间歇萃取精馏过程的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于在分离共沸物或近沸点混合物方面优点突出,间歇萃取精馏正受到日益广泛的重视。本文首先进行了间歇萃取精馏全过程的实验研究,重点实验考察了过渡馏分的操作控制,同时研究了主要操作参数如回流比、溶剂比等对分离的影响;然后进行了工业间歇萃取精馏塔分离叔丁醇的实验研究;最后提出了一种改进的间歇萃取精馏操作方式,即带塔底储罐的间歇萃取精馏,并进行了实验研究。
    本文将间歇萃取精馏全过程分为三个阶段进行了实验研究。这三个阶段为精馏开始到产品全部采出、过渡馏份的采出及溶剂回收。重点实验考察了过渡馏分段和溶剂回收阶段的规律。实验表明,在加入溶剂后全回流操作一段时间后,塔顶浓度上升基本稳定,而且在产品采出过程中塔顶浓度也维持稳定。在过渡馏分的采出过程中,以恒回流比操作时,塔顶浓度开始时下降很快,然后逐渐变缓。在溶剂回收段,当塔顶溶剂浓度开始上升时,塔顶馏出量将突然减小到几乎为零,然后又迅速增大,同时塔顶温度迅速上升。在对间歇萃取精馏全过程的实验研究中,还考察了操作参数,如回流比和溶剂比对产品纯度和收率等的影响。
    本文在工业塔上以乙二醇为溶剂成功的完成了叔丁醇-水共沸物的间歇萃取精馏分离,生产获得了无水叔丁醇(99.5%以上),同时进一步考察及验证了间歇萃取精馏过渡馏分段和溶剂回收阶段的规律。
    针对间歇萃取精馏塔釜容积很大和塔釜加热控制复杂的缺点,本文提出并研究了带塔底储罐的间歇萃取精馏。实验表明带塔底储罐间歇萃取精馏釜温稳定,加热易于控制,而且由于具有塔底储罐,可减小塔釜体积,从而允许有较大的溶剂流率。
Owning to the predominant advantages in separating azeotropic and close- boiling point mixtures, batch extractive distillation is being paid more and more attention. In this paper the study on the whole process of batch extractive distillation was carried out in a laboratory column to investigate operations of the slop cut withdrawal and solvent recovery, and evaluate the effect of operating parameters such as reflux ratio and solvent ratio on the column performance. Then the separation of tert-butyl alcohol from aqueous solution was tested with an industrial column in the way of batch extractive distillation. Finally an improved operation mode of batch extractive distillation with a storage tank connecting to the still was proposed.
    In this paper, it is considered that the batch extractive distillation process has three stages, which are withdrawal of the product, withdrawal of slop cut and solvent recovery. Slop cut withdrawal and solvent recovery was studied intensively. The experiment showed that the overhead concentration rises to a primarily stable value after the solvent is introduced and keeps constant during the product withdrawing. When the slop cut is withdrawn under constant reflux ratio, the overhead concentration descends sharply at the beginning, then smoothly afterwards. In solvent recovery stage, as the concentration of solvent begins to increase, the vapor flow rate in the column decreases soon, almost to zero, and then increases rapidly accompanied with the higher top temperature. The effect of operation parameters such as solvent ratio and reflux ratio on product purity and recovery ratio was studied also.
     The separation of the azeotropic mixture of tert-butyl alcohol and water in an industrial scale column was tested, which produced tert-butyl alcohol of purity >99.5% by using glycol as the solvent. The phenomena of slop cut withdrawal and solvent recovery of batch extractive distillation were verified profoundly.
    For disadvantages of large still in volume and difficult heating control of batch extractive distillation, a storage tank connecting to the still was introduced. The experiment results indicated that the temperature of the still in the new operation mode was relatively stable, and the heating control was more easy.
引文
1. Berg L., Yeh An-I., The Unusual Behavior of Extractive Distillation—Reversing the Volatility of the Acetone-Isopropyle., AIChE., 1985, 31(3): 504-506
    2. Bernot Ch., Doherty, M., and Malone, M. F., Feasibility and Separation Sequencing in Multicomponent Batch Distillation. Chem. Eng. Sci., 1990, 46: 1311-1326.
    3. Bermot,, C.; Doherty, M., and Malone, M.F., Patterns of Composition Chang in Multicomponent Batch Distillation ., Chem. Eng. Sgi., 1991, 45: 1207-1223
    4. Ahamed, B.S., and Barton, P.I, American Institute of Chem. Eng. Journal, 1996, 42: 3419-3425
    5. .Lelkes, Z., Lang, P., Benadda, B., & Moskowicz, P. Feasibility of Extractive Distillation in a Batch Rectifier. American Institute of Chemical Engineering Journal, 1998a, 44(4): 810–822.
    6. Lelkes, Z., Lang, P.,and Otterbein, M., Feasibility of Extractive Distillation in a Batch Rectifier, Comparative Chemical Engineering, 1998c, 22: 653-660
    7. Lang, P., Lelkes, Z., Otterbein, M., Benadda, B., and Modlar, G., Feasibility of Batch Distillation With a Light Entrainer, Computer and Chemical Engineering, 1999: S93-101
    8. P.Lang, G.Modla, B.Benadda, Z.Lelkes, Homoazeotropic Distillation of Maximum Azeotropes in a Batch Rectifier With Continuous Entrainer Feeding I. Feasibility Studies, Computers and Chemical Engineering 2000, 24: 1665-1671
    9. Meadows, E.L. Multicomponent, Batch Distillation Calulations on a Digital Conputers, Chem. Eng. Prog., Symp. Ser., 1963, 59: 48-57
    10. Distefano C.P., Mathematical Modeling and Numerical Integration of Multicomponent Batch Distillation Equations, AIChE J., 1968, 14: 190-198
    11. Albet,J. LeLann J. M. X. Koehret B., Process Technology Proceedings, Elsevier, 1991, 10: 152-163
    12. Chemstatisns, S., Sundaram, S., & Evans, L. B.. Shortcut Procedure for Simulating Batch Distillation Operations, Industrial Engineering and Chemical Research, 1998, 32(3): 511–518
    13. Distefano C.P., Mathematical Modeling and Numerical Integration of Multicomponent Batch Distillation Equations, AIChE J., 1968, 14: 190-198
    14. Yatim H.,Etude Theorique et.al., Experimental due Proceeded Distillation Extractive Discontinue, Ph.D.Thesis, INSA de Lyon, 1993
    15. Lang.P,H.Yatim,et.al., Batch Extractive Distillation Under constant Reflux Ration, Comput. Chem. Eng., 1994, 18(11/12): 1057-1069
    16. Lang P. Modla G. Benadda B. Benadda B. Lelkes Z., Homoazeotropic distillation of maximum azeotropes in a batch rectifier with continuous entrainer feeding II.rigorous simulation, Computers and Chemical Engineering, 2000, 24: 1429-1435
    17. Lelkes.Z Lang.P. Moszkowicz P. et.al, Different Operational Policies the Batch Extractive Distillation, Comput. Chem. Eng., 1995, 19 , S645-653
    18. Lelkes Z Lang P et.al., The Process and the Operational Policies of Batch Extractive Distillation., Chem. Eng. Sci., 1998, 53 (7): 1331-1348
    19. Perry R.P. (1984) , Chemical Engineers, Handbook, 6th Edition, pp.1382-1390. McGraw-Hill,
    
    
    New York, U.S.A.
    20. Sorensen, E., A cycling Operating Policy for Batch Distillation, Ph. D. Thesis,1994, University of Trondheim.
    21. 白鹏,张卫江,余国琮. 动态累积分批精馏过程研究(1). 化学工程, 1994, 22(6):15.
    22. 白鹏,张卫江,余国琮. 动态累积分批精馏过程研究(2). 化学工程, 1994, 22(7) :10.
    23. 尹波 动态累积分批精馏的操作方法[学位论文],天津大学, 1999.
    24. 张健 分批精馏动态累积循环操作流体力学和传质特性研究[博士学位论文], 天津大学,2002.
    26. Robinson E.R., The Optimization of Batch Distillation operation, Chem. Eng. Science, 1969, 24: 1661-1668.
    27. Sorensen, E., & Skogestad, S., Comparison of Regular and inverted Batch Distillation. Chemical and Engineering Science, 1996,51(22): 4949–4962.
    28. Diwekar, U. M., Madhavan, K. P., & Swaney, R. E., Optimization of Multicomponent Batch Distillation Columns. Industrial Engineering and Chemical Research, 1989, 28(8): 1011–1017.
    29. Logsdon, J. S., Diwekar, U. M., & Biegler, L. T., On the Simultaneous Optimal Design and Operation of Batch Distillation. Trans. IchemE, Chem. Eng. Res. Des., 1989, 68(5): 434–444.
    30. Farhat, S., Czernicki, M., Piboleau, L., & Domenech, S., Optimization of Multiple-Fraction Batch Distillation by Nonlinear Programming, American Institute of Chemical Engineering Journal, 1990,36(9): 1349–1360.
    31. Victor Ruiz Ahon, Jose Luiz de Medeiros, Optimal Programming of ideal and Extractive Batch Distillation, Computer and Chemical Engineering, 2001, 25: 1115-1140
    32. 孙传经 气相色谱分析原理与技术.北京:中国石化出版社,1977.
    33. 贾绍一,柴诚敬 化工传质与分离过程.北京:化学工业出版社,2001.
    34. 卢焕章 石油化工基础数据手册.北京:化学工业出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700