有任何阳性结果显示。这表明在我们的样品中,EGR基因不是主要致病性基因,但是我们需要更大样本量实验配合其他功能试验的验证。
     研究室既往对三年饥荒时期出生的人成年后患精神分裂症流行病学研究表明,1959年出生的新生儿精神分裂症患病率是0.84%,而在饥荒期间出生的婴儿成年后患病率分别是2.15%,1.81%(男女患精神分裂症概率约相似),分别是对照组的2倍。而这项研究在随后采用更大样本量,在广西柳州及周边18个村庄的研究中得到验证。于是我们构建了大鼠的饥荒研究模型来深入了解饥荒对成人胎源性疾病的分子机理研究。三组SD大鼠被随机的分成正常大鼠、中度缺乏孕期严重缺乏组别,待胎鼠成年后我们对其进行了行为学测试,分别包括旷场模型、强迫游泳模型、水迷宫和社交行为模型实验。然后对其海马及皮层脑区进行全蛋白质组学研究。
     我们对正常和饥荒大鼠的海马和皮层的蛋白质组学采用同位素标记相对和绝对定量(i-TRAQ)平台寻找表达量发生显著变化的蛋白,然后利用IPA软件对这些差异蛋白进行通路分析。最后我们比较了海马和皮层中发生显著变化的通路,发现这些蛋白主要富集在以下三个通路中:糖代谢通路(CarbohydratePathway)、神经递质通路(Neuro-transmitter Pathway)和线粒体功能异常(MitochondrialDysfunction)。同时我们又使用了Western blot对一些显著发生变化的蛋白例如GNB1、GLUD1、GNAI1、STXBP1和HOMER1在正常组和严重营养缺乏组大鼠的海马和皮层中进行了验证试验。
     本论文主要围绕精神分裂疾病展开,通过对疾病相关联的SNP位点进行研究,尝试用遗传学的方法找到可能的致病基因,及药物疗效预测基因靶点。同时探索胎源性营养不良对子代成年后行为变化并试图从蛋白组层面对这些现象进行解释,同时为精神分裂症的分子机理研究、抗精神病药物疗效评价预测提供了新的线索。
Schizophrenia is a common psychiatric disorder with a prevalence ofapproximately1%of the world population and is characterized bypsychotic symptoms such as hallucinations, delusions and thoughtdisturbances, etc. Former research indicated that schizophrenia is causedby both genetic risk and environmental factors, the linkage study showthe genetic factors work the major effects. Our studies are focusing on thgenetic and phamacogenetic study of schizophrenia, and proteomicsstudy of fetus nutrition deficiency rat animal model study. In total I havethree chapters:
     Pharmacogenetic studyof HTR2Candrisperidone treatment inChinese schizophrenia patients.
     Genetic associationstudy of EGRgene family with Chineseschizophrenia.
     And proteomicsstudy offetus nutrition deficiency rat animalmodel.
     The human HTR2C receptor gene is localized in sex chromosomeXq24. It is a post-synaptic G protein-linked receptor that activates boththe cyclic GMP and cerebrospinal fluid formation. We genotyped5singlenucleotide polymorphisms (SNPs) distributed the HTR2C and examinedthem for association with the Brief Psychiatric Rating Scale (BPRS)scores reduction changes in130Chinese schizophrenic patients followingan8-week period of risperidone monotherapy. All the patients receivedthe atypical antipsychotic drug treatment for their first time and have a4-week medication-free period before research. We found rs518147,rs1023574and rs9698290were significantly associated with risperidonetreatment in female patients (F=4.75, df=2, P=0.011; F=4.329, df=2andP=0.016; F=4.188, df=2, P=0.019). Our results indicate that variants inthe HTR2C promoter region are likely to affect the risperidonetherapeutic effect in female, however we did not find the same effect inChinese male patients. It may be helpful to investigate a combinationwith other clinical factors to predict atypical anti-psychotics efficacy inthe future study.
     Early growth response (EGR) genes are thought to have a role in thepathogenesis of schizophrenia because of their conserved DNA bindingdomain and biological activity in neuronal plasticity. In this study we investigated the role of EGR1, EGR2, EGR3and EGR4within the EGRfamily. Taqman technology was used to examine12single nucleotidepolymorphisms (SNPs) covering these four genes in2044Chinese Hansubjects. Case-control analyses were performed to detect association ofthese4genes with schizophrenia and multifactor dimensionalityreduction (MDR) analysis was employed to examine their potential gene-gene interaction in schizophrenia. Neither allelic nor genotypic single-locus tests revealed any significant association between EGR1-4and therisk of schizophrenia nor was any such association found with regard tointeraction within EGR1-4(pmin=0.623, CV Consistency=10/10, otherdata not shown). We concluded that although multiple candidate genesare involved in schizophrenogenic development, the EGR family may notplay a major role in schizophrenia susceptibility in the Chinese Hanpopulation.
     Our lab has done epidemiological study of schizophrenia during the1959-1961famine and found that the babies who was born during thoseyears have high risk of developing (OR=2) schizophrenia when theygrow up, and further larger sample validated this finding. Therefore thePhD thesis will build a fetus nutrition animal model to explore potentialmechanism of psychiatric disorder.
     SD rats were divided into three groups randomly with normal/lowprotein and rare food limitation respectively, when their offspring grownup, we used open field, forced swimming model, water maze and socialinteraction model to test their behavior performance, when we finishedour animal model we attract rats’ hippocampusand cortexto test theirproteomics by using i-TRAQ platform. Through this advancedmethodology, we can get numbers of proteins which express differentlybetween normal and protein limited rat groups.
     IPA analysis was used to analyze those differently expressed protein inhippocampus and cortex to test which pathway they belong to,respectively we compare those pathways together and found they sharesome common pathways as below: Carbohydrate Pathway, Neuro-transmitter Pathway and Mitochondrial Dysfunction. Some of the keyproteins (GNB1, GLUD1, GNAI1, STXBP1and HOMER1) werevalidated by western blotting method.
     Our research did genetic study of schizophrenia, pharmacogeneticstudy of risperidone treatment in Chinese schizophrenia patients. Beyondthose genetic study, we also did animal model test to explore molecularmechanism of fetus protein restricted offspring which show differentbehavior when they grow up. Our research could help followers build a good understanding of psychiatric mechanism, provide hints forpredicting the treatment effect of different anti-psychiatric diseases,reduce the gap between basic lab work and clinical research and promotethe translational research in the future.
引文
1. WHO, Cross-national comparisons of the prevalences and correlates of mental disorders. WHOInternational Consortium in Psychiatric Epidemiology. Bull World Health Organ,2000.78(4): p.413-26.
    2. Harrison, P.J. and M.J. Owen, Genes for schizophrenia? Recent findings and theirpathophysiological implications. Lancet,2003.361(9355): p.417-9.
    3. St Clair, D., et al., Rates of adult schizophrenia following prenatal exposure to the Chinese famineof1959-1961. Jama,2005.294(5): p.557-62.
    4. Tsuang, M., Schizophrenia: genes and environment. Biol Psychiatry,2000.47(3): p.210-20.
    5. van Os, J. and J.P. Selten, Prenatal exposure to maternal stress and subsequent schizophrenia.The May1940invasion of The Netherlands. Br J Psychiatry,1998.172: p.324-6.
    6. Jablensky, A.V., et al., Pregnancy, delivery, and neonatal complications in a population cohort ofwomen with schizophrenia and major affective disorders. Am J Psychiatry,2005.162(1): p.79-91.
    7. van Os, J. and S. Kapur, Schizophrenia. Lancet,2009.374(9690): p.635-45.
    8. Andreasen, N.C., Symptoms, signs, and diagnosis of schizophrenia. Lancet,1995.346(8973): p.477-81.
    9. Cardno, A.G. and Gottesman, II, Twin studies of schizophrenia: from bow-and-arrowconcordances to star wars Mx and functional genomics. Am J Med Genet,2000.97(1): p.12-7.
    10. Levav, I. and W. Rutz, The WHO World Health Report2001new understanding--new hope. Isr JPsychiatry Relat Sci,2002.39(1): p.50-6.
    11. Bleuler, M., Eugen Bleuler and schizophrenia. Br J Psychiatry,1984.144: p.327-8.
    12. Crow, T.J., The two-syndrome concept: origins and current status. Schizophr Bull,1985.11(3): p.471-86.
    13. McGlashan, T.H. and W.S. Fenton, Classical subtypes for schizophrenia: literature review for DSM-IV. Schizophr Bull,1991.17(4): p.609-32.
    14. WHO. Mental health-Schizophrenia.http://www.who.int/mental_health/management/schizophrenia/en/2011.
    15. Pinikahana, J., B. Happell, and N.A. Keks, Suicide and schizophrenia: a review of literature for thedecade (1990-1999) and implications for mental health nursing. Issues Ment Health Nurs,2003.24(1): p.27-43.
    16. Gottesman, I.I., Schizophrenia Genesis: The Origins of Madness. Free man,1991: p.10.
    17. Hamza, T.H., et al., Common genetic variation in the HLA region is associated with late-onsetsporadic Parkinson's disease. Nat Genet,2010.42(9): p.781-5.
    18. Kim, Y., et al., Schizophrenia genetics: where next? Schizophr Bull,2011.37(3): p.456-63.
    19. Meydan, J., X. Liu, and D. Hasin, Alcohol and drug use in schizophrenia as predictors of functionalimpairment. Schizophr Res,2005.77(1): p.105-6.
    20. Grace, A.A., Dopamine system dysregulation by the hippocampus: implications for thepathophysiology and treatment of schizophrenia. Neuropharmacology,2012.62(3): p.1342-8.
    21. Baumeister, A.A. and M.F. Hawkins, The serotonin hypothesis of schizophrenia: a historical casestudy on the heuristic value of theory in clinical neuroscience. J Hist Neurosci,2004.13(3): p.277-91.schizophrenia. Cell,1999.98(4): p.427-36.
    23. Carlsson, M. and A. Carlsson, Interactions between glutamatergic and monoaminergic systemswithin the basal ganglia--implications for schizophrenia and Parkinson's disease. Trends Neurosci,1990.13(7): p.272-6.
    24. Javitt, D.C., et al., Translating glutamate: from pathophysiology to treatment. Sci Transl Med,2011.3(102): p.102mr2.
    25. Miyamoto, S., et al., Pharmacological treatment of schizophrenia: a critical review of thepharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry,2012.
    26. Bruneau, E.G., et al., Increased expression of glutaminase and glutamine synthetase mRNA in thethalamus in schizophrenia. Schizophr Res,2005.75(1): p.27-34.
    27. Rossignol, E., Genetics and function of neocortical GABAergic interneurons inneurodevelopmental disorders. Neural Plast,2011.2011: p.649325.
    28. Kantrowitz, J. and D.C. Javitt, Glutamatergic transmission in schizophrenia: from basic research toclinical practice. Curr Opin Psychiatry,2012.25(2): p.96-102.
    29. Siuta, M.A., et al., Dysregulation of the norepinephrine transporter sustains corticalhypodopaminergia and schizophrenia-like behaviors in neuronal rictor null mice. PLoS Biol,2010.8(6): p. e1000393.
    30. Ji, B., et al., A comparative proteomics analysis of rat mitochondria from the cerebral cortex andhippocampus in response to antipsychotic medications. J Proteome Res,2009.8(7): p.3633-41.
    31. Freedman, R., Schizophrenia. N Engl J Med,2003.349(18): p.1738-49.
    32. Lewis, D.A. and G. Gonzalez-Burgos, Pathophysiologically based treatment interventions inschizophrenia. Nat Med,2006.12(9): p.1016-22.
    33. Narendran, R., et al., Altered prefrontal dopaminergic function in chronic recreational ketamineusers. Am J Psychiatry,2005.162(12): p.2352-9.
    34. Burmeister, M., M.G. McInnis, and S. Zollner, Psychiatric genetics: progress amid controversy. NatRev Genet,2008.9(7): p.527-40.
    35. Badner, J.A. and E.S. Gershon, Meta-analysis of whole-genome linkage scans of bipolar disorderand schizophrenia. Mol Psychiatry,2002.7(4): p.405-11.
    36. Lewis, C.M., et al., Genome scan meta-analysis of schizophrenia and bipolar disorder, part II:Schizophrenia. Am J Hum Genet,2003.73(1): p.34-48.
    37. Terwilliger, J.D. and K.M. Weiss, Linkage disequilibrium mapping of complex disease: fantasy orreality? Curr Opin Biotechnol,1998.9(6): p.578-94.
    38.贺林,等.,解码生命[M].北京:科学出版社,2000: p.286-322.
    39. Tam, G.W., et al., The role of DNA copy number variation in schizophrenia. Biol Psychiatry,2009.66(11): p.1005-12.
    40. Hennah, W., et al., Haplotype analysis and identification of genes for a complex trait: examplesfrom schizophrenia. Ann Med,2004.36(5): p.322-31.
    41. Cardon, L.R. and J.I. Bell, Association study designs for complex diseases. Nat Rev Genet,2001.2(2): p.91-9.
    42. Frazer, K.A., et al., A second generation human haplotype map of over3.1million SNPs. Nature,2007.449(7164): p.851-61.
    43. O'Donovan, M.C., et al., Identification of loci associated with schizophrenia by genome-wideassociation and follow-up. Nat Genet,2008.40(9): p.1053-5.
    44. Lencz, T., et al., Converging evidence for a pseudoautosomal cytokine receptor gene locus inschizophrenia. Mol Psychiatry,2007.12(6): p.572-80.
    45. Shi, Y., et al., Common variants on8p12and1q24.2confer risk of schizophrenia. Nat Genet,2011.43(12): p.1224-7.
    46. Yue, W.H., et al., Genome-wide association study identifies a susceptibility locus for schizophreniain Han Chinese at11p11.2. Nat Genet,2011.43(12): p.1228-31.
    47. Shifman, S., et al., Genome-wide association identifies a common variant in the reelin gene thatincreases the risk of schizophrenia only in women. PLoS Genet,2008.4(2): p. e28.
    48. Walsh, T., et al., Rare structural variants disrupt multiple genes in neurodevelopmental pathwaysin schizophrenia. Science,2008.320(5875): p.539-43.
    49. Kirov, G., et al., A genome-wide association study in574schizophrenia trios using DNA pooling.Mol Psychiatry,2009.14(8): p.796-803.
    50. Need, A.C., et al., A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet,2009.5(2): p. e1000373.
    51. Purcell, S.M., et al., Common polygenic variation contributes to risk of schizophrenia and bipolardisorder. Nature,2009.460(7256): p.748-52.
    52. Shi, J., et al., Common variants on chromosome6p22.1are associated with schizophrenia. Nature,2009.460(7256): p.753-7.
    53. Stefansson, H., et al., Common variants conferring risk of schizophrenia. Nature,2009.460(7256):p.744-7.
    54. Athanasiu, L., et al., Gene variants associated with schizophrenia in a Norwegian genome-widestudy are replicated in a large European cohort. J Psychiatr Res,2010.44(12): p.748-53.
    55. Alkelai, A., et al., Identification of new schizophrenia susceptibility loci in an ethnicallyhomogeneous, family-based, Arab-Israeli sample. FASEB J,2011.25(11): p.4011-23.
    56. Chen, J., et al., Two non-synonymous markers in PTPN21, identified by genome-wide associationstudy data-mining and replication, are associated with schizophrenia. Schizophr Res,2011.131(1-3): p.43-51.
    57. Ikeda, M., et al., Genome-wide association study of schizophrenia in a Japanese population. BiolPsychiatry,2011.69(5): p.472-8.
    58. Ma, X., et al., A genome-wide association study for quantitative traits in schizophrenia in China.Genes Brain Behav,2011.10(7): p.734-9.
    59. Rietschel, M., et al., Association between genetic variation in a region on chromosome11andschizophrenia in large samples from Europe. Mol Psychiatry,2011.
    60. Ripke, S., et al., Genome-wide association study identifies five new schizophrenia loci. Nat Genet,2011.43(10): p.969-76.
    61. Yamada, K., et al., Genome-wide association study of schizophrenia in Japanese population. PLoSOne,2011.6(6): p. e20468.
    62. Alkelai, A., et al., DOCK4and CEACAM21as novel schizophrenia candidate genes in the Jewishpopulation. Int J Neuropsychopharmacol,2012.15(4): p.459-69.
    63. Pearson, T.A. and T.A. Manolio, How to interpret a genome-wide association study. Jama,2008.299(11): p.1335-44.
    64. Zhang, F., et al., Copy number variation in human health, disease, and evolution. Annu RevGenomics Hum Genet,2009.10: p.451-81.
    65. Wilson, G.M., et al., DNA copy-number analysis in bipolar disorder and schizophrenia revealsaberrations in genes involved in glutamate signaling. Hum Mol Genet,2006.15(5): p.743-9.
    66. Vrijenhoek, T., et al., Recurrent CNVs disrupt three candidate genes in schizophrenia patients. AmJ Hum Genet,2008.83(4): p.504-10.
    67. Consortium, I.S., Rare chromosomal deletions and duplications increase risk of schizophrenia.Nature,2008.455(7210): p.237-41.
    68. Stefansson, H., et al., Large recurrent microdeletions associated with schizophrenia. Nature,2008.455(7210): p.232-6.
    69. Xu, B., et al., Strong association of de novo copy number mutations with sporadic schizophrenia.Nat Genet,2008.40(7): p.880-5.
    70. Sutrala, S.R., et al., Gene copy number variation in schizophrenia. Am J Med Genet BNeuropsychiatr Genet,2008.147B(5): p.606-11.
    71. Kirov, G., et al., Support for the involvement of large copy number variants in the pathogenesis ofschizophrenia. Hum Mol Genet,2009.18(8): p.1497-503.
    72. Grozeva, D., et al., Rare copy number variants: a point of rarity in genetic risk for bipolar disorderand schizophrenia. Arch Gen Psychiatry,2010.67(4): p.318-27.
    73.沈渔邨,《精神病学》第三版.北京人民卫生出版社,1994.
    74. Kane, J.M. and C.U. Correll, Pharmacologic treatment of schizophrenia. Dialogues Clin Neurosci,2010.12(3): p.345-57.
    75. Kinon, B.J. and J.A. Lieberman, Mechanisms of action of atypical antipsychotic drugs: a criticalanalysis. Psychopharmacology (Berl),1996.124(1-2): p.2-34.
    76. Remington, G. and S. Kapur, Atypical antipsychotics: are some more atypical than others?Psychopharmacology (Berl),2000.148(1): p.3-15.
    77. Szasz, T., Psychiatric diagnosis, psychiatric power and psychiatric abuse. J Med Ethics,1994.20(3):p.135-8.
    78. Adams, C.E., et al., Chlorpromazine for schizophrenia: a Cochrane systematic review of50yearsof randomised controlled trials. BMC Med,2005.3: p.15.
    79. Germann, D., N. Kurylo, and F. Han, Risperidone. Profiles Drug Subst Excip Relat Methodol,2012.37: p.313-61.
    80. Cardoni, A.A., Risperidone: review and assessment of its role in the treatment of schizophrenia.Ann Pharmacother,1995.29(6): p.610-8.
    81. Sherwood, M., A.E. Thornton, and W. Honer, A quantitative review of the profile and time courseof symptom change in schizophrenia treated with clozapine. J Psychopharmacol,2012.
    82. Bymaster, F.P., et al., Radioreceptor binding profile of the atypical antipsychotic olanzapine.Neuropsychopharmacology,1996.14(2): p.87-96.
    83. Kang, X. and G.M. Simpson, Clozapine: more side effects but still the best antipsychotic. J ClinPsychiatry,2010.71(8): p.982-3.
    84. Zervas, I.M., C. Theleritis, and C.R. Soldatos, Using ECT in schizophrenia: a review from a clinicalperspective. World J Biol Psychiatry,2012.13(2): p.96-105.
    85. Crammer, J.L., Insulin coma therapy for schizophrenia. J R Soc Med,2000.93(6): p.332-3.
    86. Wang, L., Pharmacogenomics: a systems approach. Wiley Interdiscip Rev Syst Biol Med,2010.2(1): p.3-22.
    87. Becquemont, L., Pharmacogenomics of adverse drug reactions: practical applications andperspectives. Pharmacogenomics,2009.10(6): p.961-9.
    88. Gomes, A.M., et al., Pharmacogenomics of human liver cytochrome P450oxidoreductase:multifactorial analysis and impact on microsomal drug oxidation. Pharmacogenomics,2009.10(4): p.579-99.
    89. Van Cutsem, E., et al., Cetuximab and chemotherapy as initial treatment for metastatic colorectalcancer. N Engl J Med,2009.360(14): p.1408-17.
    90. Liu, B.C., et al., HTR2C promoter polymorphisms are associated with risperidone efficacy inChinese female patients. Pharmacogenomics,2010.11(5): p.685-92.
    91. Barker, D.J. and C. Osmond, Infant mortality, childhood nutrition, and ischaemic heart disease inEngland and Wales. Lancet,1986.1(8489): p.1077-81.
    92. Barker, D.J., The fetal origins of adult hypertension. J Hypertens Suppl,1992.10(7): p. S39-44.
    93. Barker, D.J., The fetal origins of diseases of old age. Eur J Clin Nutr,1992.46Suppl3: p. S3-9.
    94. Barker, D.J., The fetal and infant origins of adult disease. BMJ,1990.301(6761): p.1111.
    95. Brooks, A.A., et al., Birth weight: nature or nurture? Early Hum Dev,1995.42(1): p.29-35.
    96. Desai, M., et al., Organ-selective growth in the offspring of protein-restricted mothers. Br J Nutr,1996.76(4): p.591-603.
    97. Gluckman, P.D. and M.A. Hanson, Living with the past: evolution, development, and patterns ofdisease. Science,2004.305(5691): p.1733-6.
    98. Bateson, P., et al., Developmental plasticity and human health. Nature,2004.430(6998): p.419-21.
    99. Susser, E., D. St Clair, and L. He, Latent effects of prenatal malnutrition on adult health: theexample of schizophrenia. Ann N Y Acad Sci,2008.1136: p.185-92.
    100. Xu, M.Q., et al., Prenatal malnutrition and adult schizophrenia: further evidence from the1959-1961Chinese famine. Schizophr Bull,2009.35(3): p.568-76.
    101. Susser, E.S. and S.P. Lin, Schizophrenia after prenatal exposure to the Dutch Hunger Winter of1944-1945. Arch Gen Psychiatry,1992.49(12): p.983-8.
    102. Wadsworth, M.E., et al., Blood pressure in a national birth cohort at the age of36related tosocial and familial factors, smoking, and body mass. Br Med J (Clin Res Ed),1985.291(6508): p.1534-8.
    103. Barker, D.J. and C. Osmond, Low birth weight and hypertension. BMJ,1988.297(6641): p.134-5.
    104. Stein, C.E., et al., Fetal growth and coronary heart disease in south India. Lancet,1996.348(9037): p.1269-73.
    105. Forsen, T., et al., Mother's weight in pregnancy and coronary heart disease in a cohort of Finnishmen: follow up study. BMJ,1997.315(7112): p.837-40.
    106. Eriksson, J.G., et al., Catch-up growth in childhood and death from coronary heart disease:longitudinal study. BMJ,1999.318(7181): p.427-31.
    107. Curhan, G.C., et al., Birth weight and adult hypertension, diabetes mellitus, and obesity in USmen. Circulation,1996.94(12): p.3246-50.
    108. Holemans, K., L. Aerts, and F.A. Van Assche, Evidence for an insulin resistance in the adultoffspring of pregnant streptozotocin-diabetic rats. Diabetologia,1991.34(2): p.81-5.
    109. Luedi, P.P., et al., Computational and experimental identification of novel human imprinted genes.Genome Res,2007.17(12): p.1723-30.
    110. Waterland, R.A. and R.L. Jirtle, Early nutrition, epigenetic changes at transposons and imprintedgenes, and enhanced susceptibility to adult chronic diseases. Nutrition,2004.20(1): p.63-8.
    111. Brown, A.S. and E.S. Susser, Prenatal nutritional deficiency and risk of adult schizophrenia.Schizophr Bull,2008.34(6): p.1054-63.
    112. Moller, H.J., Pharmacotherapy of schizophrenic patients: Achievements, unsolved needs, futureresearch necessities. Curr Pharm Biotechnol,2012.
    113. Reynolds, G.P., et al., Pharmacogenetics of treatment in first-episode schizophrenia: D3and5-HT2C receptor polymorphisms separately associate with positive and negative symptom response.Eur Neuropsychopharmacol,2005.15(2): p.143-51.
    114. Ikeda, M., et al., Variants of dopamine and serotonin candidate genes as predictors of responseto risperidone treatment in first-episode schizophrenia. Pharmacogenomics,2008.9(10): p.1437-43.
    115. Barrett, J.C., et al., Haploview: analysis and visualization of LD and haplotype maps.Bioinformatics,2005.21(2): p.263-5.
    116. Shi, Y.Y. and L. He, SHEsis, a powerful software platform for analyses of linkage disequilibrium,haplotype construction, and genetic association at polymorphism loci. Cell Res,2005.15(2): p.97-8.
    117. O'Donovan, K.J., et al., The EGR family of transcription-regulatory factors: progress at theinterface of molecular and systems neuroscience. Trends Neurosci,1999.22(4): p.167-73.
    118. Poirier, R., et al., Distinct functions of egr gene family members in cognitive processes. FrontNeurosci,2008.2(1): p.47-55.
    119. Carter, C.J., Schizophrenia susceptibility genes directly implicated in the life cycles of pathogens:cytomegalovirus, influenza, herpes simplex, rubella, and Toxoplasma gondii. Schizophr Bull,2009.35(6): p.1163-82.
    120. Gashler, A. and V.P. Sukhatme, Early growth response protein1(Egr-1): prototype of a zinc-fingerfamily of transcription factors. Prog Nucleic Acid Res Mol Biol,1995.50: p.191-224.
    121. Gallitano-Mendel, A., et al., The immediate early gene early growth response gene3mediatesadaptation to stress and novelty. Neuroscience,2007.148(3): p.633-43.
    122. Gallitano-Mendel, A., et al., Mice lacking the immediate early gene Egr3respond to the anti-aggressive effects of clozapine yet are relatively resistant to its sedating effects.Neuropsychopharmacology,2008.33(6): p.1266-75.
    123. Tourtellotte, W.G., et al., Infertility associated with incomplete spermatogenic arrest andoligozoospermia in Egr4-deficient mice. Development,1999.126(22): p.5061-71.
    124. Yamada, K., et al., Genetic analysis of the calcineurin pathway identifies members of the EGRgene family, specifically EGR3, as potential susceptibility candidates in schizophrenia. Proc NatlAcad Sci U S A,2007.104(8): p.2815-20.
    125. Jungerius, B.J., et al., An association screen of myelin-related genes implicates the chromosome22q11PIK4CA gene in schizophrenia. Mol Psychiatry,2008.13(11): p.1060-8.
    126. Faul, F., et al., G*Power3: a flexible statistical power analysis program for the social, behavioral,and biomedical sciences. Behav Res Methods,2007.39(2): p.175-91.
    127. Moore, J.H. and S.M. Williams, New strategies for identifying gene-gene interactions inhypertension. Ann Med,2002.34(2): p.88-95.
    128. Kurian, S.M., et al., Identification of blood biomarkers for psychosis using convergent functionalgenomics. Mol Psychiatry,2009.
    129. Huxley, R., A. Neil, and R. Collins, Unravelling the fetal origins hypothesis: is there really aninverse association between birthweight and subsequent blood pressure? Lancet,2002.360(9334): p.659-65.
    130. Langley-Evans, S.C., Nutritional programming of disease: unravelling the mechanism. J Anat,
    2009.215(1): p.36-51.
    131. Langley-Evans, S.C., Developmental programming of health and disease. Proc Nutr Soc,2006.65(1): p.97-105.
    132. Langley-Evans, S.C. and S. McMullen, Developmental origins of adult disease. Med Princ Pract,
    2010.19(2): p.87-98.
    133. McMullen, S. and A. Mostyn, Animal models for the study of the developmental origins of healthand disease. Proc Nutr Soc,2009.68(3): p.306-20.
    134. Shen, Q., et al., The role of pro-inflammatory factors in mediating the effects on the fetus ofprenatal undernutrition: implications for schizophrenia. Schizophr Res,2008.99(1-3): p.48-55.
    135. Li, M., et al., Effects of chronic typical and atypical antipsychotic drug treatment on maternalbehavior in rats. Schizophr Res,2005.75(2-3): p.325-36.
    136. Wiener, S.G., et al., Alterations in the maternal behavior of rats rearing malnourished offspring.Dev Psychobiol,1977.10(3): p.243-54.
    137. Lisk, R.D., R.A. Pretlow,3rd, and S.M. Friedman, Hormonal stimulation necessary for elicitation ofmaternal nest-building in the mouse (Mus musculus). Anim Behav,1969.17(4): p.730-7.
    138. Voci, V.E. and N.R. Carlson, Enhancement of maternal behavior and nest building followingsystemic and diencephalic administration of prolactin and progesterone in the mouse. J CompPhysiol Psychol,1973.83(3): p.388-93.
    139. Stanford, S.C., The Open Field Test: reinventing the wheel. J Psychopharmacol,2007.21(2): p.134-5.
    140. Prut, L. and C. Belzung, The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol,2003.463(1-3): p.3-33.
    141. Morris, R., Developments of a water-maze procedure for studying spatial learning in the rat.Journal of Neuroscience Methods,1984.11(1): p.47-60.
    142. Morris, R.G.M., et al., Place navigation impaired in rats with hippocampal lesions. Nature,1982.297(5868): p.681-683.
    143. Graeff, F.G., C.F. Netto, and H. Zangrossi, Jr., The elevated T-maze as an experimental model ofanxiety. Neurosci Biobehav Rev,1998.23(2): p.237-46.
    144. Vorhees, C.V. and M.T. Williams, Morris water maze: procedures for assessing spatial and relatedforms of learning and memory. Nature protocols,2006.1(2): p.848-858.
    145. Frick, K.M., et al., Age-related spatial reference and working memory deficits assessed in thewater maze. Neurobiology of Aging,1995.16(2): p.149-160.
    146. Sams-Dodd, F., Automation of the social interaction test by a video-tracking system: behaviouraleffects of repeated phencyclidine treatment. J Neurosci Methods,1995.59(2): p.157-67.
    147. Fone, K.C. and M.V. Porkess, Behavioural and neurochemical effects of post-weaning socialisolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci BiobehavRev,2008.32(6): p.1087-102.
    148. Porsolt, R.D., M. Le Pichon, and M. Jalfre, Depression: a new animal model sensitive toantidepressant treatments.1977.
    149. Cryan, J.F., A. Markou, and I. Lucki, Assessing antidepressant activity in rodents: recentdevelopments and future needs. Trends in pharmacological sciences,2002.23(5): p.238-245.
    150. Porsolt, R.D., et al., Rodent models of depression: forced swimming and tail suspensionbehavioral despair tests in rats and mice. Curr Protoc Neurosci,2001. Chapter8: p. Unit810A.
    151. Detke, M.J., J. Johnson, and I. Lucki, Acute and chronic antidepressant drug treatment in the ratforced swimming test model of depression. Exp Clin Psychopharmacol,1997.5(2): p.107-12.
    152. Gan, C.S., et al., Technical, experimental, and biological variations in isobaric tags for relative andabsolute quantitation(iTRAQ). J. Proteome Res,2007.6(2): p.821-827.
    153. Wiese, S., et al., Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry inproteome research. Proteomics,2007.7(3): p.340-50.
    154. Woods, L.L., D.A. Weeks, and R. Rasch, Programming of adult blood pressure by maternal proteinrestriction: role of nephrogenesis. Kidney Int,2004.65(4): p.1339-48.
    155. Brenner, B.M. and G.M. Chertow, Congenital oligonephropathy and the etiology of adulthypertension and progressive renal injury. Am J Kidney Dis,1994.23(2): p.171-5.
    156. Bennis-Taleb, N., et al., A low-protein isocaloric diet during gestation affects brain developmentand alters permanently cerebral cortex blood vessels in rat offspring. J Nutr,1999.129(8): p.1613-9.
    157. Plagemann, A., et al., Hypothalamic nuclei are malformed in weanling offspring of low proteinmalnourished rat dams. J Nutr,2000.130(10): p.2582-9.
    158. Lillycrop, K.A., et al., Dietary protein restriction of pregnant rats induces and folic acidsupplementation prevents epigenetic modification of hepatic gene expression in the offspring. JNutr,2005.135(6): p.1382-6.
    159. Fraga, M.F., et al., Epigenetic differences arise during the lifetime of monozygotic twins. Proc NatlAcad Sci U S A,2005.102(30): p.10604-9.
    160. Ortiz, L.A., et al., Prenatal dexamethasone programs hypertension and renal injury in the rat.Hypertension,2003.41(2): p.328-34.
    161. Benediktsson, R., et al., Glucocorticoid exposure in utero: new model for adult hypertension.Lancet,1993.341(8841): p.339-41.
    162. McMullen, S. and S.C. Langley-Evans, Maternal low-protein diet in rat pregnancy programs bloodpressure through sex-specific mechanisms. Am J Physiol Regul Integr Comp Physiol,2005.288(1):p. R85-90.
    163. Shiraishi-Yamaguchi, Y. and T. Furuichi, The Homer family proteins. Genome Biol,2007.8(2): p.206.
    164. Kimple, R.J., et al., Structural determinants for GoLoco-induced inhibition of nucleotide release byGalpha subunits. Nature,2002.416(6883): p.878-81.
    165. Martins-de-Souza, D., et al., Proteomic analysis identifies dysfunction in cellular transport, energy,and protein metabolism in different brain regions of atypical frontotemporal lobar degeneration.J Proteome Res,2012.11(4): p.2533-43.
    166. Lee, K.A., et al., Ubiquitin ligase substrate identification through quantitative proteomics at boththe protein and peptide levels. J Biol Chem,2011.286(48): p.41530-8.
    167. Emanuele, M.J., et al., Global identification of modular cullin-RING ligase substrates. Cell,2011.147(2): p.459-74.
    168. Fucetola, R., et al., Age-and dose-dependent glucose-induced increases in memory and attentionin schizophrenia. Psychiatry Res,1999.88(1): p.1-13.
    169. Wolkin, A., et al., Persistence of cerebral metabolic abnormalities in chronic schizophrenia asdetermined by positron emission tomography. Am J Psychiatry,1985.142(5): p.564-71.
    170. Andreasen, N., et al., Structural abnormalities in the frontal system in schizophrenia. A magneticresonance imaging study. Arch Gen Psychiatry,1986.43(2): p.136-44.
    171. Girgis, R.R., J.A. Javitch, and J.A. Lieberman, Antipsychotic drug mechanisms: links betweentherapeutic effects, metabolic side effects and the insulin signaling pathway. Mol Psychiatry,
    2008.13(10): p.918-29.
    172. Fernandez-Egea, E., et al., Metabolic profile of antipsychotic-naive individuals with non-affectivepsychosis. Br J Psychiatry,2009.194(5): p.434-8.
    173. Fernandez-Egea, E., et al., Glucose abnormalities in the siblings of people with schizophrenia.Schizophr Res,2008.103(1-3): p.110-3.
    174. Prabakaran, S., et al., Mitochondrial dysfunction in schizophrenia: evidence for compromisedbrain metabolism and oxidative stress. Mol Psychiatry,2004.9(7): p.684-97,643.
    175. Martins-de-Souza, D., et al., Proteome analysis of schizophrenia patients Wernicke's area revealsan energy metabolism dysregulation. BMC Psychiatry,2009.9: p.17.
    176. Martins-de-Souza, D., et al., Proteome analysis of the thalamus and cerebrospinal fluid revealsglycolysis dysfunction and potential biomarkers candidates for schizophrenia. J Psychiatr Res.44(16): p.1176-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700