紫外光吸收剂对沥青性能的影响及其作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国际上长寿命沥青路面设计理念的提出以及我国西部强紫外线地区公路建设的快速发展,沥青的紫外光老化问题受到广泛重视,对其防紫外光老化措施的研究已成为国内外沥青基道路材料领域的研究热点。近些年来,在高分子材料领域使用效果优良的紫外光吸收剂已被用于沥青的抗紫外光老化。然而,由于沥青的化学组成和结构十分复杂,紫外光吸收剂对不同沥青的物理、流变和老化性能呈现出极为复杂的影响,这在一定程度上限制了紫外光吸收剂在沥青材料中的应用。因此,探明紫外光吸收剂对沥青性能的影响,揭示二者的作用机理,对于采用紫外光吸收剂制备具有优良耐老化性能的沥青材料,提高沥青路面的耐久性具有重要的理论指导意义。
     本文以3种不同结构的紫外光吸收剂和5种不同产地的基质沥青为研究对象,研究了紫外光吸收剂对不同沥青物理、流变、热氧及紫外光老化性能的影响;采用棒状薄层色谱-氢火焰离子探测仪(TLC-FID)、傅立叶变换红外光谱仪(FTIR)和原子力显微镜(AFM)研究了紫外光吸收剂对不同沥青化学组分、胶体结构、官能团结构和微观形貌的影响,分析了紫外光吸收剂对沥青组成、结构的影响及其与性能变化之间的关系;通过沥青的化学组分分离,研究了紫外光吸收剂对沥青各组分老化前后化学结构的影响,探讨了紫外光吸收剂与沥青的相互作用机理;最后,针对不同类型的SBS改性沥青,研究了紫外光吸收剂对改性沥青物理、流变和老化性能的影响。主要研究结论如下:
     (1)紫外光吸收剂对沥青的物理流变性能具有明显的影响。紫外光吸收剂可使沥青的针入度略微增大,软化点和粘度有所减小,延度显著提高;紫外光吸收剂的加入使沥青的复数剪切模量略微降低,相位角增大,对沥青低温抗裂性能有明显的改善作用。
     (2)紫外光吸收剂对不同沥青的抗老化性能表现出较为复杂的影响。紫外光吸收剂对一些沥青的热氧和紫外光老化性能具有显著的改善效果,而对另一些沥青却表现为加速老化的作用,二者之间具有特定的选择性。研究发现,对于SK-70沥青,3种紫外光吸收剂(Octabenzone、Bumetrizole和Tinuvin770)均对其热氧老化和紫外光老化具有良好的改善效果;对于塔河-90沥青,Octabenzone和Tinuvin770具有较好的改善效果;对于双龙-70和盘锦-90沥青,仅Bumetrizole表现出良好的改善效果;而对于壳牌-70沥青,3种紫外光吸收剂均表现为加速其老化的作用。
     (3) TLC-FID分析表明,紫外光吸收剂的加入使沥青的四组分含量发生明显的变化,表现为芳香分含量增大,胶质和沥青质含量减小,饱和分含量变化不大,胶体结构更趋于溶胶化,这是紫外光吸收剂对沥青物理流变性能产生影响的主要原因。热氧和紫外光老化后,紫外光吸收剂对沥青化学组分的影响因沥青种类的不同而无规律可寻,但其对沥青胶体结构的影响与老化性能之间具有较好的对应性,即:凝胶化指数(评价沥青向凝胶型结构转变程度的指标)减小表明紫外光吸收剂对沥青的耐老化性能具有改善作用,而凝胶化指数增大则表明紫外光吸收剂加速了沥青的老化。
     (4) FTIR分析表明,紫外光吸收剂的加入增大了沥青中1601cm-1处的芳香官能团相对含量,而对1377cml处的支链脂肪族官能团相对含量影响不大。通过对比支链脂肪族官能团指数、芳香官能团指数、羰基与亚砜基官能团指数变化发现:对于具有优良耐老化性能的紫外光吸收剂/沥青体系,沥青在老化过程中的断链、芳缩化及氧化反应被抑制;而对于耐老化性能较差的紫外光吸收剂/沥青体系,沥青在老化过程中的断链、芳缩化与氧化反应被加剧。
     (5)通过FTIR研究了紫外光吸收剂对沥青四组分化学结构的影响,结果表明紫外光吸收剂与沥青各组分分别混合后,紫外光吸收剂自身的结构特征未发生变化,而沥青各组分的化学结构却受紫外光吸收剂的影响发生了明显变化。紫外光老化后,紫外光吸收剂的加入显著抑制了芳香分中羰基与亚砜基的生成,减缓了芳香分的紫外光老化,对饱和分和胶质的紫外光老化也具有一定的抑制作用,而对沥青质的紫外光老化影响不大。
     (6)AFM研究发现,基质沥青呈现出以沥青质为核心的分散相和以轻组分为主的连续相,表面较为粗糙,而加入紫外光吸收剂的沥青表面均变得平整,相位图向单相化转变,形成了相对均一的体系。这归因于紫外光吸收剂的加入改变了沥青的化学组成,使沥青向溶胶态转变,沥青质在轻组分中得到了较好的溶解。对于耐老化性能优良的紫外光吸收剂/沥青体系,热氧和紫外光老化后沥青的两相化程度不明显,意味着沥青中沥青质分散相的缔合被抑制;而对于耐老化性能较差的紫外光吸收剂/沥青体系,老化后沥青表现出明显的两相,表明沥青质分散相的缔合较为明显。
     (7)综合TLC-FID、FTIR和AFM的分析结果可知:
     (a)紫外光吸收剂对沥青耐老化性能具有改善作用时,其作用机理为:分散于沥青中的紫外光吸收剂或通过其分子结构中的氢键将有害的紫外光能变成无害的热能释放出来(如Octabenzone和Bumetrizole),或利用其分子两端的仲氨基官能团捕获沥青老化过程中受热或紫外光激发产生的活性自由基(如Tinuvin770),以阻止沥青分子发生分子链断裂、芳缩化及氧化反应,减少沥青质的形成,减缓沥青向凝胶化转变,从而抑制沥青的老化;
     (b)当紫外光吸收剂对一些沥青的老化具有加速作用时,其可能的作用机理是:紫外光吸收剂可能与沥青中的某些基团发生了反应,使其化学结构发生了变化,导致其转化紫外光能或捕获自由基的能力丧失,失去了抑制沥青老化的功能,而当其遭受热和紫外光的作用时还可能被激发生成活性自由基,引发自由基连锁反应的发生,加剧沥青的分子链断裂、芳缩化及氧化反应,促进了沥青向凝胶化转变,从而加速了沥青的老化。
     (8)对于SBS改性沥青而言,紫外光吸收剂的加入可增大其针入度、延度和软化点,降低其粘度,对其复数剪切模量的影响不大,对相位角的影响则较为复杂。老化性能评价表明,紫外光吸收剂与SBS改性沥青之间也具有特定的选择性:对于盘锦SBS改性沥青,Tinuvin770可同时显著改善其耐热氧和紫外光老化性能;对于线形SBS改性沥青,Bumetrizole和Tinuvin770仅对其耐紫外光老化性能具有一定的改善作用;对于星形SBS改性沥青,Octabenzone和Tinuvin770对其热氧和紫外光老化均具有一定的抑制作用。
The ultraviolet (UV) aging of bitumen has been attracting more and more attentions with the proposal of long-life bituminous pavement and the rapid development of pavement construction in the western areas of China where the UV irradiation is relatively strong. As a result, the research on the measures to prevent bitumen's UV aging has become an increasing concern in the field of bituminous materials all over the world. In recent years, UV absorber that is widely applied in polymers has been used in bitumen to improve its photostability. However, the effects of the UV absorber on physical, rheological and aging properties of bitumen are very complicated due to the complexity of bitumen components and structures. Therefore, it is of great significance to investigate the effect of UV absorbers on performance of bitumen and to reveal the mechanism between them. This will provide theoretical guidance for the preparation of excellent durable bitumen with ultraviolet absorbers, thus enhancing the durability of pavement.
     In view of these, this paper selected three different kinds of UV absorbers and five bitumens from different sources as the main object, and investigated the influences of these UV absorbers on physical, rheological, thermal-oxidative and UV aging properties of the bitumens. The generic fractions, colloidal structures, functional structures as well as microstructures of different UV absorber modified bitumens were analyzed by thin layer chromatography with flame ionization detection (TLC-FID), Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). The effects of the UV absorbers on chemical structures of each fraction were also studied after the separation of generic fractions through SARA methods. Based on these, the relationship of chemical components, structures and properties of UV absorber modified bitumens was established, and the mechanisms of action between UV absorber and bitumen were revealed. Besides, the effects of the UV absorbers on properties of different styrene-butadiene-styrene (SBS) modified bitumens were investigated for the choice of proper UV absorbers. The main conclusions are as follows:
     (1)The physical and rheological properties of bitumen are significantly influenced by the UV absorbers. The penetration of bitumen is slightly increased, whereas the softening point and viscosity are decreased with the addition of UV absorbers. In particularly, the UV absorbers enhance the ductility of bitumen obviously. The complex shear modulus reduces slightly while the phase angle increases when the UV absorbers are added. The UV absorbers can improve the ability of bitumen to resist cracking.
     (2) The aging evaluation reveals that the effects of UV absorbers on aging properties of different bitumen are complex. The thermal-oxidative and UV aging of bitumen are accelerated or restrained by the UV absorbers, which depends on the origin of bitumen and type of UV absorber. Bitumen from different origins shows specific selectivity for different UV absorbers. For SK-70bitumen, the aging resistance (including both thermal-oxidative and UV aging) can be improved by the three UV absorbers (Octabenzone, Bumetrizole and Tinuvin770); for TH-90bitumen, both Octabenzone and Tinuvin770can improve its aging resistance; for SL-70and PJ-90bitumens, only Bumetrizole can improve their aging resistance; but for QP-70bitumen, all the UV absorbers degrade its aging properties.
     (3) TLC-FID analysis shows that the generic fractions are also affected obviously by the UV absorbers. The content of aromatics increases largely while that of resins and asphaltenes decreases with the addition of UV absorbers. The content of saturates changes slightly when the UV absorbers are added. Therefore, the colloidal structure of the bitumen tends to be sol with the addition of UV absorbers, which may be the cause for changes of bitumen properties. After the thermal-oxidative and UV aging, there is no specific relation between the changes of generic fractions and aging properties for the UV absorber modified bitumens. However, a good correspondence between the changes of colloidal structure and aging properties can be found for the samples. The decrease of gelation index indicates an improved aging property by the UV absorbers whereas the increase of gelation index indicates a deteriorated aging resistance.
     (4) FTIR analysis shows that the addition of UV absorbers can increase the relative content of aromatic structure (1601cm'1), but has little influence on the branched aliphatic structure (1377cm"1). It can be found from different functional indexes that in the processes of bitumen aging, if reactions of chain scission, polycondensation and oxidation are inhibited by the UV absorbers, the aging resistance of the bitumen is improved, and vice versa.
     (5) The effects of UV absorbers on chemical structures of each bitumen fraction were investigated by the FTIR. The results indicate that the structures of the UV absorbers are not changed whereas the chemical structures of bitumen fractions are changed obviously after the mixing of UV absorbers and bitumen fractions. During the UV aging process, the UV absorbers can prevent the formation of carbonyl and sulfoxide in aromatics and thus restrain the UV aging of aromatics significantly. Besides, the UV aging of saturates and resins can be inhibited by the UV absorbers to some extent. But the influence of UV absorbers on the UV aging of asphaltenes is not abvious.
     (6) AFM analysis shows that the dispersed phase of asphaltenes and continuous phase of light fractions exist in the base bitumen, causing a rough surface. With the addition of UV absorbers, the surface of bitumen turns smooth and the phase becomes even, leading to a relatively homogeneous system. This can be ascribed to the changes of bitumen fractions affected by the UV absorbers. The asphaltenes are well dissolved by the light fractions and the bitumen tends to be sol. For the UV absorber/bitumen system with superior aging resistance, the two-phase trend of bitumen is not obvious after aging, indicating that the association of asphaltenes is restrained. With respect to the UV absorber/bitumen system with inferior aging resistance, the two-phase trend of bitumen is obvious after aging, indicating a severe association of asphaltenes in bitumen.
     (7) Based on the TLC-FID, FTIR and AFM results, we can conclude that:
     (a) The mechanism of improved aging resistance of bitumen by the UV absorbers is that:the UV absorbers dispersed in the bitumen can convert the photon energy of the UV rays into harmless heat energy by the intramolecular hydrogen bonds (Octabenzone and Bumetrizole), or trap the free radicals in bitumen by secondary amines (Tinuvin770). Consequently, the addition of UV absorbers can slow down the reactions of chain scission, polycondensation and oxidation of bitumen molecules during the aging processes, causing the formation of asphaltenes decreased and the gelation process restrained, and thus the aging resistance is improved;
     (b) The reason why some UV absorbers can deteriorate the aging properties of bitumen is that the structures of the UV absorbers are changed when they are reacted with the bitumen molecules, and thus the UV absorbers lose the ability to convert the absorbed photon energy into heat energy or to trap the free radicals. To make things worse, the broken molecules of UV absorbers may generate harmful radicals to further activate the free radical reactions in the binders. Consequently, the reactions of chain scission, polycondensation and oxidation of bitumen molecules are accelerated, the gelation process is promoted, and thus the aging properties are degraded.
     (8) The addition of UV absorbers can increase the penetration, ductility and softening point but decrease the viscosity of SBS modified bitumens. The influences of the UV absorbers on complex shear modulus of SBS modified bitumens are slight, but the phase angle is affected complicatedly by the UV absorbers. The aging evaluation of UV absorber/SB S modified bitumens reveals that the UV absorbers also show specific selectivity for different SBS modified bitumens. The Tinuvin770can improve both the thermal-oxidative and UV aging properties of the commercial SBS modified bitumen significantly. For linear SBS modified bitumen, Bumetrizole and Tinuvin770can only improve the UV aging resistance; with respect to the radial SBS modified bitumen, Octabenzone and Tinuvin770can inhibit both the thermal-oxidative and UV aging processes to some extent.
引文
[1]张德勤,范耀华,师洪俊.石油沥青的生产与应用[M].北京:中国石化出版社,2001.
    [2]赵玉翠,王翠红,陈继军,等.石油沥青老化性能研究[J].石油沥青,2000,14(4):1-5.
    [3]白姆.西藏山南地区沥青路面病害成因分析[J].西藏科技,2008,(8):63-64.
    [4]Mouillet V., Farcas F., Besson S. Ageing by UV radiation of an elastomer modified bitumen[J], Fuel,2008,87:2408-2419.
    [5]Ruan Y. H., Davison R. R., Glover C. J. Oxidation and viscosity hardening of polymer-modified asphalts[J]. Energy & Fuels,2003,17:991-998.
    [6]王慧斌,王火明.浅谈沥青老化及其对路面性能的影响[J].中国水运,2008,8(1):96-97.
    [7]李宁利,李铁虎,裴建中,等.沥青抗老化研究现状[J].材料导报,2007,21(10):84-86.
    [8]欧阳春发,李永胜,贾润萍,等.基质沥青及聚合物改性沥青的老化研究进展[J].合成材料老化与应用,2007,36(2):22-27.
    [9]吴少鹏,庞凌,余剑英,等.沥青光氧老化研究进展[J].石油沥青,2007,21(2):1-6.
    [10]Ouyang C. F., Wang S. F., Zhang Y., et al. Improving the aging resistance of styrene-butadiene-styrene tri-block copolymer modified asphalt by addition of antioxidants[J]. Polymer Degradation and Stability,2006,91(4):795-804.
    [11]郑远,叶奋.AW, BLE、炭黑改性沥青的老化性能研究[J].公路,2007,(2):127-130.
    [12]汪林.蒙脱土/SBS改性沥青的制备与性能研究[D].硕士学位论文,武汉:武汉理工大学,2007.
    [13]马峰.纳米碳酸钙改性沥青路用性能及改性机理研究[D].硕士学位论文,西安:长安大学,2004.
    [14]Filippis P. D., Giavarini C., Scarsella M. Improving the ageing resistance of straight-run bitumens by addition of phosphorus compounds[J]. Fuel,1995,74(6):836-841.
    [15]董文龙,刘黎萍,宋文霞,等.紫外线添加剂对沥青紫外线老化的改善作用[J].石油沥青,2007,21(1):6-9.
    [16]董文龙,刘黎萍,江涛,等.添加剂剂量对改善沥青紫外线老化作用的影响分析[J].山东交通学院学报,2006,14(4):58-62.
    [17]赵晓争,郭进存,廖克俭,等.紫外线吸收抗老化剂在沥青中的应用研究:老化动力学模型的建立[J].石化技术与应用,2004,22(6):410-413.
    [18]Lesueur D. The colloidal structure of bitumen:consequences on the rheology and on the mechanisms of bitumen modification[J]. Advances in Colloid and Interface Science,2009, 145:42-82.
    [19]黄维蓉,杨德斌,李德军.道路建筑材料[M].北京:人民交通出版社,2011.
    [20]王宝民,潘宝峰.道路建筑材料[M].北京:中国建材工业出版社,2010.
    [21]田文玉,江利民.道路建筑材料[M].北京:人民交通出版社,2004.
    [22]Yu J. Y., Feng Z. G, Zhang H. L. Polymer modified bitumen:Properties and characterisation. Chapter 9:Ageing of polymer modified bitumen (PMB)[M]. London:Woodhead Publishing Limited,2011.
    [23]庞凌.沥青紫外光老化特性研究[D].博士学位论文,武汉:武汉理工大学,2008.
    [24]Anon. The shell bitumen industrial handbook[M]. Surrey:Shell Bitumen,1995.
    [25]崔新天.100号甲道路沥青老化性能试验[J].齐鲁石油化工,1985,(3):25-29.
    [26]栗培龙,张争奇,王秉纲,等.基于粘度和延度变化的沥青抗老化性能评价方法[J].长安大学学报,2008,28(6):11-15.
    [27]吴传海,袁玉卿,王选仓.重交通道路沥青老化规律及评价方法[J].长安大学学报,2007,27(5):35-39.
    [28]Lu X. H., Isacsson U. Effect of ageing on bitumen chemistry and rheology[J]. Construction and Building Materials,2002,16:15-22.
    [29]栗培龙,张争奇,王秉纲,等.道路沥青热氧老化模拟试验研究[J].郑州大学学报(工学版),2008,29(1):119-123.
    [30]钟一.道路沥青的老化机理研究及其影响[J].交通科技,2009,(S2):101-104.
    [31]乌延玲.短期老化对沥青性能参数的影响[J].交通标准化,2010,(222):159-161.
    [32]朱春阳,杨毅,刘学建.不同标号沥青的弯曲梁流变试验对比分析研究[J].中外公路,2007,27(4):289-291.
    [33]陆晓锦,于新.不同老化条件对沥青性能的影响[J].现代交通技术,2008,5(4):1-3.
    [34]Vargas X. A., Afanasjeva N., Alvarez M., et al. Asphalt rheology evolution through thermo-oxidation (aging) in a rheo-reactor[J]. Fuel,2008,87:3018-3023.
    [35]Mastrofini D., Scarsella M. The application of rheology to the evaluation of bitumen ageing[J]. Fuel,2000,79:1005-1015.
    [36]刘忠安,金鸣林.道路沥青老化过程中组成与分子量分布的变化[J].公路,2001,(5):74-77.
    [37]Liang Y. S., Feng Z. G., Yu J. Y. Effect of chemical compositions on temperature susceptibility of bitumens[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2010,25:669-673.
    [38]Lu X. H., Isacsson U. Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens[J]. Fuel,1998,77(9/10):961-972.
    [39]Lu X. H., Isacsson U. Artificial aging of polymer modified bitumens[J]. Journal of Applied Polymer Science,2000,76(12):1811-1824.
    [40]刘军,李和平,杨彦海,等.辽河AH-90#沥青老化组分变化研究[J].沈阳建筑工程学院学报(自然科学版),2004,20(2):127-129.
    [41]Traxler R. N., Coombs C. E. The colloidal nature of asphalt as shown by its flow properties[J]. The Journal of Physical Chemistry,1936,40:113-147.
    [42]Brown A. B., Sparks J. W., Smith F. M. Steric hardening of asphalts[J]. Proc Assoc Asphalt Paving Technol,1957,26:486-494.
    [43]Siddiqui M. N., Ali M. F. Studies on the aging behavior of the Arabian asphalts[J]. Fuel,1999,78(9):1005-1015.
    [44]亓玉柱,王明刚,陈斌.石油沥青在连续热和空气老化中化学族组成的变化及动力学研究[J].石油沥青,1993,26(4):17-22.
    [45]Lee S. J., Amirkhanian S. N., Kim K. W. Laboratory evaluation of the effects of short-term oven aging on asphalt binders in asphalt mixtures using HP-GPC[J]. Construction and Building Materials,2009,23(9):3087-3093.
    [46]丰晓,叶奋,黄彭.基于沥青老化的红外光谱羰基吸光度分析[J].建筑材料学报,2008,11(3):375-378.
    [47]金鸣林,杨俊和,冯安祖,等.韩国70道路沥青老化特性分析(Ⅱ)官能团与分子结构变化[J].煤炭转化,25(1):91-96.
    [48]Lamontagne J., Dumas P., Mouillet V., et al. Comparison by fourier transform infrared (FTIR) spectroscopy of different ageing techniques:application to road bitumensfJ]. Fuel,2001,80: 483-488.
    [49]水恒福,沈本贤,高晋生.道路沥青老化动力学研究[J].华东理工大学学报,1998,24(4):399-404.
    [50]戴跃玲,刘道胜,杨鹏,等.道路沥青老化后组成与使用性能关系的研究[J].抚顺石油学院学报,2002,22(2):9-15.
    [51]Zhao Z. H., Xuan M. Q., Liu Z., et al. A study on aging kinetics of asphalt based on softening point[J]. Petroleum Science and Technology,2003,21(9&10):1575-1582.
    [52]秦利萍.基于红外光谱分析方法的沥青老化机理研究[J].交通标准化,2011,(15):75-78.
    [53]徐静,洪锦祥,刘加平.沥青老化机理综述[J].石油沥青,2011,25(4):1-7.
    [54]Gorshkov V. S., Kats B. I., Glotova N. A. Chemical conversions of asphalt group components upon aging[J]. Khimiyai Tekhnologiya Topliv Masel,1980,1:48-51.
    [55]Efa A. K., Tsyro L. V., Andreeva L. N., et al. The causes of structural aging of asphalt[J]. Chemistry and Technology of Fuels and Oils,2002,38(2):115-123.
    [56]崔鹏,孙立军,胡晓.高等级公路长寿命路面研究综述[J].公路交通科技,2006,23(10):10-14.
    [57]魏荣梅,余剑英,吴少鹏.紫外光老化对沥青化学族组成和物理性能的影响[J].石油沥青,2006,20(1):6-10.
    [58]栗培龙,张争奇,王秉纲.沥青紫外光老化特性及机理探讨[J].郑州大学学报(工学版),2008,29(4):96-100.
    [59]Yamaguchi K., Sasaki I., Nishizaki I., et al. Effects of film thickness, wavelength, and carbon black on photodegradation of asphalt[J]. Journal of the Japan Petroleum Institute,2005, 48(3):150-155.
    [60]Lins V. F. C., Araujo M. F. A. S., Yoshida M. I., et al. Photodegradation of hot-mix asphalt[J]. Fuel,2008,87:3254-3261.
    [61]庞凌,吴少鹏,刘刚,等.沥青紫外线老化试验影响因素的探讨[J].武汉理工大学学报,2009,31(4):166-169.
    [62]Montepara A., Santagata E., Tosi G. Photochemical degradation of pure bitumen by UV radiation[C]. Proc.1st Eurasphalt & Eurobitume Congress (Strasbourg), E&E,1996,5:133.
    [63]Bocci M., Cerni G The ultraviolet radiation in short-term and long-term aging of bitumen[C]. Proc.2nd Eurasphalt & Eurobitume Congress, Session 1:Performance Testing and Specifications for Binder and Mixtures (Barcelona),2000,49-58.
    [64]吴欢,梁乃兴.SBR改性沥青混合料紫外光照老化分析[J].重庆交通学院学报,2007,26(2):72-74.
    [65]Yamaguchi K., Sasaki J., Meiarashi S. Mechanism of asphalt binder aging by ultraviolet irradiation and aging resistance by adding carbon black[J]. Journal of the Japan Petroleum Institute,2004,47(4):266-273.
    [66]Likhterova N. M., Lunin V. V., Torkhovskii V. N., et al. Effect of ozonation and strong UV radiation on the rheological properties of atmospheric resid and liquid asphalt[J]. Chemistry and Technology of Fuels and Oils,1999,35(5):308-314.
    [67]叶奋,黄彭.强紫外线辐射对沥青路用性能的影响[J].同济大学学报,2005,33(7):909-913.
    [68]谭忆秋,王佳妮,冯中良,等.沥青结合料紫外老化机理[J].中国公路学报,2008,21(1):19-24.
    [69]王佳妮.模拟紫外环境下沥青老化流变行为的研究[J].公路交通科技,2010,(3):93-97.
    [70]Wu S. P., Pang L., Mo L. T., et al. UV and thermal aging of pure bitumen-comparison between laboratory simulation and natural exposure aging[J]. Road Materials and Pavement Design,2008, (9):103-113.
    [71]江涛,刘黎萍,张志全,等.紫外线老化对沥青性能的影响[J].中南公路工程,2006,31(4):37-39.
    [72]柳浩,王佳妮,谭忆秋.紫外老化对沥青性能影响的研究[J].科学技术与工程,2010,10(19):4679-4686.
    [73]马立骍,庞凌,吴少鹏.光氧老化对沥青物理和化学性能的影响[J].广东建材,2007,(11):86-88.
    [74]叶奋,孙大权,黄彭,等.沥青强紫外线光老化性能分析[J].中国公路学报,2006,19(6):35-38.
    [75]涂娟,袁军,包传平,等.道路沥青及SBS改性沥青的紫外老化研究[J].石油沥青,2008,22(6):43-47.
    [76]吴世康.高分子光化学导论—基础与应用[M].北京:科学出版社,2003.
    [77]冯振刚.有机蒙脱土/三元乙丙橡胶密封材料的制备与性能研究[D].硕士学位论文,武汉:武汉理工大学,2011.
    [78]George W.(著),马艳秋(译).材料自然老化手册(第三版)[M].北京:中国石化出版社,2004.
    [79]Apeagyei A. K. Laboratory evaluation of antioxidants for asphalt binders[J]. Construction and Building Materials,2011,25:47-53.
    [80]Ouyang C. F., Wang S. F., Zhang Y., et al. Improving the aging resistance of asphalt by addition of Zinc dialkyldithiophosphate[J]. Fuel,2006,85:1060-1066.
    [81]Wen S. H., Chung D. D. L. Effects of carbon black on the thermal, mechanical and electrical properties of pitch-matrix composites[J]. Carbon,2004,42:2393-2397.
    [82]Park T., Lee K., Salgado R., et al. Use of pyrolyzed carbon black as additive in hot mix asphalt[J]. Journal of Transportation Engineering,1997,123(6):489-494.
    [83]Yu J. Y., Feng P. C., Zhang H. L., et al. Effect of organo-montmorillonite on aging properties of asphalt[J]. Construction and Building Materials,2009,23:2636-2640.
    [84]Ouyang C. F., Wang S. F., Zhang Y., et al. Preparation and properties of styrene-butadiene-styrene copolymer/kaolinite clay compound and asphalt modified with the compound[J]. Polymer Degradation and Stability,2005,87:309-317.
    [85]冉龙飞.纳米层状硅酸盐改性沥青路用性能研究[D].硕士学位论文,重庆:重庆交通大学,2008.
    [86]杨群,叶青,刘奕.Ti02改性沥青分散性与抗老化性能[J].同济大学学报(自然科学版),2011,39(2):263-265.
    [87]肖鹏,李雪峰.纳米ZnO/SBS改性沥青性能与机理的研究[J].公路交通科技,2007,24(6):12-16.
    [88]马峰,张超,傅珍.纳米碳酸钙改性沥青的路用性能及机理研究[J].武汉理工大学学报(交通科学与工程版),2007,31(1):88-91.
    [89]叶苑梣.聚合物防老化实用手册[M].北京:化学工业出版社,1999.
    [90]陈济美.钠基累托石粘土的应用[J].中国非金属矿工业导刊,1998,7(22):20-22.
    [91]姚雪丽,马晓燕,王金花.环氧树脂/有机累托石纳米复合材料的研究[J].工程塑料应用,2005,9(33):16-19.
    [92]王华才.沥青/有机化蒙脱土复合材料结构及紫外老化研究[D].硕士学位论文,武汉:武汉理工大学,2010.
    [93]Zhang H. L., Wang H. C., Yu J. Y. Effect of aging on morphology of organo-montmorillonite modified bitumen by atomic force microscopy[J]. Journal of Microscopy,2011,242:37-45.
    [94]章明秋,容敏智,阮文红.非层状纳米无机粒子/热塑性聚合物复合材料制备方法研究进展[J].复合材料学报,2011,28(5):1-11.
    [95]李晓晔,王文一.聚合物/无机纳米粒子复合材料的研究进展[J].中国粉体工业,2006,(6):9-13.
    [96]张恒龙.沥青/无机纳米复合材料的制备与性能研究[D].博士学位论文,武汉:武汉理工大学,2012.
    [97]Cleven M. A. Investigation of the properties of carbon fiber modified asphalt mixtures[D]. Thesis, Master of Science in Civil Engineering, Michigan Technological University,2000.
    [98]Cleven M. A., Apul A. T., Van Dam T. J. Demonstrating the functionality of carbon fiber modified asphalt mixtures. Final report prepared for Conoco, Inc., Civil and Environmental Engineering, Michigan Technological University,1999.
    [99]Bojinov V. B., Panova I. P., Simeonov D. B. Design and synthesis of polymerizable, yellow-green emitting 1,8-naphthalimides containing built-in striazine UV absorber and hindered amine light stabilizer fragments[J]. Dyes and Pigments,2008,78:101-110.
    [100]Stoecklein W., Fujiwara H. The examination of UV-absorbers in 2-coat metallic and non-metallic automotive paints[J]. Science and Justice,1999,39:188-195.
    [101]Wang P. Y., Chen Y. P., Yang P. Z. The effect of a UV-absorber on the photostability of acid dyes on silk[J]. Dyes and Pigments,1996,30:141-149.
    [102]王佳妮.模拟紫外环境下沥青流变行为及老化机理的研究[D].博士学位论文,哈尔滨:哈尔滨工业大学,2008.
    [103]黄晓明,吴少鹏,赵永利.沥青与沥青混合料[M].南京:东南大学出版社,2002.
    [104]董瑞琨,孙立军.基于长期自然老化的沥青结合料低温抗裂性指标[J].高分子材料科学与工程,2006,22(2):111-114.
    [105]Feng Z. G, Yu J. Y, Liang Y. S. The relationship between colloidal chemistry and ageing properties of bitumen[J]. Petroleum Science and Technology,2012,30:1453-1460.
    [106]Tan W. H., Song Z. Q. Research on effect of four natural ultraviolet light absorbers on photostabilization of azadirachtin-A[J]. Agricultural Sciences in China,2006,5(11): 855-858.
    [107]张志翔.受阻胺类光稳定剂的现状及开发进展[J].辽宁化工,2002,31(10):421-423.
    [108]Feng Z. G, Xu S., Sun Y. B., et al. Performance evaluation of SBS modified asphalt with different anti-aging additives[J]. Journal of Testing and Evaluation,2012,40:728-733.
    [109]杨海鹰,顾洁,蔺玉贵.棒状薄层色谱/氢火焰离子化检测器法测定重油烃族组成影响因素的探讨[J].分析仪器,2001,(2):27-29.
    [110]Ecker A. The application of Iatroscan-technique for analysis of bitumen[J]. Petroleum and Coal,2001,43(1):51-53.
    [111]Mothe M. G., Leite L. F. M., Mothe C. G. Thermal characterization of asphalt mixtures by TG/DTG, DTA and FTIR[J]. Journal of Thermal Analysis and Calorimetry,2008,93(1): 105-109.
    [112]Giessibl F. J. Advances in atomic force microscopy [J]. Reviews of Modern Physics, 2003,75(3):949-983.
    [113]朱红祥,柴欣生,王双飞,等.衰减全反射-紫外何见光谱技术应用[J].化学进展,2007,19:414-419.
    [114]Feng Z. G., Yu J. Y, Zhang H. L., et al. Effect of ultraviolet aging on rheology, chemistry and morphology of ultraviolet absorber modified bitumen[J]. Materials and Structures,2012, DOI:10.1617/s11527-012-9958-3.
    [115]Zhang H. L., Yu J. Y, Feng Z. G, et al. Effect of aging on the morphology of bitumen by atomic force microscopy[J]. Journal of Microscopy,2012,246:11-19.
    [116]Zhang H. L., Yu J. Y, Wang H. C., et al. Investigation of microstructures and ultraviolet aging properties of organo-montmorillonite/SBS modified bitumen[J]. Materials Chemistry and Physics,2011,129(3):769-776.
    [117]李晔.光化学基础与应用[M].北京:北京工业出版社,2010.
    [118]Usmani A. M. Asphalt science and technology[M]. New York:Marcel Dekker, INC, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700