脉冲强激光与金属靶相互作用中的电磁脉冲研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲强激光与金属材料相互作用过程中产生的丰富的电磁辐射现象一直是研究人员关心的热点,对电磁辐射性质和机制的研究有助于加深对相关物理过程的理解,还有可能带来广泛的实际应用。现有的研究多数集中在由激光到更高频率的真空紫外、X射线和γ射线的上转换研究,或者到较低频率的THz波的下转换研究,对于产生更低频率的微波或射频电磁脉冲的研究还很不充分,对其中物理问题的认识还不够清楚或缺乏实验证据。随着激光功率密度的提高,激光与金属靶相互作用产生的低频电磁脉冲越来越显示出不容忽视的特殊效应和其它价值,非常有必要对其产生机制和物理规律加以研究。
     因此,本文围绕脉冲激光与金属靶相互作用产生的电磁脉冲,通过实验和理论研究,从电磁脉冲的特征、强度、机制、方向性及变化规律等方面开展了探索性的工作,以期加深对其中物理过程的认识,对相关人员及其研究工作起到一定的参考作用。具体的研究工作和主要结论如下:
     1、开展了脉冲激光与金属圆盘靶相互作用产生微波电磁脉冲的实验研究。对脉宽~102ps、功率密度~1012W/Cm2的激光正入射圆盘中心产生的电磁脉冲特征进行了测量和分析,根据辐射强度提出辐射模型为金属表面的出射电子回路等效成间距不同偶极子的磁偶极或电四极辐射,能量转换效率在10-7~10-8量级。可以预见在超强激光实验中通过这种机制产生的电磁脉冲强度将足够高,须考虑屏蔽等防范措施。
     2、开展了脉冲激光与金属圆盘靶相互作用产生电磁脉冲的靶尺寸效应实验研究。发现电磁脉冲强度随金属圆盘直径增大有增大趋势的规律,与LLNL研究小组最近在Titan和NIF上开展实验所发现的规律一致,说明采用电绝缘支撑的小金属靶更有利于减轻电磁脉冲的效应。这个现象和金属靶表面的准静态电场的动态行为有关。此外,我们还同时测量了可见光辐射强度随靶尺寸的变化关系,结果将有助于我们分析相互作用过程中的能量分配。
     3、开展了脉冲激光与金属靶相互作用产生定向射频脉冲的实验研究。采用线聚焦的激光束斜入射到金属丝表面,对产生的射频电磁脉冲的空间角分布进行了测量,结果显示这种方法可以较容易获得定向性良好的电磁脉冲束,同时也验证了斜入射造成的相位超光速光电子流可以形成契伦科夫辐射的理论。
     4、开展了超短超强激光等离子体尾场中产生低频电磁辐射的理论研究。提出了一个适用于非线性相对论强度(a0≥1)的超短超强激光在无磁化等离子体中激发尾场产生电磁辐射的一维理论模型。通过解析推导和数值计算,得到了电磁辐射的场量表达式,分析了电磁辐射的频谱和空间角分布等特征。结果表明,低频辐射机制来源于在激光尾场中受突然剧烈加速的电子所产生的宽频谱辐射,此辐射的大部分能量集中在激光传播的前向锥角内。理论结果与文献中报道的实验现象一致,有助于加深我们对相关物理过程的认识理解。
The interaction of an intense laser pulse with a metallic target provides a wealth of phenomena appealing as electromagnetic emissions, which has always been a research area attracting considerable interest. Studies of these emis-sions are of great importance for enhancing our understanding of the underlying physics, as well as leading to a variety of important promising applications. Ex-tensive works have been carried out focusing on generating higher frequency electromagnetic radiation, such as extreme-ultraviolet (XUV), X-rays and γ-rays, and lower frequency radiation mainly at terahertz (THz) region. Study of electromagnetic pulse (EMP) at the low frequency end of the electromagnetic spectrum, i.e., Microwave to radio-frequency (RF), however, has been rare to our knowledge. Some related physics are still not clear, and experimental evidence is sparse. With the increase of laser intensity, EMP generated in the interaction of intense laser pulses with metallic targets has been showing more and more special impacts that can not be ignored. It is necessary to identify the origin and properties of these EMP.
     In this thesis, EMP from intense pulsed laser irradiated metallic targets has been studied experimentally and theoretically, including the characteristic, strength, radiation mechanism of and target size effect on the EMP, with the hope of enhancing our understanding of the fundamental process and providing reference for research in related areas. The main content and results are as following:
     1. EMP emission in the microwave range of about0.5-4GHz from a~102ps laser of intensity about1012W/cm2normally incident on a metallic disk has been investigated experimentally. The corresponding laser energy to microwave energy conversion efficiency is found to be10-7~10-8. The radiation process might be reasonably interpreted as being magnetic dipole or electric quadrupole radiation from the laser-induced symmetric poloidal current distribution. As can be predicted, EMP from ultraintense laser-metal interactions could be so intense that shielding should be considered to mitigate the EMP effect.
     2. Effect of target size on EMP emission in pulsed laser interaction with metallic target has been investigated experimentally. EMP signal was observed to increase with increasing target size. which suggests the benefit oi using smaller electrically isolated target to mitigate EMP effects in ultraintense laser-metal interactions. The temporal behavior of electrostatic electric field on the target surface is believed to be responsible for the effect. In addition, visible light emission was measured simultaneously as a function of target size, which may be helpful in understanding the energy partition in the process.
     3. Directional radio-frequency radiation by a line focused laser pulse obliquely incident on a copper wire target has been studied experimentally. The angular radiation pattern was measured and found to be directed in the direction cor-responding to the specular reflection of the incident pulse, which demonstrated the radiation mechanism is due to Cherenkov effect by a superluminal electron emission current, source propagating along the target surface. The results also show an easy way to generate EMP with good directional property.
     4. A simple one-dimensional analytical model for electromagnetic emission from an unmagnetized wakefield excited by an ultrashort ultraintense laser pulse in the nonlinear regime has been developed. The expressions for the radiated fields and for the spectral and angular distribution of the radiated energy have been derived. The model suggest that the origin of the radiation can be at-tributed to the violent sudden acceleration of plasma electrons experiencing the accelerating potential of the laser wakefield. The results could help to qualita-tively interpret some existing experimental results.
引文
[1]Frontiers for discovery in high energy density physics. A report on the high energy density physics workshop, National Task Force on High Energy Density Physics, July 2004.
    [2]M. G. Haines. S. V. Lebedev. J. P. Chittenden. F. N. Beg. S. N. Bland, and A. E. Dangor. The past, present, and future of Z pinches. Phys. Plasmas, 7:1672, 2000.
    [3]Ft. P. Drake. Perspectives on high-energy-density physics. Phys. Plasmas, 16:055501. 2009.
    [4]P. A. Norreys. F. N. Beg. Y. Sentoku, L. O. Silva, R. A. Smith, and R. M. G. M. Trines. Intense laser-plasma interactions: New frontiers in high energy density physics. Phys. Plasmas, 16:041002, 2009.
    [5]B. A. Remington. Experimental astrophysics with high power lasers and Z pinches. Rev. Mod. Phys., 78:000755, 2006.
    [6]R. P. Drake. High-Energy-Density-Physics: Fundamentals. Inertial Fusion, and Experimental Astrophysics. Springer-Verlag, Berlin Heidelberg, 2006.
    [7]http://marie.lanl.gov/index.shtml.
    [8]A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, and R. A. Collins. Observation of a rapidly pulsating radio source. Nature, 217:709, 1968.
    [9]M. Lyutikov. Coherent emission mechanisms in radio pulsars. PhD thesis, California Institute of Technology, 1998.
    [10]F. Graham-Smith. The radio emission from pulsars. Rep. Prog. Phys. 66:173, 2003.
    [11]V. S. Beskin. Radio pulsars - what is to be done. Astroph. Space. Sci 277:237. 2001.
    [12]C. L. Longmire. On the electromagnetic pulse produced by nuclear explo-sions. IEEE Trans. on Antennas and Propagation. AP-26:3. 1978.
    [13]N. G. Basov, P. Kriukov. S. Zakharov, Yu. Senatsky. and S. Tchekalin. Experiments on the observation of neutron emission at a focus of high-power laser radiation on a lithium deuteride surface. IEEE. J. Quantum Electron, 4:864. 1968.
    [14]王淦昌.利用高功率激光驱动核聚变反应.内部报告,19G4.
    [15]E. I. Moses, R. N. Boyd. B. A. Remington. C. J. Keane, and R. Al-Ayat, The National Ignition Facility: Ushering in a new age for high energy density science. Phys. Plasmas, 16:041006.2009.
    [16]R. Kodama. P. A. Norreys. K. Mima. A. E. Dangor. R. G. Evans. H. Fujita. Y. Kitagawa. K. Krushelnick. T. Miyakoshi, N. Miyanaga. T. Norimatsu, S. .1. Rose, T. Shozaki, K. Shigemori, A. Sunahara. M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature, 412:798, 2001.
    [17]The science and applications of ultrafast, ultraintense lasers (SAUUL). A report on the SAUUL workshop, June 2002.
    [18]G. A. Mourou, T. Tajima. and S. V. Bulanov. Optics in the relativistic regime. Rev. Mod. Phys., 78:309, 2006.
    [19]D. Umstadter. Relativistic laser-plasma interactions. J. Phys. D: Appl. Phys., 36:R151, 2003.
    [20]孟绍贤.超强激光场物理学.物理学进展,19:236,1999.
    [21]D. Umstadter. Review of physics and applications of relativistic plasmas driven by ultra-intense laser. Phys. Plasmas, 8:1774, 2001.
    [22]T. Tajima and G. Mourou. Zettawatt-exawatt lasers and their applications in ultrastrong-field physics. Phys. Bev. ST Accel. Beams. 5:031301. 2002.
    [23]U. Teubner and P. Gibbon. High-order harmonies from laser-irradiated plasma surfaces. Rev. Mod. Phys.. 81:445. 2009.
    [24]R. A. Ganeev. High-order harmonic generation in a laser plasma: A review of recent, achievements. J. Phys. B: At. Mol. Opt, Phys.. 40:R213. 2007.
    [25]C. Winterfeldt. C. Spielniann. and G. Gerber. Optimal control of high-harmonie generation. Ren. Mod. Phys., 80:117, 2008.
    [26]I. McKinnie and H. Kapteyn. Ultrafast lasers yield x-rays. Nature Photon.. 4:149. 2010.
    [27]L. M. Chen. M. Kando. M. H. Xu. Y. T. Li. J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng. S. V. Bulanov. Y. Kato. J. Zhang. and T. Tajiam. Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil. Phys. Rev. Lett., 100:045004, 2008.
    [28]L. M. Chen. F. Liu. W. M. Wang, M. Kando, J. Y. Mao. L. Zhang, J. L Ma, Y. T. Li. S. V. Bulanov. T. Tajiam. Y. Kato. Z. M. Sheng. Z. Y. Wei, and J. Zhang. Intense high-contrast femtosecond K-shell X-ray source from laser-driven Ar clusters. Phys. Rev. Lett.. 104:215004. 2010.
    [29]J. Workman. J. Cobble, K. Flippo, D. C. Gautier, and S. Letzring. High-energy, high-resolution X-ray imaging on the Trident short-pulse laser fa-cility. Rev. Set. lustrum.. 79:10E905, 2008.
    [30]J. M. Yang. Z. M. Hu. J. Y. Zhang. T. Zhu, Y. Zhao, T. S. Wen, Z. B. Wang, Y. N. Ding. M. X. Wei, G. H. Yang, and B. H. Zhang. High intensity X-ray line emission from aluminum plasmas generated by a 120 TW, 30 fs laser pulse. Phys. Plasmas, 15:112704, 2008.
    [31]G. Kh. Kitaeva. Terahertz generation by means of optical lasers. Laser Phys. Lett., 5:559. 2008.
    [32]V. B. Gildenburg and N. V. Vvedenskii. Optical-to-Thz wave conversion via excitation of plasma oscillations in tunneling-ionization process. Phys Rev. Lett., 98:245002. 2007.
    [33]J. Shan. Terahertz time-domain spectroscopy and its applications. PhD thesis, Columbia University, 2001.
    [34]许景周,张希成.太赫兹科学技术和应用.北京大学出版社,北京,2007.
    [35]J. Hebling, A. G. Stepanov, G. Almasi. B. Bartal. and J. Kuhl. Tunable Thz pulse generation by optical rectification of ultrashort laser pulses with titled pulse fronts. Appl. Phys. B, 78:593, 2004.
    [36]A. G. Stepanov, J. Hebling, and J. Kuhl. Thz generation via optical recti-fication with ultrashort laser pulse focused to a line. Appl. Phys. B, 81:23, 2005.
    [37]A. G. Stepanov, J. Kuhl, I. Z. Kozma. E. Riedle. G. Almasi. and J. Hebling. Scaling up the energy of Thz pulses created by optical rectification. Opt. Express, 13:5762,2005.
    [38]K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson. Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Appl. Phys. Lett. 90:171121, 2007.
    [39]F. Kadlec, P. Kuzel, and J.-L. Coutaz. Optical rectification at metal sur-faces. Opt. Lett., 29:2674, 2004.
    [40]F. Miyamaru, Y. Saito, M. W. Takeda, L. Liu, B. Hou, W. Wen, and P. Sheng. Emission of terahertz radiation from fractal antennas. Appl. Phys Lett., 95:221111, 2009.
    [41]F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani. Dependence of emission of terahertz radiation on geometrical param-eters of dipole photoconductive antennas. Appl. Phys. Lett., 96:211104, 2010.
    [42]X. Xie, J. M. Dai, and X.-C. Zhang. Coherent control of Thz wave genera-tion in ambient air. Phys. Rev. Lett., 96:075005, 2006.
    [43]K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nature Photon., 2:605, 2008.
    [44]F. Krausz and M. Ivanov. Attosecond physics. Rev. Mod. Phys., 81:163, 2009.
    [45]H. J. Lee, P. Neumayer,J. Castor. T. Doppner, R. W. Falcone, C. Fortmann, B. A. Hammel,A. L. Kritcher, O. L. Landen, R. W. Lee, D. D. Meyerhofer, D. H. Munro, R. Redmer, S. P. Regan, S. Weber, and S. H. Glenzer. X-ray Thomson-scattering measurements of density and temperature in shock-compressed beryllium. Phys. Rev. Lett.,102:115001, 2009.
    [46]L. Young, E. P. Kanter, B. Krassig, Y. Li, A. M. March, S. T. Pratt, R. Santra, S. H. Southworth, N. Rohringer, L. F. DiMauro, G. Doumy, C. A. Roedig, N. Berrah, L. Fang, M. Hoener, P. H. Bucksbaum, J. P. Cryan, S. Ghimire, J. M. Glownia, D. A. Reis, J. D. Bozek, C. Bostedt, and M. Messerschmidt. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature, 466:56, 2010.
    [47]J. Workman, J. R. Fincke, P. Keiter, G. A. Kyrala, T. Pierce, S. Sublett, J. P. Knauer, H. Robey, B. Blue, S. G. Glendinning, and O. L. Landen. Development of intense point X-ray sources for backlighting high energy density experiments (invited). Rev. Sci. Iustrum., 75:3915, 2004.
    [48]N. E. Lanier, J. Workman, R. L. Holmes, P. Graham, and A. Moore. Highly resolved measurements of defect evolution under heated-and-shocked con-ditions. Phys. Plasmas, 14:056314, 2007.
    [49]http://www.astro.utu.fi/edu/kurssit/ttpk1/ttpkI/ AtmosphericWindow.jpg;http://upload.wikimedia.org/wikipedia/ commons/d/d9/Atmospheric_window_EN.svg?uselang=de.
    [50]董志伟.高功率微波.讲义.中国工程物理研究院北京研究生部.2007.
    [51]J. Benford, J. Swegle. and E. Schamiloglu著.江伟华,张驰译.高功率微波.国防工业出版社.北京.2009.
    [52]D. C. Eder, A. Throop, C. G. Brown, Jr. J. Kimbrough, M. L. Stowell, D. A. White, P. Song, N. Back, A. MacPhee, H. Cheu, W. DeHope, Y. Ping. B. Maddox, J. Lister. G. Pratt. T. Ma. Y. Tsui, M. Perkins, D. O'Brien, and P. Patel. Mitigation of electromagnetic pulse (EMP) effects from short-pulse lasers and fusion neutrons. Technical report, LLNL-TR-411183, Lawrence Livermore National Laboratory, 2009.
    [53]M. Manclossi, J. J. Santos, D. Batani. J. Faure, A. Debayle, V. T. Tikhonchuk, and V. Malka. Study of ultraintense laser-produced fast-electron propagation and filamentation in insulator and metal foil targets by optical emission diagnostics. Phys. Rev. Lett., 96:125002, 2006.
    [54]Y. T. Li, M. H. Xu, X. H. Yuan, W. M. Wang. M. Chen, Z. Y. Zheng, Z. M. Sheng, Q. Z. Yu, Y. Zhang, F. Liu, Z. Jin, Z. H. Wang, Z. Y. Wei, W. Zhao, and J. Zhang. Effect of target shape on fast electron emission in femtosecond laser-plasma interactions. Phys. Rev. E, 77:016406, 2008.
    [55]A. Raven, P. T. Rumsby, J. A. Stamper. O. Willi, R. Lllingworth, and R. Thareja. Dependence of spontaneous magnetic fields in laser produced plasmas on target size and structure. Appl. Phys. Lett., 35:526, 1979.
    [56]A. J. Mackinnon, Y. Sentoku, P. K. Patel, D. W. Price, S. Hatchett, M. H. Key, C. Andersen, R. Snavely, and R. R. Freeman. Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys. Rev. Lett, 88:215006, 2002.
    [57]K. Otani, S. Tokita, T. Nishoji, S. Inoue, M. Hashida, and S. Sakabe. Ef-ficient laser-proton acceleration from an insulating foil with an attached small metal disk. Appl. Phys. Lett, 99:161501, 2011.
    [58]F. Kadlec and P. Kuzel. Study of terahertz radiation generated by optical rectification on thin gold films. Opt. Lett, 30:1402, 2005.
    [59]C. E. Baum. From the electromagnetic pulse to high-power electromagnet-ics. Proc. of the IEEE.. 80:789. 1992.
    [60]J. A. Brunderman. High power radio frequency weapons: A protential counter to U.S. stealth and cruise missile technology. Technical report. Maxwell Air Force Base, Alabama: Center for Strategy and Technology. Air War College. December 1999.
    [61]D. F. Higgins, K. S. H. Lee, and L. Marin. System-generated EMP. IEEE Trns. on Electromagnetic compatibility, EMC-20:14. 1978.
    [62]R. J. Barker and E. Schamiloglu编.《高功率微波源与技术》翻译组.高功率微波源与技术.清华大学出版社,北京,2005.
    [63]http://www.ece.unm.edu/summa/notes/index.html.
    [64]V. L. Ginzburg. Theoretical Physics and Astrophysics. Moscow, Nauka, 1975. (Pergamon, Oxford, 1979).
    [65]N. J. Carron and C. L. Longmire. Electromagnetic pulse produced by obliquely incident X rays. IEEE Trans, on Nucl. Sci., NS-23:1897, 1976.
    [66]J. D. Jackson. Classical Electrodynamics. Wiley, New York, 1999.
    [67]Yu. N. Lazarev and P. V. Petrov. Generation of an intense directed ultra-short electromagnetic pulse. JETP Lett, 60:634, 1994.
    [68]Yu. N. Lazarev, P. V. Petrov, and Yu. G. Syrtsova. Microwave generation by a superluminal source at limiting current densities. Plasma Phys. Rep., 29:491, 2003.
    [69]Yu. N. Lazarev, P. V. Petrov, and Yu. G. Syrtsova. Photoemission pulsed source of wide-band directional electromagnetic radiation. Tech. Phys., 49:1477, 2004.
    [70]A. V. Bessarab. S. G. Garanin. S. P. Martynenko. N. A. Prudkoy, A. V Sodatov. V. A. Terekhin. and Yu. A. Trutnev. An ultrawidcband electro-magnetic pulse transmitter initiated by a picosecond laser. Doklady Phys. 51:651. 2006.
    [71]P. V. Petrov, V. I. Afonin, D. 0. Zamuraev. E. V. Zavolokov, N. V. Kupyrin, Yu. N. Lazarev. Yu. O. Romanov, Yu. G. Syrtsova, I. A. Sorokin, A. S. Tis-chenko. G. I. Brukhnevich, N. P. Voronkova, L. Z. Pekarskaya, and V. S. Be-lolipetskiy. Experimental and theoretical investigation of directional wide-band electromagnetic pulse photoemission generator. In Ultra-wideband, short pulse electromagnetics, volume 9, chapter 5. pages 307-313. 2010.
    [72]陈实,蒋吉昊,李剑峰.X射线在金属表面产生Compton电流引起的电磁辐射时空分布.强激光与粒子束.21(9):1411,2009.
    [73]D. Strickland and G. Mourou. Compression of amplified chirped optical pulses. Opt, Cornmun., 56:219, 1985.
    [74]M. D. Perry and G. Mourou. Terawatt to petawatt subpicosecond lasers. Science, 264:917. 1994.
    [75]M. J. Mead. D. Neely, J. Gauoin, R. Heathcote, and P. Patel. Electromag-netic pulse generation within a petawatt laser target chamber. Rev. Sci. lustrum,., 75:4225, 2004.
    [76]C. G. Brown, Jr. E. Bond, T. Clancy, S. Dangi, D. C, Eder, W. Ferguson, J. Kimbrough, and A. Throop. Assessment and mitigation of electromagnetic pulse (EMP) impacts at short-pulse lasers facilities. LLNL document. LLNL-PROC-423607, Lawrence Livermore National Laboratory, 2010.
    [77]M. L. Stowell. Discretizing transient current densities in the Maxwell equa-tions. LLNL document, LLNL-CONF-409029, Lawrence Livermore Na-tional Laboratory, 2008.
    [78]J. .1. Li, X. Wang. Z. Y. Chen. J. Zhou. S. S. Mao, and .J. M. Cao. Real-time probing of ultrafast residual charge dynamics. Appl. Phys. Lett.. 98:01150]. 2011.
    [79]余勇,李晓亚,王加祥,祝文军.高能电子回流对过密等离子体自导透明的影响研究.物理学报,202.(待发表)
    [80]S. Eliezer. The Interaction of High-Power Losers with Plasmas. IOP Pub-lishing, Bristol and Philadelphia. 2002.
    [8.1]W. L. Kruer. The Physics of Laser Plasma Interactions. Addison-Wesley. Reading. MA. 1988.
    [82]S. Ichimaru. Srongly coupled plasmas: High-density classical plasmas and degenerate electron liquids. Rev. Mod. Phys.. 54:1017. 1982.
    [83]F. Brunei. Anomalous absorption of high intensity subpicosecond laser pulses. Phys. Fluids. 31:2714, 1988.
    [84]S. C. Wilks. W. L. Kruer, M. Tabak, and A. B. Langdon. Absorption of ultra-intense laser pulses. Phys. Rev. Lett., 69:1383, 1992.
    [85]J. Denavit. Absorption of high-intensity subpicosecond lasers on solid den-sity targets. Phys. Rev. Lett., 69:3052. 1992.
    [86]H. Schwoerer, S. Pfotenhauer, 0. Jackel, K.-U. Amthor, B. Liesfeld, W. Ziegler. R. Sauerbrey, K. W. D. Ledingham, and T. Esirkepov. Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets Nature. 439:445, 2006.
    [87]S. C. Wilks. A. B. Langdon. T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key. D. Pennington. A. MacKinnon, and R. A. Snavely. Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas, 8:542. 2001.
    [88]P. Mora. Plasma expansion into a vacuum. Phys. Rev. Lett., 90:185002, 2003.
    [89]F. C Wang. B. F. Sheii, X. M. Zhang. Z. Y. Jim. M. Wen. L. L. Ji. W. P. Wang. J C. Xu. M. Y. Yu. and J. Gary. High-energy nionoenergetie proton bunch from laser interaction with a cornplex target. Phys. Plasmas. 16:093112, 2009.
    [90]B. F. Shen and Z. Z. Xu. Transparency of an overdense plasma layer. Phys. Rev. E.. 64:056406, 2001.
    [9]]吉亮亮.基于超短超强激光的离子加速与极端光场产生.博士论文,中国科学院研究生院,2011.
    [92]X. Q. Yan, C. Lin. Z. M. Sheng. Z. Y. Guo, B. C. Liu. Y. R. Lu. J. X. Fang, and J. E. Chen. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys. Rev. Lett.. 100:135003. 2008.
    [93]A. Henig, S. Steinke. M. Schnurer. T. Sokollik, R. Horlein, D. Kiefer, D. Jung, J. Schreiber, B. M. Hegelich, X. Q. Yan. J. Meyer ter Vehn, T. Tajima, P. V. Nickles. W. Sandner, and D. Habs. Radiation-pressre acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103:245003. 2009.
    [94]T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou. and T. Tajima. Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92:175001. 2004.
    [95]A. Raven, O. Willi, and P. T. Rumsby. Megagauss magnetic field profiles in laser-produced plasmas. Phys. Rev. Lett., 41:554, 1978.
    [96]J. A. Stamper. Review on spontaneous magnetic fields in laser-produced plasmas: Phenomena and measurements. Laser Part. Beams, 9:841. 1991.
    [97]郑春开.等离子体物理.北京大学出版社,北京,2009.
    [98]M. A. Yates, D. B. van Hulsteyn, H. Rutkowski. G. Kyrala, and J. U. Brack-bill. Experimental evidence for self-generated magnetic fields and remote energy deposition in laser-irradiated targets. Ph.ys. Rev. Lett.. 49:1702. 1982.
    [99]D. W. Forslund and J. U. Brackbill. Magnetic-field-induced surface trans port on laser-irradiated foils. Ph.ys. Rev. Lett.. 48:1614.. 1982.
    [100]L. Willingale, A. G. R. Thomas, P. M. Nilson, M. C. Kaluza, S. Bandy-opadhyay, A. E. Dangor. R, G. Evans, P. Fernandes, M. G. Haines, C. Kamperidis, R. J. Kingharn, S. Minardi. M. Notley, C. P. Ridgers, W. Roz-mus. M. Sherlock. M. Tatarakis. M. S. Wei, Z. Najmndin. and K. Krushel-nick. Fast adveetion of magnetic fields by hot electrons. Ph.ys. Rev. Lett.. 105:095001. 2010.
    [101]G. P. Ridgers, R. .1. Kingham, and A. G. R. Thomas. Magnetic cavitation and the reemergence of nonlocal transport in laser plasmas. Phys. Rev. Lett., 100:075003, 2008.
    [102]A. Nishiguchi, T. Yabe, M. G. Haines, M. Psimopoulos, and H. Takewaki. Convective amplification of magnetic fields in laser-produced plasmas by the Nernst effect. Phys. Rev. Lett.., 53:262, 1984.
    [103]T. H. Kho and M. G. Haines. Nonlinear kinetic transport of electrons and magnetic field in laser-produced plasmas. Phys. Rev. Lett., 55:825, 1985.
    [104]R. N. Sudan. Mechanism for the generation of 109 G magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target. Phys. Rev. Lett, 70:3075, 1993.
    [105]A. Gopal, M. Tatarakis. F. N. Beg, E. L. Clark, A. E. Dangor, R. G. Evans, P. A. Norreys, M. S. Wei, M. Zepf, and K. Krushelnick. Temporally and spatially resolved measurements of multi-megagauss magnetic ?elds in high intensity laser-produced plasmas. Phys. Plasmas, 15:122701, 2008.
    [106]Y. T. Li, X. H. Yuan, M. H. Xu, Z. Y. Zheng, Z. M. Sheng, M. Chen, Y. Y. Ma, W. X. Liang, Q. Z. Yu, Y. Zhang, F. Liu, Z. H. Wang, Z. Y. Wei, W. Zhao. Z. Jin, and J. Zhang. Observation of a fast electron beam emitted along the surface of a target irradiated by intense femtosecond laser pulses Phys. Rev. Lett.. 96:165003. 2006.
    [107]J. Psikal. V. T. Tikhonchuk. J. Limpouch. and O. Klirno. Lateral hot elec-tron transport and ion acceleration in femtosecond laser pulse interaction with thin foils. Phys. Plasmas, 17:013102. 2010.
    [108]A. L. Lei, L. H. Cao, X. Q. Yang. K. A. Tanaka, R, Kodama. X. T. He, K. Mima. T. Nakamura, T. Norimatsu, W. Yu, and W. Y. Zhang. Guiding and confining fast electrons by transient electric and magnetic fields with a plasma inverse cone. Phys. Plasmas. 16:020702. 2009.
    [109]C. K. Li. F. H., Seguin, J. A. Frenje, J. R. Rygg, R. D. Petrasso, R. P. J. Town. O. L. Landen, J. P. Knauer, and V. A. Smalyuk. Observation of megagauss-field topology changes due to magnetic reconneetion in laser-produced plasmas. Phys. Rev. Lett.. 99:055001, 2007.
    [110]M. Yamada, R,. Kulsrud, and H. Ji. Magnetic reconnection. Rev. Mod. Phys., 82:603, 2010.
    [111]J. Y. Zhong, Y. T. Li, X. G. Wang J. Q. Wang Q. L. Dong. C. J. Xiao. S. J. Wang. X. Liu, L. Zhang, L, An, F. L. Wang, J. Q. Zhu. Y. Gu. X. T. He, G. Zhao, and J. Zhang. Modeling of loop-top X-ray source and reconnection outflows in solar flares with intense lasers. Nature Phys.. 6:984, 2010.
    [112]P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, S. Minardi. M. S. Wei, P. Fernandes. M. Notley. S. Bandyopadhyay. M. Sherlock, R. J. Kingham, M. Tatarakis, Z. Najmudin, W. Rozmus, R. G. Evans, M. G. Haines, A. E. Dangor, and K. Krushelnick. Bidirectional jet formation during driven magnetic reconnection in two-beam laser-plasma interactions. Phys. Plasmas, 15:092701, 2008.
    [113]J. F. Hansen, T. R. Dittrich, J. B. Elliott, S. G. Glendinning, and D. L. Cotrell. A high-energy-density, high-Mach number single jet experiment. Phys. Plasmas, 18:082702, 2011.
    [114]J. M. Foster. B. H. Wilde. P. A. Rosen, T. S. Perry, M. Fell, M. J. Edwards B. P. Lasinski, R. E. Turner, and M. L. Gittings. Supersonic jet and shock interactions. Phys. Plasmas. 9:2251. 2002.
    [1P5]M. Yamada. Progress in understanding magnetic reconnection in laboratory and space astrophysical plasmas. Phys. Plasmas. 14:058102. 2007.
    [116]S. Fujioka. H. Takabe, N. Yamamoto, D. Salzmann, F. L. Wang. H. Nishimura. Y. T. Li. Q. L. Dong, S. J. Wang, Y. Zhang Y.-J. Rhee. Y. W. Lee, J.-M. Han. M. Tanabe. T. Fujiwara. Y. Nakabavashi. G. Zhao. J. Zhang, and K. Mima. X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion. Nature Phys.. 5:821. 2009.
    [117]J. F. O'Shay. Tune-resolved visible and extreme ultraviolet spectroscopy of laser-produced tin plasma. PhD thesis, University of California, San Diego, 2007.
    [118]J. S. Pearlman and G. H. Dahlbacka. Emission of rf radiation from laser-produced plasmas. J. Appl. Phys., 49:457, 1978.
    [119]H. Hamster, A. Sullivan, S. Gordon, W. White, and R. W. Falcone. Sub-picosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett, 71:2725. 1993.
    [120]H. Hamster, A. Sullivan, S. Gordon, W. White, and R. W. Falcone. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Phys. Rev. E, 49:671, 1994.
    [121]J. E. Heidrich, S. K. Ault, H. A. Koehler. S. M. Pollaine, V, W. Slivinksy. and R. A. Zacharias. Measurement of hot-electron production and mi-crowave emission by laser-irradiated Ch targets. LLNL document, LLNL-UCRL-91174, CONF-841010-9. Lawrence Livermore National Laboratory, 1984.
    [122]F. S. Felber. Dipole radio-frequency power from laser plasmas with no dipole moment. Appl. Pliys. Lett.. 86:231501. 2005.
    [123]N. J. Carron. On the fields of a torus and the role of the vector potential. Am. J. Phys.. 63:717. 1995.
    [124]陈钰清,王静环,编著.激光原理.浙江大学出版社.杭州.1992(2002重印).
    [125]C. A. Balanis. Antenna Theory Analysis and Desigli. Harper & Row. New York, 1982.
    [126]W. L. Stutzman and G. A. Thiele. Antenna Theory and Desigh. Wiley. New York, 1998.
    [127]S. Jeong. Energy coupling and plume dynamics during high power laser heating of metals. PhD thesis, University of California. Berkeley, 1997.
    [128]M. G. Drouet and R. Bolton. Distribution of self-generated current in laser-produced plasmas. Phys. Rev. Lett., 36:591, 1976.
    [129]D. A. Tidman and J. A. Stamper. Role of magnetic fields in suprathermal particle generation by laser-produced plasmas. Appl. Phys. Lett., 22:498. 1973.
    [130]F. S. Felber. Steady-state model of a flat laser-driven target. Phys. Rev. Lett, 39:84, 1977.
    [131]I. H. Hutchinson. Principles of Plasm,a Diagnostics. Cambridge University Press. New York, 2002.
    [132]G. S. Settles. Schlieren and Shadowgraph Techniques: Visualizing Phenom-ena in Transparent Media. Springer-Verlag, Berlin Heidelberg New York, 2001.
    [133]李玉同.飞秒激光等离子体光学诊断和自生磁场实验研究.博士论文,中国工程物理研究院,2001.
    [134]J. J. Li. X. Wang. Z. Y. Chen, R. Clinite, S. S. Mao. P. F. Zlru, Z. M. Sheng. J. Zhang, and J. M. Ca.o. Ultrafast electron beam imaging of femtosecond laser-induced plasma dynamics. J. Appl. Phys., 107:083305. 2010.
    [135]P. A. Cherenkov. Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Dokl Akad. Nauk, 2:451, 1934. [Phys. Rev. 52:378(1937)].
    [136]O. Chamberlain, E. Segre, C. Wiegand, and T. Ypsilantis. Observation of antiprotons. Phys. Rev., 100:947, 1955.
    [137]J. .]. Aubert. U. Becker, P. J. Biggs. J. Burger, M. Chen, G. Everhart, P. Goldhagen, J. Leong, T. McCorriston, T. G. Rhoades. M. Rohde. S. C. Ting, S. L. Wu, and Y. Y. Lee. Experimental observation of a heavy particle J. Phys. Rev. Lett., 33:1404. 1974.
    [138]W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori. .]. Vieira, R. A. Fonseca, and L. O. Silva. Generating nmlti-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys Rev. ST Accel. Beams, 10:061301, 2007.
    [139]T. Tajima and J. M. Dawson. Laser electron accelerator. Phys. Rev. Lett.. 43:267, 1979.
    [140]E. Esarey, C. B. Schroeder, and W. Leemans. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys., 81:1229,. 2009.
    [141]C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Gary, and W. P. Leemans. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature, 431:538. 2004.
    [142]J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka. controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature, 444:737, 2006.
    [143]R. M. G. .M. Trines. Wakefield accelerators: Plasma models get a boost. Nature Phys.. 6:239. 2010.
    [144]Z. M. Sheng. K. Nima. .1. Zhang, and H. Samiki. Emission of electromag-netic pulses from laser wakefields through linear mode conversion. Phys. Rev. Lett.. 94:095003. 2005.
    [145]S. S. Bulanov, T. Zh. Esirkepov, F. F. Kamenets, and F. Pegoraro. Single-cycle high-intensity electromagnetic pulse generation in the interaction of a plasma wakefield with regular nonlinear structures. Phys. Rev. E. 73:036408. 2006.
    [146]E. Nerush and I. Kostyukov. Radiation emission by extreme rela.tivist.ic electrons and pair production by hard photons in a strong plasma wakefield. Phys. Rev. E, 75:057401, 2007.
    147] L. H. Cao. W. Yu. H. Xu, C. Y. Zheng, Z. J. Liu. B. Li. and A. Bogaerts Terahertz radiation from oscillating electrons in laser-induced wake fields. Phys. Rev. E, 70:046408, 2004.
    [148]H. C. Wu, Z. M. Sheng, Q. L. Dong, H. Xu, and J. Zhang. Powerful terahertz emission from laser wakefields in inhomogeneous magnetized plasmas. Phys. Rev. E, 75:016407, 2007.
    [149]J. Yoshii, C. H. Lai, T. Katsouleas, C. Joshi. and W. B. Mori. Radiation from Cerenkov wakes in a magnetized plasma. Phys. Rev. Lett.. 79:4194, 1997.
    [150]N. Spence. T. Katsouleas. and P. Muggli. Simulations of Cerenkov wake radiation sources. Phys. Plasmas, 8:4995, 2001.
    [151]F. F. Chen. Introduction to plasma physics and controlled fusion, vol 1: Plasma physics. Plenum Press, New York, 1984.
    [152]N. Yugami, T. Higashiguchi, H. Gao, S. Sakai, K. Takahashi, H. Ito, and Y. Nishida. Experimental observation of radiation from Cherenkov wakes in a magnetized plasma, Phys. Rev. Lett., 89:065003, 2002.
    [153]D. Dorranian, M. Starodubtsev, H. Kawakami, H. Ito, N. Yugami, and Y. Nishida, Radiation from high-intensity ultrasliort-laser-pulse and gas-jet magnetized plasma interaction. Phys. Rev. E.68:026409,2003.
    [154]C. D. Amieo, A. Houard, S. Akturk, Y. Liu. J. Le. Bloas. M. Franco. B. Prade, A. Couairon, V. T. Tikhonchuk, and A. Mysyrouicz, Forward THz radiation emission by femtosecond filamentation in gases: theory and ex-periment. New .J. Phys., 10:013015, 2008.
    [155]Q. L. Hu, S. B. Liu, and W. Li, Intense Cherenkov-type terahertz electro-magnetic radiation from ultrafast laser-plasma interaction. Chin. Phys. B, 17:1050,2008.
    [156]Q. L. Hu, S. B. Liu, and W. Li. Cherenkov radiation of a fast electron in ultrashort intense laser plasmas. Phys. Plasmas. 14:123101, 2007.
    [157]S. V. Bulanov, V.I. Kirsanov, and A. S. Sakharov, Excitation of ultrarel-ativistic plasma waves by pulse of electromagnetic radiation. JETP Lett., 50:198, 1989.
    [158]P. Sprangle, E. Esarey, and A. Ting. Nonlinear theory of intense laser-plasma interactions. Phys. Rev. Lett., 64:2011,1990.
    [159]P. Sprangle, E. Esarey, and A. Ting. Nonlinear interaction of intense laser pulses in plasmas. Phys. Rev. A, 41:4463, 1990.
    [160]V. I. Berezhiani and I. G. Murusidze. Relativistic wake-field generation by an intense laser pulse in a plasma. Phys. Lett. A, 148:338,1990.
    [161]V. I. Berezhiani and I. G. Murusidze. Interaction of highly relativistic short laser pulses with plasmas and nonlinear wake-field generation. Phys. Sci 45:87, 1992.
    [162]P. Gibbon, Short pulse laser interaction with matter: An introduction. Imperial College Press, London, 2005.
    [163]L. D. Landau and E. M. Lifshitz. Eleetromagneties of contiuous media. Butterworth-Heinemann. Oxford. 1984.
    [164]A. L. Fetter and J. D. Waleeka. Quantum theory of many-particle systems. McGraw-Hill. New York. 1971.
    [165]M. I. Bakunov, S. B. Bodrov. A. V. Maslov. and A. M. Sergeev. Two-dimensional theory of Cherenkov radiation from short laser pulses in a magnetized plasma. Phys. Ret?. E. 70:016401. 2004.
    [166]P. Jha. A. Saroch. and R. K. Mishra. Generation of wakefjelds and terahertz radiation in laser-magnetized plasma interaction. Europhys. Lett.. 94:15001, 2011.
    [167]S. A. Maier. PIasmonies: Fundamentals and applications. Springer Sci-ences-Business Media LLC, New York. 2007.
    [168]M. 1. Bakunov, A. V, Maslov. and S. B. Bodrov. Cherenkov radiation of terahertz surface plasmon polaritons from a superhuninal optical spot. Phys. Rev. B. 72:195336. 2005.
    [169]I. V. Konoplev, L. Fisher, A. W. Cross. A. D. R. Phelps, K. Ronald, and C W. Robertson. Surface wave Cherenkov maser based on a periodic lattice. Appl. Phys. Lett.., 96:261101. 2010.
    [170]郑君里,应启珩,杨为理.信号与系统(第二版)上册.高等教育出版社.北京.2000(2004重印).
    [171]A. G. R. Thomas. S. P. D. Mangles. Z. Najmudin, M. C. Kaluza, C. D. Murphy, and K. Krushelnick. Measurements of wave-breaking radiation from a laser-wakefield accelerator. Phys. Rev. Lett., 98:054802. 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700