低阶煤热解半焦的气化反应特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流化床煤气化技术因气化条件温和和气化强度大等诸多优点而受到广泛关注。虽然流化床气化炉的工艺和结构在不断改进,但由于反应器内化学反应十分复杂,反应调控机理仍不太清楚。飞灰含碳量高、气化效率偏低等问题还需要继续开展大量细致的实验研究工作才能得到解决。如果直接在流化床反应器上进行试验摸索,由于操作复杂、实验数据少、重复性差,将花费大量的时间和精力。因此,如果能运用现代精密仪器技术,在接近流化床内的反应条件下获取煤热解气化动力学数据,通过影响因素和动力学分析确定原料的煤气化活性,为操作参数的优化配置提供参考依据,对流化床气化具有非常重要的理论意义和现实指导意义。
     本论文在接近流化床条件下,研究了低阶煤的快速热解特性以及煤焦气化活性,综合分析了煤种特性和反应条件对气化活性的影响,并对比研究了实验室制焦与流化床热解炉底渣、气化炉飞灰之间的结构差异和反应性差异。
     采用热重-质谱(TG-MS)联用技术研究了不同煤种的程序升温热解特性和气体产物释放规律,并在接近流化床热解炉操作温度范围内,采用快速热解装置制备快速热解煤焦,研究了煤的快速热解特性以及不同热解条件下煤焦的形态结构。
     采用热重分析技术研究了气化温度、制焦温度、热解速率等条件分别对煤焦-水蒸气和煤焦-CO2气化活性的影响。结果表明,在本研究采用的实验条件下,热解条件中以热解速率对煤焦气化活性影响较大,制焦温度和制焦停留时间的影响相对较小。温度条件中,煤焦气化反应速率主要受气化温度的影响,制焦温度影响相对较小。随着气化温度增加,煤焦的反应性指数和最大反应速率近似线性增长。煤焦-CO2和煤焦-水蒸气气化的活化能都随着碳转化率的升高而增加。
     采用七种不同煤化程度的原煤进行煤焦制备和气化活性测试,总结了普遍适用的规律:碳转化率达到50%对应的比气化速率与相同反应条件下的平均比气化速率在数值上近似相等;灰分的行为对煤焦气化活性有非常重要的影响,它在不同反应阶段和不同气化温度下作用不同,这是由于灰分组成和含量的变化导致的;煤焦孔结构对气化活性的影响在越温和的反应条件下越突出,但煤焦气化活性高低与初始孔结构没有直接关系;煤焦-C02和煤焦-水蒸气气化的相对活性比率随着气化温度的升高而降低,表明高温条件可以缩小煤焦在这两种气氛中活性差距。
     对比研究了水平管式炉快速热解煤焦、鼓泡床煤焦、流化床热解炉煤焦表面形貌和结构及其对气化活性的影响。采用不同活性指标进行比较,发现在制焦温度相同或近似时,水平管式炉快速热解煤焦、鼓泡床热解煤焦和循环流化床热解煤焦活性指标之间存在近似线性关系。制焦过程传热传质越剧烈,煤焦孔结构越丰富,晶格有序化程度越低,气化活性越高。
     以流化床气化炉旋风分离器出口飞灰样品为研究对象,对比研究气化炉飞灰样品与实验室水平管式炉快速热解煤焦结构及反应性差异。XRD测试结果表明,实验室快速热解煤焦的缩核芳核尺度比飞灰大,且有序化程度比飞灰高。分别采用N2和CO2作为吸附剂煤焦和飞灰的比表面积,结果表明飞灰的孔结构以大孔和过渡孔为主,而快速热解煤焦的孔结构以微孔为主。孔结构的差异导致飞灰的CO2气化活性高于快速热解煤焦,但是水蒸气气化活性比快速热解煤焦低。
     根据本论文的研究结果,建立了适用于流化床气化炉的煤种气化活性评价方法,其中涉及样品预处理、快速热解煤焦制备、煤焦气化等一系列标准化实验和分析流程。
The technology of coal gasification in fluidized bed is extensively concerned due to its mild gasification conditions and large gasification intensity. Although the process and structure of fluidized bed gasifier is improved continuously, the regulation mechanism is still unclear because of the complicated chemical reactions in the reactor. A series experiments needs to be carried out in order to solve the problems of high carbon content in fly ash and low gasification efficiency. It will take a lot of time and effort to conduct experiments directly in the fluidized bed reactors because of the complex operations, inadequate data and poor reproducibility. Therefore, it is theoretically and practically significant to study coal pyrolysis and gasification properties in the conditions closing to fluidized bed reactor with modern precision instruments technology. Then the kinetic data can be obtained, and the gasification reactivity of raw coal can be determined by influence factors analysis and dynamics analysis, which provides the important reference for optimizing operation parameters.
     In this dissertation, the fast pyrolysis characteristics of low rank coal and gasification reactivity of char at the conditions closing to fluidized bed reactors are investigated. The effects of coal characteristics and reaction conditions on gasification reactivity are analyzed, and the differences in structure and reactivity among the laboratory-prepared fast pyrolysis char, bottom slag and gasifer fly ash of the fluidized bed pyrolysis furnaces are compared.
     Characteristics of pyrolysis process and gas products during temperature-programmed pyrolysis of different coals are analyzed with thermogravimetric-mass spectrometry (TG-MS). Fast pyrolysis device is used to prepare fast pyrolysis char at the temperatures close to fluidized bed operating temperatures. The fast pyrolysis characteristics of coal and the char morphology under different pyrolysis conditions are studied.
     Contrastive study on the reactivity of the chars gasification with steam and CO2, respectively, is conducted by thermogravimetric technology. The effects of gasification temperature, pyrolysis temperature and pyrolysis rate on gasification reactivity of the chars are investigated. Under the experimental condition, the results show that pyrolysis rate greatly affects gasification reactivity, however the effects of pyrolysis temperature and residence time are relatively small. In the temperature conditions, gasification temperature is the most important factor influencing gasification rate, while the effect of pyrolysis temperature is weaker. The reactivity index and the maximum reaction rate changes linearly with the increase in gasification temperature. The activation energy of both char-CO2and char-steam gasification increases with increase in carbon conversion rate.
     Seven types of coals with different coal ranks are used for char preparation and gasification reactivity test, and some conclusions are obtained. It is found that the value of half reaction specific rate is approximate to the average specific rate under the same conditions. Ash behavior plays an important role in the char reactivity, and changes with gasification temperature and reaction degree due to the variation in the compositions and relative amount. The influence of pore structure is more noticeable during a relatively moderate reaction process, but the gasification reactivity of char has no immediate connection with the initial pore structure. The relative gasification reactivity ratio of char-steam to char-CO2generally decreases with the increasing temperature, indicating that high temperature can reduce the reactivity gap between the two reactions.
     The surface morphology and structure of the chars from fast pyrolysis in the horizontal tube furnace, a bubbling bed and a fluidized bed are compared, and its effect on gasification reactivity is discussed. Different indicators are used to evaluate the gasification reactivity of the chars, and it is found that there is a linear relationship between the indicators of the chars from different reactors. The more intense of the heat and mass transfer process is, the more orderly of the crystal lattice and the higher of char gasification reactivity will be.
     The fly ash from the outlet of the fluidized bed gasifier cyclone is chosen as the research sample. The structure and reactivity differences between fly ash and laboratory-prepared fast pyrolysis chars are compared. The XRD results demonstrate that the aromatic nucleus of laboratory-prepared fast pyrolysis chars is larger and more orderly than that of fly ash. N2and CO2are used as adsorbent for surface area test of char and fly ash, respectively, and it is found that the pores of fly ash are mainly macropores and intermediate pores, while the pores of fast pyrolysis chars are mainly micropores. The CO2gasification reactivity of fly ash is higher than that of fast pyrolysis chars, while its steam gasification reactivity is lower due to the pore structure difference.
     A method for coal gasification reactivity evaluation applicable to the fluidized bed gasifiers is established according to the results of this dissertation, including a series of standardized process involving sample preparation, fast pyrolysis char preparation, and char gasification, etc.
引文
[1]Christou C, Hadjipaschalis I, Poullilckas A. Assessment of integrated gasification combined cycle technology competitiveness [J]. Renewable and Sustainable Energy Reviews,2007: 1-13.
    [2]屈利娟.流化床煤气化技术的研究进展[J].煤炭转化,2007,30(2):81-85.
    [3]Dutta S, Wen C Y, Belt R J. Reactivity of coal and char.l In carbon dioxide atmosphere [J]. Ind. Eng. Chem. Process Des. Dev.,1977,16(1):20-30.
    [4]Hashimoto K, Miura K, Ueda T. Correlation of gasification rates of various coals measured by a rapid heating method in a steam atmosphere at relatively low temperatures [J]. Fuel,1986, 65(11):1516-1523.
    [5]Cakal G O, Yucel H, Guriiz A G. Physical and chemical properties of selected Turkish lignites and their pyrolysis and gasification rates determined by thermogravimetric analysis [J]. Journal of analytical and applied pyrolysis,2007,80(1):262-268.
    [6]刘海兵,郭战英,惠贺龙,等.炼焦煤尾煤热重动力学分析及热解产氢[J].过程工程学报,2012,12(2):253-258.
    [7]吕太,张翠珍,吴超.粒径和升温速率对煤热分解影响的研究[J].煤炭转化,2005,28(1):17-20.
    [8]傅维镳.煤燃烧理论及其宏观通用规律[M].北京:清华大学出版社,2003.
    [9]Gavalas G R, Cheong P H K, Jain R. Model of coal Pyrolysis 1. qualitative development [J]. Ind. Eng. Chem. Fundam.,1981,20:113.
    [10]Gavalas G R. Coal Science and Technology 4, Coal Pyrolysis [J]. Elsevier, New York,1982: 19-33.
    [11]Gavalas G R, Jain R, Cheong P H K. Model of coal Pyrolysis 2. Qualitative formation and results [J]. Ind. Eng. Chem. Fundam.,1981,20:122.
    [12]Manion J A, McMillen D F, Malhortra R. Decarboxylation and coupling reactions of aromatic acid under coal-liquefaction conditions [J]. Energy & Fuels,1996,10(6):776-778.
    [13]Eskay T P, Britt P F, Buchanan III A C. Does decarboxylation lead to cross-linking in low-rank coals [J]. Energy & Fuels,1996,10(6):1257-1261.
    [14]许世森,张东亮,任永强.大规模煤气化技术[M].北京:化学工业出版社,2006
    [15]郭树才.煤化工工艺学[M].北京:化学工业出版社,2011.
    [16]Koening P C, Squires R G, Laurendeau N M. char gasification by carbon dioxide [J]. Fuel, 1986,65(3):412-416.
    [17]Solano A L, Mahajan O P, Walker P L. Reactivity of heat-treated coals in steam [J]. Fuel, 1979,58(5):327-332.
    [18]Osafune K, Marsh H. Gasification kinetics of coal chars in carbon dioxide [J]. Fuel,1988, 67(3):384-388.
    [19]Kown T W, Song D K, David P C F. Reaction kinetics of char-CO2 gasification [J]. Fuel, 1988,67(4):530-535.
    [20]Jenson C A. The Kinetics of gasification of carbon contained in coal minerals at atmosphere pressure [J]. Ind.Eng.Chem.Proeess Des. Dev.,1975,14(3):308-314.
    [21]Adschiri T, Shiraha T, Kojima T, et al. Prediction of CO2 gasification rate of char in fluidized bed gasifier [J]. Fuel,1986,65(12):1688-1693.
    [22]向银花,王洋,张建民,等.煤气化动力学模型研究[J].燃料化学学报,2002,30(1):21-26.
    [23]Wen C Y. Noncatalytic heterogeneous solid fluid reaction models [J]. Ind. Eng. Chem.,1968, 60(9):34-54.
    [24]Everson R C, Neomagus H W J P, Kasaini H, et al. Reaction kinetics of pulverized coal-chars derived from inertinite-rich coal discards:Gasification with carbon dioxied and steam [J]. Fuel,2006,85(7-8):1076-1082.
    [25]Kameyama K, Nishikawa H, Aratani M, et al. Mass production of ultra-low carbon steel by KTB method using oxygen top blowing in the vacuum vessel [J]. Kawasaki Steel Technical Report,1992,26(7):92-99.
    [26]杨帆,范晓雷,周志杰,等.随机孔模型应用于煤焦与CO2气化的动力学研究[J].燃料化学学报,2005,33(6):671-676.
    [27]Zou J H, Zhou Z J, Wang F C, et al. Modeling reaction kinetics of petroleum coke gasification with CO2 [J]. Chemical Engineering and Processing,2007,46(7):630-636.
    [28]Wagener F, Velikonja M. Future development in secondary steel making [J]. Steel Times International(UK),1998,22:44,46-48.
    [29]Kasaoka S, Sakata Y, Tong C. Kinetic evaluation of the reactivity of various coal chars for gasification with carbon dioxide in comparison with steam [J]. International Chemical Engineering,1985,25(1):160-175.
    [30]Liu H, Luo C H, Kaneko M, et al. Unification of gasification kinetics of char in CO2 at elevated temperatures with a modified random pore model [J]. Energy & Fuels,2003,17(4): 962-970.
    [31]Fei H, Hu A S, Xiang J, et al. Study on coal chars combustion under O2/CO2 atmosphere with fractal random pore model [J]. Fuel,2011,90(2):441-488.
    [32]林荣英,张济宇.低活性无烟煤二氧化碳催化气化动力学——热天平等温热重法[J]. 化工学报,2005,56(12):2332-2341.
    [33]George R G. A random capillary model with application to char gasification at chemically controlled rates [J]. AIChE J,1980,26 (4):577-585.
    [34]Bhatia S K, Perlmutter D D. A random pore model for fluid solid reactions:I, Isothermal, kinetic control [J]. AIChE J,1980,26 (3):379-385.
    [35]Molina A, Mondragon F. Reactivity of coal gasification with steam and CO2 [J]. Fuel,1998, 77:123-129.
    [36]高正阳,胡佳琪,郭振,等.煤焦与生物质焦CO2共气化特性及分布活化能研究[J].中国电机工程学报,2011,31(8):51-57.
    [37]杨景标,张彦文,蔡宁生.煤热解动力学的单一反应模型和分布活化能模型比较[J].热能动力工程,2010,25(3):301-305.
    [38]Pitt G J. The kinetics of the evolution of volatile products from coal [J]. Fuel,1962,41: 267-274.
    [39]Braun R L, Burnham A K. Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models [J]. Energy & Fuels,1987,1:153-161.
    [40]Burnham A K. An nth-order Gaussian energy distribution model for sintering [J]. Chem Eng J, 2005,108:47-50.
    [41]刘旭光.煤热解DAEM模型分析及固定床加压气化过程数模拟[D].太原:中国科学院山西煤炭化学研究所,2000.
    [42]文芳.热重法研究煤焦H2O气化反应动力学[J].煤炭学报,2004,29(3):350-353.
    [43]王鹏,文芳,步学朋,等.煤焦与CO2及水蒸气气化反应的研究[J].煤气与热力,2005,25(3):1-6.
    [44]Miura K, Hashimoto K, Silveston P L. Factors affecting the reactivity of coal chars during gasification and indices representing reactivity [J]. Fuel,1989,68(11):1461-1475.
    [45]张林仙,黄戒介,房倚天,等.中国无烟煤焦气化活性的研究-水蒸气与二氧化碳气化活性的比较[J].燃料化学学报,2007(3):265-269.
    [46]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.
    [47]李春玉,赵建涛,房倚天,等.加压下中国典型煤水蒸气气化的基础研究[J].现代化工,2009,29(S1):8-11.
    [48]Alejandro M, Fanor M. Reactivity of coal gasification with steam and CO2 [J]. Fuel,1998, 77(15):123-129.
    [49]朱子彬,张成芳,古泽键彦.活性点数对煤焦气化反应性的影响1.气化活性的评价[J].化工学报,1994,22(3):321-328.
    [50]Takayuki T, Yasukatsu T, Akira T. Reactivities of 34 coals under steam gasifieation [J]. Fuel, 1985,64(10):1438-1442.
    [51]Puente G, dela Fuente E, Pis J J. Reactivity of pyrolysis chars related to precursor coal chemistry [J]. Journal of Analytical and Applied Pyrolysis,2000,53(1):81-93.
    [52]丁华.煤及其显微组分热解气化反应特性研究[D].北京:煤炭科学研究总院北京煤化工研究分院,2006.
    [53]忻仕河.煤岩显微组分与CO2的气化反应特性研究[D].北京:煤炭科学研究总院,2004.
    [54]Sun Q L, Li W, Chen H K, et al. The C02-gasification and kinetics of Shenmu maceral chars with and without catalyst [J]. Fuel,2004,83(13):1787-1793.
    [55]Crelling J C, Skorupska N M, Marsh H. Reactivity of coal macerals and lithotypes [J]. Fuel, 1988,67(6):781-785.
    [56]张林仙,吴晋沪,王洋.无烟煤焦气化过程中孔结构的变化及对气化反应性影响的研究[J].燃料化学学报,2008,36(5):530-533.
    [57]Czechowski F, Kidawa H. Reactivity and susceptibility to porosity development of coal maceral chars on steam and carbon dioxide gasification [J]. Fuel Processing Technology, 1991,29(1-2):57-73.
    [58]杨海平,陈汉平,鞠付栋,等.热解温度对神府煤热解与气化特性的影响[J].中国电机工程学报,2008,8:40-45.
    [59]Francisco J, Maldonado H, Jose U, et al. Influence and modification of the porous texture of coals during hydrogenation [J]. Fuel,1995,74(6):823-829.
    [60]Feng B, Bhatia S K. Variation of the pore structure of coal chars during gasification [J]. Carbon,2003,41(3):507-523.
    [61]许慎,周志杰,代正华,等.碱金属及灰分对煤焦碳微晶结构及气化反应特性的影响[J].高校化学工程学报,2010,1:64-70.
    [62]Sharma A, Takanohashi T, Saitoa I. Effect of catalyst addition on gasification reactivity of HyperCoal and coal with steam at 775-700"C [J]. Fuel,2008,87(12):2686-2690.
    [63]唐黎华,吴勇强,朱学栋,等.高温下制焦温度对煤焦气化活性的影响[J].燃料化学学报,2002,30(1):12-20.
    [64]曹敏,谷小虎,樊崇,等.义马煤灰高温下矿物质变化[J].煤炭转化,2010,33(1):15-21.
    [65]Sekine Y.Ishikawa K, Kikuehi E, et al. Reactivity and structure change of coal char during steam gasification [J]. Fuel,2006,85(1):122-126.
    [66]Matsumoto S, Wakler P L. Char gasification in steam at 1123 K catalyzed by K, Na, Ca and Fe-effect of H2, H2S and COS [J]. Carbon,1986,24(3):277-285.
    [67]Jaffri G, Zhang J. Catalytic gasification of Pakistani Lakhra and Tharlignite chars in steam gasification [J]. Journal of Fuel Chemistry and Technology,2009,37(1),11-19.
    [68]徐朝芬,向军,孙路石,等.热解温度对淮南煤热解与CO2气化特性的影响[J].华中科技大学学报(自然科学版),2010,38(11):100-107.
    [69]吕洁,宗志敏,谢瑞伦,等.淮南煤焦结构及其高温气化反应性研究[J].武汉科技大学学报,2010,33(2):191-195.
    [70]王明敏,张建胜,张守玉.热解条件对煤焦结构及气化反应活性的影响[J].煤炭转化,2007,30(3):21-24.
    [71]向银花,王洋,张建民,等.煤焦气化过程中比表面积和孔容积变化规律及其影响因素研究[J].燃料化学学报,2004,30(2):105-112.
    [72]张守玉,吕俊复,王文选,等.热处理对煤焦反应性及微观结构的影响[J]..燃料化学学报,2004,32(6):673-675.
    [73]李海滨,崔洪,王洋,等.流化床半焦等温热重CO2气化动力学研究[J].燃料化学学报,1998,26(5):417-422.
    [74]吴诗勇,顾菁,李莉.高温下快速和慢速热解神府煤焦的理化性质[J].煤炭学报,2006,31(4):492-496.
    [75]Liu H, Kaneko M, Luo C, et al. Effect of pyrolysis time on the gasification reactivity of char with CO2 at elevated temperatures [J]. Fuel,2004,83(7-8):1055-1061.
    [76]Niksa S. On the role of heating rate in rapid coal devolatilization [J]. Symposium (International) on Combustion,1985,20(1):1445-1453.
    [77]李绍锋,吴诗勇.高温下煤焦的碳微晶及孔结构的演变行为[J].燃料化学学报,2010,38(5):513-517.
    [78]徐秀峰,崔洪,顾永达,等.煤焦制备条件对其气化反应性的影响[J].燃料化学学报,1996,24(5):404-410.
    [79]刘铁峰,房倚天,王洋.不同彬县焦的水蒸气气化反应动力学研究[J].燃料化学学报,2009,37(2):161-165.
    [80]朱子彬,张成芳,古泽健彦,等.活性点数对煤焦气化速率的评价[J].化工学报,1992,43(4):401-408.
    [81]朱子彬,马智华,张成芳,等.活性点数对煤焦气化反应的影响-1.气化活性的评价[J].燃料化学学报,1994,22(3):321-328.
    [82]李朋,于庆波.煤焦-CO2高温气化反应动力学研究(Ⅰ)-等温热重法[A].全国能源与热工2008学术年会[C],2008,565-570.
    [83]崔永君,武彩英,张彩荣,等.神府煤焦性质和CO2反应活性的关系[J].煤炭加工与综合利用,2000,3:33-37.
    [84]Sun Q L, Li W, Chen H K, et al. The CO2-gasification and kinetics of Shenmu maceral chars with and without catalyst [J]. Fuel,2004,83(13):1787-1793.
    [85]Goyal A, Robert F, Zabransky, et al. Gasification Kinetics of Western Kentucky Bituminous Coal Char [J]. Industrial and Engineering Chemistry Research,1989,28(12):1767-1778.
    [86]Moilanen A, Muhlen H J. Characterzation of gasification reactivity of peat char in preesurized conditions [J]. Fuel,1996,75:1279-1285.
    [87]Moulijin J, Kapejin F. Towards a unified theory of reactions of carbon with oxygen-containing molecules [J]. Carbon,1995,33(8):1155-1185.
    [88]Gadiou G, Bouzidi Y, Prado G, The devolatilization of millimeter sized coal particles at high heating rate:the influence of pressure on the structure and reactivity of the char [J]. Fuel, 2002(81):2121-2130.
    [89]崔永君,武彩英,张彩荣,等.神府煤焦性质和CO2反应活性的关系[J].煤炭加工与综合利用,2000(3):33-3818.
    [90]顾菁,李莉,吴诗勇,等.程序升温热重法研究神府高温煤焦-CO2气化反应性[J].华东理工大学学报:自然科学版,2007,3:354-358.
    [91]王俊琪,方梦祥,骆仲泱,等.煤在CO2气氛中的热解气化动力学研究[J].热力发电,2010.5:46-49+53.
    [92]李朋,于庆波.煤焦-CO2高温气化反应动力学研究(Ⅱ)-程序升温法[A].全国能源与热工2008学术年会[C],2008,571-575.
    [93]徐朝芬,孙路石,向军,等.淮南煤焦CO2气化反应特性的试验研究[J].动力工程,2009,8:794-800.
    [94]李朋,于庆波,秦勤,等.升温速率对煤焦-CO2高温气化反应性的影响[J].东北大学学报:自然科学版,2010,9:1309-1312.
    [95]Kodama T, Aoki A, Ohtake H, et al. Thermochemical CO2 gasification of coal using a reactive coal-In203 system [J]. Energy & Fuels,2000,14(1):202-211.
    [96]Muhlen H J, van Heek K H, Juntgen H. Kinetic studies of steam gasification of char in the presence of H2, CO2 and CO [J]. Fuel,1985,64(7):944-949.
    [97]Zhang L, Huang J, Fang Y, et al. Gasification reactivity and kinetics of typical Chinese anthracite chars with steam and CO2 [J]. Energy & Fuels,2006,20(3):1201-1210.
    [98]. Raghunathant K, Yang R Y K. Unification of coal gasification data and its applications [J]. Ind Eng Chem Res,1989,28(5):518-523.
    [99]. Liu H, Luo C, Toyota M, et al. Mineral reaction and morphology change during gasification of coal in CO2 at elevated temperatures [J]. Fuel,2003,82(5):523-530.
    [100]Wu S, Gu J, Zhang X, et al. Variation of carbon crystalline structures and CO2 gasification reactivity of shenfu coal chars at elevated temperatures [J]. Energy & Fuels,2008,22(1): 199-206.
    [101]Takarada T, Tamai Y, Tomita A. Reactivities of 34 coals under steam gasification [J]. Fuel, 1985,64(10):1438-1442.
    [102]Naredi P, Pisupai S V. Interpretation of char reactivity profiles obtained using a thermogravimetric analyzer [J]. Energy & Fuels,2008,22(1):317-320.
    [103]张海生,张建民.灰熔聚流化床粉煤气化工艺[J].燃料与化工,1996,27(3):151-156.
    [104]高恒,刘宏建.煤气化技术现状、发展及产业化应用[J].煤化工,2009,1:37-39.
    [105]Han L, Wang Q H, Ma Q, et al. Influence of CaO additives on wheat-straw pyrolysis as determined by TG-FTIR analysis [J]. Journal of Analytical and Applied Pyrolysis,2010, 88(2):199-206.
    [106]Zhao Y, Hu H, Jin J, et al. Pyrolysis behavior of vitrinite and inertinite from Chinese Pingshuo coal by TG-MS and in a fixed bed reactor [J]. Fuel Processing Technology,2011, 92(4):780-786.
    [107]Tian D, Liu X, Ding M. CS2 extraction and FTIR & GC/MS analysis of a Chinese brown coal [J]. Mining Science and Technology,2010,20(4):0562-0565.
    [108]Benhabiba K, Faureb P, Sardina M, et al. Characteristics of a solid coal tar sampled from a contaminated soil and of the organics transferred into water [J]. Fuel,2010,89(2):352-359.
    [109]Zheng L G, Liu G J, Chen L C. Abundance and modes of occurrence of mercury in some low-sulfur coals from China [J]. International Journal of Coal Geology,2008,73(1):19-26.
    [110]Irfan M F, Usman M R, Kusakabe K. Coal gasification in CO2 atmosphere and its kinetics since 1948:A brief review [J]. Energy,2011,36(1):12-40.
    [111]Damartzis T, Ioannidis G, Zabaniotou A. Simulating the behavior of a wire mesh reactor for olive kernel fast pyrolysis [J]. Chemical Engineering Journal,2008,136:320-330.
    [112]马正中,姜凡,徐祥,等.滴管炉技术特点及其研制进展[J].洁净煤技术,2009,15(4):71-75.
    [113]Jamil K, Hayashi J, Li C. Pyrolysis of a Vivtorian brown coal and gasification of nascent char [J]. fuel,2004, (83):833-843.
    [114]陈家仁.流化床气化的过去现在与将来[J].洁净煤技术,1998,4(1):8-15.
    [115]Matsui I, Kunii D, Furusawa T. Study of fluidized bed steam gasification of char by thermogravimetrically obtained kinetics [J]. Journal of Chemical Engineering of Japan,1983, 62(5):335-348.
    [116]Kojima T, Furusawa T, Kunii D. Measurement of gasification rate of coal char using a fluidized bed [J]. Kagaku Kogaku Ronbunshu,1984,10(5):596-601.
    [117]Matsui I, Kojima T, Kunii D, et al. Study of char gasification by carbon dioxide.2. Continuous gasification in fluidized bed [J]. Ind. Eng. Chem. Res.,1987,26 (1):95-100.
    [118]Eklund H, Svensson O. Reactor model for the gasification of black shale in a fluidized bed. comparison with pilot plant data [J]. Ind. Eng. Chem. Process Des. Dev.,1983,22 (3): 396-401.
    [119]Matsui I, Kunii D, Furusawa T. Study of char gasification by carbon dioxide.1. Kinetic study by thermogravimetric analysis [J]. Ind. Eng. Chem. Res.,1987,26 (1):91-95.
    [120]刘玉生,田亚峻,尤先锋,等.高挥发分烟煤的热解、燃烧特性研究[J].燃料化学学报,2002,30(1):41-44.
    [121]齐永峰,章明川,张健,等.超细煤粉快速热解动力学特性实验研究[J].化学工程,2009,37(3):62-65.
    [122]赵丽红,郭慧卿,马青兰.煤热解过程中气态产物分布的研究[J].煤炭转化,2007,30(1):5-9.
    [123]Arenillas A, Rubiera F, Pis J J. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behaviour of different rank coals [J]. Journal of Analytical and Applied Pyrolysis,1999,50(1):31-46.
    [124]李文,于慧梅,陈皓侃,等.程序升温还原法研究氧化对煤中硫形态及结构的影响[J].燃料化学学报,2003,31(4):289-294.
    [125]Soneda Y, Makino M, Yasuda H, et al. The effect of acid treatment of coal on H2S evolution during pyrolysis in hydrogen [J]. Fuel,1998,77(9):907-911.
    [126]么秋香,杜美利,王水利,等.高硫煤中形态硫的热解迁移特性[J].煤炭转化,2012,35(2):17-21.
    [127]尚琳琳,程世庆,张海清,等.生物质与煤共热解时COS的析出特性研究[J].煤炭转化,2007,30(2):18-21.
    [128]张成.李婷婷.夏季.等.高硫煤不同气氛温和热解过程中含硫组分释放规律的实验研究[J].中国电机工程学报,2011,31(14):24-31.
    [129]Calkins W H. Investigation of organic sulfur-containing structures in coals by flash pyrolysis experiment [J]. Energy & Fuels,1987,1(1):59-64.
    [130]孙庆雷,李文,陈皓侃,等.煤显微组分热解过程中含硫气体逸出特性[J].中国矿业大学学报,2005,34(4):518-522.
    [131]范晓雷,周志杰,王辅臣,等.热解条件对煤焦气化活性影响的研究进展[J].煤炭转化,2005,28(3):74-79.
    [132]代松涛,许慎启,于广锁.煤气化反应动力学实验研究方法进展[J].煤炭转化,2008,31(3):86-91.
    [133]徐春霞,徐振刚,步学朋,等.煤焦与C02及水蒸气气化特性研究进展[J].洁净煤技术,2007,13(6):49-52.
    [134]蔡连国,刘文钊,余剑,等.程序升温与等温热解特性及动力学比较研究[J].煤炭转化,2012,35(3):6-14.
    [135]Sekine Y, Ishikawa K, Kikuchi E, et al. Reactivity and structural change of coal char during steam gasification [J]. Fuel,2006,85(2):122-126.
    [136]黄戒介,林器.煤中矿物质在煤气化反应中的作用[J].大连工学院学报,1987,26(2):39-45.
    [137]沙兴中,陈松茂.碳和水蒸汽反应过程的初步研究[J].华东化工学院学报,1981,9(2):170-179.
    [138]Xu Q, Pang S. Reaction kinetics and producer gas compositions of steam gasification of coal and biomass blend chars, part 2:Mathematical modelling and model validation [J]. Chemical Engineering Science,2011,66(10):2232-2240.
    [139]Dutta S, Wen C Y, Belt R J. Reactivity of coal and char.1. In carbon dioxide atmosphrere [J]. Industrial and Engineering Chemistry Process Design and Development,1977,16(1):20-30.
    [140]Solano A L, Mahajan O P, Walker P L. Reactivity of heat-treated coals in steam [J]. Fuel, 1979,58(5):327-332.
    [141]杨帆,周志杰,王辅臣,等.神府煤焦与水蒸气、C02气化反应特性研究[J].燃料化学学报,2007,35(6):660-666.
    [142]Miura K, Aimi M, Naito T, et al. Steam gasification of carbon:Effect of several metals on the rate of gasification and the rates of CO and CO2 formation [J]. Fuel,1986,65(3): 407-411.
    [143]Rodriguez-Reinoso F, Molina-Sabio M, Gonzalez M T. The use of steam and CO2 as activating agents in the preperation of activated carbons [J]. Carbon,1995,33(1):15-23.
    [144]Kamishita M, Mahajan O P, Walker P L. Influence of carbonization conditions and wood species on carbon dioxied reactivity of resultant wood char powder [J]. Fuel Processing Technology,1994,38(3):223-233.
    [145]Gale T K, Bartholomew H C, Fletcher T H. Effect of pyrolysis heating rate on intrinsic reactivities of coal chars [J]. Energy & Fuels,1996,10:766-775.
    [146]刘旭光,李文,李保庆.恒温条件下DAEM模型新型理论分析及其应用[J].燃料化学学报,2002,30(3):214-217.
    [147]Tancredi N, Cordero T, Rodriguez-Mirasol J, et al. CO2 gasification of eucalyptus wood chars [J]. Fuel,1996,75(13):1505-1508.
    [148]Bayarsaikhan B, Hayash J, Shimada T, et al. Kinetics of steam gasification of nascent char from rapid pyrolysis of a Victorian brown coal [J]. Fuel,2005,84(12-13):1612-1621.
    [149]Molina-Sabio M, Gonzalez M T, Rodriguez-Reinoso F, et al. Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon [J]. Carbon,1996, 34(4):505-509.
    [150]Rodriguez-Reinoso F, Molina-Sabio M, Gonzalez M T. The use of steam and CO2 as activating agents in the preparation of activated carbons [J]. Carbon,1995,33(1):15-23.
    [151]Linares-Solano A, Mahajan O P, Walker Jr P L. Reactivity of heat-treated coals in steam [J]. Fuel,1979,58(5):327-332.
    [152]Sakawa M, Sakurai Y, Hara Y. Influence of coal characteristics on CO2 gasification [J]. Fuel, 1982,61(8):717-720.
    [153]Hou A, Wang Z, Song W, et al. Thermogravimetric analysis on gasification reactivity of Hailar lignite:Influence of inherent mineral matters and external ash [J]. Therm. Anal. Calorim.2012,109(1):337-343.
    [154]Karimi A, Semagina N, Gray M R. Kinetics of catalytic steam gasification of bitumen coke [J]. Fuel,2011,90(3):1285-1291.
    [155]Fung D P C, Kim S D. Chemical reactivity of Canadian coal-derived chars [J]. Fuel,1984, 63(9):1197-1201.
    [156]徐春霞,徐振刚,步学朋,等.煤焦与水蒸气及CO2共气化反应性研究[J].煤炭学报,2009,34(7):952-956.
    [157]李兴龙,许慎启,周志杰,等.热解条件对淮南煤焦孔隙结构的影响[J].煤炭转化,2009,32(4):8-12.
    [158]刘秀如.城市污水污泥热解实验研究[D].北京:中国科学院工程热物理研究所,2011.
    [159]于旷世.循环流化床双床煤气化工艺试验研究[D].北京:中国科学院工程热物理研究所,2012.
    [160]Ahmaruzzaman M. A review on the utilization of fly ash[J]. Progress in Energy and Combustion Science,2010,36(3):327-363.
    [161]邱燕,田茂诚,牛蔚然,等.降低循环流化床锅炉飞灰含碳量的理论及其应用[J].热能动力工程,2005,2(4):369-372.
    [162]刘武标,刘德昌,米铁,陈汉平,张世红.流化床水煤气炉飞灰反应性的实验研究[J].中国电机工程学报,2003,23(9):189-192.
    [163]Kelebopile L, Sun R, Liao J. Fly ash and coal char reactivity from Thermo-gravimetric (TGA) experiments[J]. Fuel Processing Technology,2011,92(6):1178-1186.
    [164]Aineto M, Acosta A, Rincn J M, Romero M. Thermal expansion of slag and fly ash from coal gasification[J]. Fuel,2006,85(16):2352-2358.
    [165]Bartonowa L, Klika Z, Spears D A. Characterization of unburned carbon from ash after bituminous coal and lignite combustion in CFBs[J]. Fuel,2007,86(3):455-463.
    [166]Lu Z, Maroto-Valerb M M, Schoberta H H. Role of active sites in the steam activation of high unburned carbon fly ashes[J]. Fuel,2008,87(12):2598-2605.
    [167]罗海华,张世红,陈汉平,刘德昌,杨海平.循环流化床锅炉飞灰残碳燃烧特性的实验研究[J].煤炭转化,2008,31(1):61-65.
    [168]Kutchko B G, Kim A G. Fly ash characterization by SEM-EDS[J]. Fuel,2006,85(17-18): 2537-2544.
    [169]Feng B, Bhatia S K. Variation of the pore structure of coal chars during gasification[J]. Carbon,2003,41(3):507-523.
    [170]Wagner N J, Matjie R H, Slaghuis J H, van Heerden J H P.Characterization of unburned carbon present in coarse gasification ash[J]. Fuel,2008,87(6):683-691.
    [171]陈旭,路霁鸽,杨小勇.煤焦晶格结构变化对流化床锅炉飞灰残炭生成的影响[J].煤炭科学技术,1999,27(1):49-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700