毛竹/杉木复合材料胶合界面理化性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人造板是木材工业的重要组成部分,我国人造板产量位居世界第一,胶合板是人造板的主体。由于我国特殊的资源情况,竹木复合材料是人工林资源与竹材资源相结合利用的产物。目前,竹木复合材料产品类型多、用途广,然而对胶合界面特性缺乏深入的研究。因此,本文以毛竹(Phyllostachys pubescens Mazel ex H.de Lebaie)、杉木(Cunninghamia lanceolata(Lamb.)Hook.)和酚醛树脂为研究材料,研究了毛竹和杉木单板的表面粗糙度、接触角、铺张渗透系数对毛竹、杉木以及毛竹和杉木复合材料胶粘剂渗透性能、胶层厚度、胶合性能、界面应力应变分布、界面破坏位移和时间的影响,并对胶合界面微观形态及化学官能团的变化进行了探讨,建立了宏观胶合性能与微观理化性质之间的关系,具体研究内容和结果如下:
     1)通过接触角测试仪研究了毛竹、杉木单板不同粗糙度表面的润湿性。研究结果表明:材料表面,砂光处理对酚醛树脂胶粘剂在毛竹和杉木单板表面初始接触角、平衡接触角、铺张渗透系数影响显著,砂光处理可以改善毛竹和杉木表面润湿性。
     2)通过二维轮廓粗糙度和激光共聚焦三维形貌测量仪对毛竹、杉木不同处理表面粗糙度进行了研究。研究结果表明:不同处理表面轮廓算术平均偏差(Ra)、微观不平度十点高度(Rz)、最大轮廓高度(Ry)各测试指标组内差异显著,横纹粗糙度大于顺纹、毛竹青面大于黄面、杉木单板松面大于紧面;激光共聚焦三维形貌仪与二维轮廓粗糙度测量仪对Ra、Rz、Ry三个指标测量结果具有互换性,同时激光共聚焦三维形貌仪可以直观的得出表面粗糙度的表面形貌,可以直接获得理想的二维粗糙度轮廓线,利用三维粗糙度直观的获得粗糙表面的三维面积。
     3)利用环境扫描电镜和电镜能谱仪研究了毛竹、杉木以及毛竹/杉木复合胶合界面的微观形态。研究结果表明:杉木单板紧面的管胞和木射线处于开放状态,而杉木单板松面部分管胞处于封闭状态,毛竹青面和黄面表面差异小且表面空隙少;杉木胶合界面胶层厚度较大,毛竹胶合界面胶层厚度较小,且毛竹表面薄壁细胞空腔和杉木单板表面管胞以及木射线中有胶粘剂渗入,借助扫描电镜能谱可以将其定位;毛竹/杉木胶合界面断裂时,杉木单板表面管胞、毛竹表面薄壁细胞被撕裂、竹纤维均有被撕裂或拉断的现象。
     4)通过荧光显微镜对毛竹、杉木以及毛竹/杉木复合胶合界面胶粘剂渗透性能和胶层厚度进行了研究。研究结果表明:不同组坯方式、不同表面处理胶合界面胶粘剂渗透性能、胶层厚度差异明显;横切面和径切面对比研究发现,胶层厚度在两个切面上测量结果偏差较小,具有互换性;两切面间有效渗透差异显著,径切面测量结果大于横切面。
     5)研究了不同组坯方式、不同粗糙度表面对毛竹、杉木以及毛竹/杉木复合材料胶合性能的影响。研究结果表明:不同组坯方式、不同表面处理对干湿态胶合强度影响显著;毛竹青面胶合强度值最大,毛竹黄面胶合强度次之;杉木单板紧面胶合强度大于松面,毛竹/杉木复合材料胶合强度值介于两类单体材料之间。
     6)利用数字散斑相关测试方法对毛竹、杉木以及毛竹/杉木胶合界面在不同加载条件下应变场以及界面破坏时的应变分布、断裂的横向和纵向最大位移以及时间进行了研究。研究结果表明:随着加载力的增加,相同部位的应变逐渐增加,且初始段应变快速增加,当加载力达到一定值时,应变增加趋势变缓;胶合界面最大剪切应变位于胶层的端部,不同组坯方式胶合界面破坏时应变差异较大;不同组坯方式、不同粗糙度表面对胶层破坏位移和时间影响较大;纵向位移曲线比较粗糙,然而横向位移比较平滑。
     7)通过红外光谱分析法对杉木、毛竹胶合前后化学官能团的变化进行了研究。研究结果表明:杉木、毛竹热压前后化学官能团变化较小,胶合过程中有官能团发生变化。
Wood-based-panel is played an important role in the world wood industry. As a long term, China has been occupying the largest production of wood-based-panel country of the world. Accroding to the unique resourse situation of China, bamboo/wood composite materials have taken the advantage in the international mark. The properties of bamboo/wood composite plywood, as a main production of wood-based-panel, were studied in this dissertation.
     In the experiment, Moso bamboo (Phyllostachys pubescens Mazel ex H.de Lebaie) and Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) were adhesived by phenolic resin.The purpose of this dissertation was to reserch the relationship between the properties of composite units-which were included the surface roughness of Moso bamboo/Chinese fir , the contact angle, permeability coefficient-and the adhesive parameters-such as the bond strength, adhesives permeability, layer thickness, interface stress and strain distribution, the interface damage displacement and time of Moso bamboo. In order to establishing the relation The morphology of the bonding interface was observed by environmental scanning electron microscope(ESEM) and chemical functional groups changes were measured through fourier transform infrared(FTIR). Research methods and results were as follows:
     1) The surface roughness of Moso bamboo and Chinese fir veneer on different wetting properties was measured by contact angle analyzer instrument. The results shows: there were significant influences on the adhesive parameters (the initial contact angle, equilibrium contact angle, permeability coefficient of the phenolic resin adhesive) by types of the materials and the sanding treatments. Therefore, sanding treatment improves the property of surface-wetting of both Moso bamboo and Chinese fir.
     2) The surface roughness of sanded Moso bamboo and Chinese fir were scaled by two-dimensional contours of roughness and laser confocal three-dimensional shape measuring instrument. The results shows that: the three kinds of parameters about surface roughness including profile arithmetic average error(Ra), ten point height of irregularities(Rz), and maximum height of profile(Ry), were changed significantly on both Moso bamboo and Chinese fir. Comparing with the parallel to grain, the numerical value of surface roughness on the perpendicular to grain was larger. The outer circle of Moso bamboo surface roughness was greater than inner skin. Besides, the tight side of Chinese fir veneer surface roughness was higher than loose side. Laser confocal instrument was a better method which is able to directly obtain perfect two-dimensional roughness contour lines and the three-dimensional space.
     3) The bond interface of Moso bamboo, Chinese fir and Moso bamboo/Chinese fir of composite materials were studied by environmental scanning electron microscope and electron microscope. The results show that: wood tracheids radiation were open on the tight surface of fir veneer and some wood tracheids were closed on loose side of Chinese fir veneer. There was no difference between outer circle of Moso bamboo and inner skin. The interface layer thickness of Chinese fir was larger than Moso bamboo. There was adhesive infiltration into the surface of parenchyma cells and ray tracheids using scanning electron microscopy surface energy spectrum was able to be located. There were phenomenon that the fir veneer surface of tracheids, parenchyma cell surface and bamboo fiber had been torn or pulled off in interface fracture.
     4) Bonding interface and the layer thickness of adhesive permeability were studied by fluorescence microscopy. The results indicate that: it was significantly effected on the interface permeability and layer thickness by different surface treatments. Through the comparison studied of cross section and radial section found, there was little difference of layer thickness on the two facets. However, the effective penetration of significant differences and radial section results were larger than that measured by cross-section.
     5) Bonding performance of different lay up and different surface roughness of Moso bamboo, Chinese fir, Moso bamboo/Chinese fir of composite materials were studied. The results indicate that: different lay-up and different surface treatment affected on wet and dry bonding strength significantly. The bonding strength of outer circle of Moso bamboo was the largest, following by bonding strength of inner skin of Bamboo.The bonding strength of tight side of Chinese fir veneer was larger than the loose side. And the bonding strength of Moso bamboo/Chinese fir of composite materials was between Moso bamboo and Chinese fir.
     6) The test methods by digital speckle correlation method on strain of Moso bamboo, Chinese fir, Moso bamboo/Chinese fir of composite materials under different loading conditions, different lay up, as well as horizontal and vertical maximum displacement and time relationships were studies. The results show that: with the increase in load force, the strain gradually increased and the increase in the initial segment strain faster. When the force reaches a certain value, the strain increased trend steady. The maximum shear strain of bonding interface in the layer ends, different lay up have quite different strain and destroyed time. Different lay up and different surface roughness affected the layer destruction of displacement and times significantly.Vertical displacement curves was rough, but lateral displacement smooth relatively.
     7) The interface of Moso bamboo, Chinese fir of chemical functional groups changes before and after was studied by infrared spectroscopy. The results show that the functional groups of Maso bamboo and Chinese fir which had a subtle change before and after hot pressing. However, some functional groups of adhesive layer had changed.
引文
1国家林业局资源司.http://www.forestry.gov.cn
    2国家林业局,中国林业发展报告[R].北京:中国林业出版社,2007
    3彭镇华.中国杉木[M].北京:中国林业出版社,1999
    4江泽慧,世界竹藤.辽宁:辽宁科学技术出版社,2002
    5雷加富.中国竹资源和竹产业的可持续发展战略[C].中国热带地区竹藤的发展(论文集第6卷).北京:中国林业出版社,2001
    6朱光前.我国木材市场特点及发展趋势[J].中国人造板,2010,Vol.17(4) :6-11
    7 2007年中国木材工业用胶粘剂用量估算[J].林产工业,2008,Vol.35(6):36
    8颜镇,韩桐恩.我国木材胶粘剂用量的估算和预测[J].中国胶粘剂,1999, Vol.9(3):36-38
    9王志玲,王正,人造板用异氰酸酯胶粘剂研究现状及发展趋势[J].中国胶粘剂,2004,Vol.13(1):59-62
    10程瑞香,木材胶接时胶合强度的形成过程[J].木材加工机械,2004,6:31-34
    11 Takaya Nomura .Bamboo utilization in myanmar[J].Wood research,1999,86:9-18)
    12江泽慧,王戈,费本华等.竹木复合材料的研究及发展[J].林业科学研究,2002,Vol.15(6):712-718
    13 Xu Heng,Chiaki Tanaka,Tetsuya Nakao. Mechanical properties of plywood reinforced by bamboo and jute[J]. Forest products Journal.1998, Vol.48(1):81-85
    14 Lee A.W.C., Bai X. S., Bangi A. P. Flexural properties of bamboo-reinforce southern pine OSB beam [J].Forest PRODUCTS Journal, 1977, Vol.47(6):74-78
    15张齐生,孙丰文.竹木复合集装箱底板的研究[J].林业科学,1997,Vol.33(6):546-554
    16鲍逸培,文家孺.竹木复合集装箱底板开发与研究[J].建筑人造板.1997,Vol.(3):13-16
    17南京林业大学,竹木复合细木工板[P].中国:02219712.5,2002
    18刘君良.竹木复合强化单板层积材制备工艺进行研究[J].科技中国,2006,Vol.(2):64-65
    19陈玲,江泽慧,黄晓东等. 2种风电叶片竹木复合材料原材料树脂浸渍量研究[J].西北林学院学报,2008,Vol.23(06):170-172
    20李玲,李大刚,徐平等.结构对托盘用竹木复合层合板力学性能的影响[J].南京林业大学学报,2007,Vol.31(1):135-137
    21韩健.定向竹木复合板表观弹性模量预测模型的构建[J].南京林业大学学报,2009,Vol.33(1):33-36
    22张方文,于文吉,张亚梅.不同单元形态木材增强重组竹结构材料抗弯性能的研究[J].林产工业,2008,Vol.35(03):17-20
    23 Marra,A.A.Technology of wood bonding:principles in practice[J].Van Nostrand Reinhold, 1992, New York
    24程时远,李盛彪,黄世强.胶粘剂(第二版)[M].北京:化学工业出版社,2008,319-320
    25王蓬瑚,刘志明.木基材料界面研究进展[J].东北林业大学学报,2001,Vol.29(5):84-87
    26张宏健,尹秀明,邱荣强等.胶合板胶合效果评价方法探讨[J].木材工业,2003,Vol.17(5):4-7
    27 A.V. Pocius. Adhesion and adhesive technology[J]. Hanser, Munich, 2002
    28 Gray,V.R. The wettability of wood[J].Forest Prod.J,1962,12:452-461
    29 Herczeg,A. Wettability of wood[J].Forest Prod.J,1965,15:499-505
    30 B.M.Collett.A review of surface and interfacial adhesion in woood science and related fields[J].Wood science and technology ,1972,Vol.6:1-42
    31 Hse,C.Y.Wettability of southern pine veneer by phenol formaldehyde wood adhesives[J].Forest Prod.J,1972,Vol.22(1):51-56
    32 Ziaman, W.A. Influence of constitution on adhesion Hand book of adhesives[J]. 2nd edtion.Van Nostrand Reinhold Co.,New York,NY. 1976,33-71
    33 Hse,C.Y. Properties of phenolic adhensives as related to bond quality in southern pine plywood[J].Fofest products Journal,1971, Vol.21(1):44-52
    34于文吉.竹材表面性能及力学性能变异规律的研究[D].博士论文,中国林业科学研究院,2001
    35王戈.毛竹/杉木层积复合材料及其性能[D].博士论文,中国林业科学研究院,2003
    36马红霞.毛竹/杨木复合材料界面胶合性能及其影响因素研究[D].博士论文,中国林业科学研究院,2009
    37 Milojka Gindl, Gerhard Sinn, Alexander Reiterer, Stefanie Tschegg. Wood Surface Energy and Time Dependence of Wettability: A Comparison of Different Wood Surfaces Using an Acid-Base Approach[J]. Holzforschung. 2001, Vol 55: 433–440
    38 D.B.Devallance, J. W. Funck, J. E. Reeb.Influence of several preparation conditions on Douglas-Chinese fir plywood gluebond quality test results. Forest Products Journal, 2006, Vol.56(2):47-50
    39程瑞香,顾继友,崔永志.API胶粘剂在落叶松、白桦和柞木木材弦径面渗透的显微研究[J].林业科学,2004,Vol.40(6):144-146
    40马红霞,任海青,赵荣军.木材表面胶粘剂渗透性能研究进展[J].世界林业研究.2008,Vol.21(6):57-60
    41 Jakal L. Effect of the penetration of adhesive on the strength of adhesive [ J ]. Faipar, 1984, Vol. 34 (2) : 59 - 60
    42徐曼琼,姚雪锋,王戈等.竹材层合板弯曲弯曲破坏的机理的实验研究[J].实验力学,2004,Vol.19(3):347-352
    43 Bartell PE,Shepard J W. Surface roughness as related to hysteresis of contact angle, part 1:The System water air[J].The Journal of Physical Chemistry,1953,Vol.57:211-215
    44 Hse, C. Y. Gluability of southern pine earlywood and latewood[J]. Forest Products Journal, 1968. Vol.18(12):32-36
    45 S. Chow.; K. S. Chunsi. Adhesion strength and wood failure relationship in wood-glue bonds, Mokuzai Gakkaishl, 1979, Vol.25(2):125-131
    46 Faust ,T,D.,J.T.Rice. Characterizing the roughness of sourthern pine veneer surface[J].Forest Prod.J. 1986,Vol.36(11/12):75-81
    47 Faust ,T,D.,J.T.Rice. Effects of veneer surface roughness on the gluebond quality of southern pine plywood[J]. Forest Prod.J. 1986,Vol.36(4):57-62
    48 Belfas,J.,Groves,K.W..,Evans,P.D.,.Bonding surface-modified Karri and Jarrah with resorcinol formaldehyde.I.The effect of sanding on wettability and shear strength[J].Holz Roh Werkst. 1993,51:253-259
    49 Shupe,T.E.,Hse,C.Y.,Choong,E.T.,Groom,L.H.,.Effect of wood grain and veneer side on Loblolly pine veneer wettability.Forest Prod.J. 1998,48:95-97
    50江泽慧,于文吉,叶克林.探针法测量与分析竹材表面粗糙度[J].木材工业,2001,Vol.15(5):14-16
    51 Neese, J. L.; J. E.Reeb.; J.W.Funck. Relating tradition surface roughness measures to gluebond quality in plywood[J]. Forest Products Journal, 2004. Vol.54(1):67-73
    52 B. J .Wang., C. DAI.Veneer surface roughness and compressibility pertaining to plywood/LVL manufacturing. Part 1.Experimentation and implication[J]. Wood and fiber science, 2006, Vol.38(3):535-545
    53 B. J .Wang., C. DAI.Veneer surface roughness and compressibility pertaining to plywood/LVL manufacturing. Part 2. optimum panel densification[J]. Wood and fiber science,2006, Vol.38(4):727-735
    54张燕霞.毛竹与杉木复合材料的研究[D].硕士论文,北京林业大学,2006
    55 D.B.Devallance, J. W. Funck, J. E. Reeb.Douglas-fir plywood gluebond quality as influenced by veneer roughness,lathe checks,and annual ring characteristics[J].Forest products Journal.2007, Vol.57(1/2):21-28
    56李伯奎,刘远伟.表面粗糙度理论发展研究[J].工具技术.2004,Vol.38(01):63-67
    57李伯奎.三维粗糙度参数算术平均偏差与均方根偏差的规律研究[J].工具技术,2008,Vol.42(9):107-110
    58李晓增.单板表面粗糙度对胶合性能的影响[J].广东建材2009,Vol. (9):109-112
    59 S. Chow. Thermal analysis of liquid phenol-fofmaladehyey resin curing[J]. Holzforschung,1972,26:229-232
    60 A. J. Bolton, and P.E. Humphrey, Measurement of the tensile strength developmentof urea formaldehyde resin-wood bonds during pressing at elevated temperatures[J]. Inst. Wood Sci,1977, Vol.7(5):11-14
    61 J. D. Wellons. Adhension to wood substrates[M]. In Wood Technology: Chemical Aspects, Series 43, American Chemical Society, Washington, D. C., 1977, Chap. 10
    62 A. A. K. Whifehoude., E. G. K. Pritchett., G. Barnett. Phenolic Resins[M]. Jliffe. London, 1967
    63 R. Houwink, A. Trans. Faraday Soc. 1936, 32:122
    64 R. Houwink, J. Soc. Chem. Ind. Lond. 1936,55:247
    65 A. L. Lambuth, IUFRO Conf. Wood Gluing Working Party s5.04.07,Merida, Venezuela, 1977
    66 A.皮齐(南非)主编.木材胶粘剂化学与工艺学[M].史广兴,孙振鸢,颜镇等译.北京:中国林业出版社,1989:172
    67 Alamsyah, E M; Nan LiuChang; Yamada, M; Taki, K; Yoshida, H . Bondability of tropical fast-growing tree species. I: Indonesian wood species[J]. Journal of Wood Science, 2007, Vol.53:40-46
    68鲍甫成,王正,郭文静.杨木和杉木木材表面性质的研究[J].林业科学.2004,Vol.40(1):131-136
    69 Good RJ Contact angle, wetting, and adhesion: a critical review [J]. J Adhesion Sci Technol ,1992, Vol.6(12):1269–1302
    70 Zhang HJ., Gardner DJ., Wang JZ., Shi Q. Surface tension, adhesive wettability, andbondability of artifically weathered CCA-treated southern pine[J]. Forest Prod J , 1997, Vol.47(10):69–72
    71 X.B.Zhou and J.T.M. De Hosson,J.Mater.Res.1995,10,1984-1992
    72 ENZHI CHENG.,XIUZHI SUN. Effets of wood-surface roughness, adhesive viscosity and processing pressure on adhesion strength of protein adhesive[D],1995
    73 Sheldon Q.Shi.Dynamic adhensive wettability of wood[J].Wood and Fiber Science,2001, Vol.33(1):58-68
    74胡福增,陈国荣,杜永娟.材料表界面[M].上海:华东理工出版社,2007:56-57
    75俞汉清.表粗糙度及测量[M].北京:中国标准出版社,1985,13-29,139-152
    76 Smith. L A. Studies of penetration of phenol-formaldehyde resin into wood cell walls with the SEM and energy-dispersive X-ray analyzer[J].Wood Fiber, 1971, 3:56 -57
    77 T.Goto.,H.Sauki.,H.Onishi.Studies on wood gluingⅩⅢ:Gluability and scaning electron microscopic study of wood-polypropylene bonding[J].Wood sci.Technol,1982,16:293-303
    78余养伦,竹桉复合材料优化重组技术的研究[D],硕士论文,中国林业科学研究院,2007:59-62
    79 Frederick A.Kamke.,Jong N.Lee.Adhesive peneteration in wood.Wood and fiber science2007,39(2):205-220
    80 Lee A W C,Bau X S.Bangi A P.Flexural properties of bamboo 2reinforecd southern pine OSB beam[J].Fofest Porduts Journal,1997, Vol.47(6):74-78
    81 Chandler J G, Brandon R L, Frihart C R. Examination of adhesive penetration in modified wood using fluorescence microscopy[ J ]. Forest Products Journal, 2007, Vol.657 (5): 1-10
    82 Brady D E,Kamke F A.Effects of hot-pressing parameters on resin penetration[J].Forest Prod,1988, Vol.38(11/12):63-68
    83 Collett B M.Areview of surface and interfacial adhension in wood science and relatedfields[J].Wood Sci Technol,1972, Vol.6:1-42
    84 Sernek M,Resnik J,Kamke F A.Penetration of liquid urea-formaldehyde adhensive into Beech wood[J].Wood and Fiber Science,1999, Vol.31(1):41-48
    85 Ahmad M..Analysis of Calcutta bamboo for structural composite materials.America:Virginia Polytechnic Institute and State University,2000
    86 Roger E.H, Julie C. Evaluation of three surfacing methods on paper birth wood in relation to water-and solvent-borne coating performance[J]. Wood and fiber science, Vol.40(3),2008, 459-469
    87 S.PETRAITIENE., V. PEKARSKASI.,E. FATARAITE. Investigation of the relationship between statistical characteristics of substrate surface roughness and the strength of adhesive joint[J].J.Adhesion Sci.Technol,2007,Vol.21(14):1359-1373
    88 E.M.Petrie(Ed).Handbook of adhesives and Sealants[M].McGraw-Hill, New York, 2000
    89王仁杰,徐涛,陈木兰.胶合搭接连接的界面应力[J].南京航空航天大学学报,1998,Vol.30(5):538-544
    90 Groom L H , Zink A G. Techniques in experimental mechanics applicable to forest products research[C].Proceedings of the Experim ental M echanics Plenary Session at the Forest Products Research Society AnnualM eeting Portland,1994
    91 Sutton M A, W aiters W J, Peters W H, et a1.Determination of displacements using an improved digital correlation method [J]. Image and Vision Computing,1983,Vol.1(3):133~139
    92 Loferski J R,Davalos J F,Yadama V.A laboratorybuilt clip on strain gauge transducer for testing wood[J].Forest Products Journal,1989,Vol.39(9):45~48
    93 Yamaguchi I. A laser-speckle strain gangue [J].Journal of Physics E:Scientific instruments, 1981,14:1270-1273
    94 Peter W.H.,Ranson W.F.Digital imaging technique in experimental stress analysis [J].Optic Engineering, 1982, Vol.21(3):427-431
    95江泽慧,费本华,张东升等.数字散斑相关方法在木材科学中的应用[J]..中国工程科学,2003,Vol.5(11):1-7
    96闫海涛,王鸣,赖方明等.数字散斑相关方法测量连续位移的原理和实验[J].南京师大学报,2006,Vol.29(2):41-47
    97裴娟娟,马琨,温日辉.数字散斑相关方法用于应变场测量的研究[J].内江科技,2008,10:16
    98张怀青,蒲琪,代祥俊等.基于数字散斑相关方法的微位移测量[J].山东理工大学学报,2009,Vol.23(1):49-52
    99孔艳玲,赵东,高继河.数字散斑相关方法在木材断裂力学上的应用分析[J].北京林业大学学报,2009,Vol.31(1增刊):206-209
    100 WANG Xiao qing, REN Hai qing. Surface deterioration of Moso bamboo (phyllostachys pubescens )induced by exposure to artificial sunlight[J]. J Wood Sci, 2009, Vol.55(1):47-52
    101翁诗甫编著.傅立叶变换红外光谱仪[M] .北京:化学工业出版社,2005:288-310
    102李坚.木质材料耐候性的研究[J].林业科学,1988,Vol.24(3):366-371
    103 Tjeerdsma B F, militz H.Chmical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dyr heat-treated wood[J].Holz als Roh-und Werstoff,2005, Vol.63(2):102-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700