液态合金表面张力快速检测及相关质量参数实时评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面张力是液态合金重要的物性参数,它不仅是研究界面反应动力学的基础,而且在金属凝固过程和铸造合金参数的预测中起着重要作用,因此,研究液态合金表面张力的快速检测方法具有重要的理论价值和实际意义,然而,目前绝大多数方法都不能够真正实现液态合金表面张力的炉前快速检测。本文在研究表面张力快速检测新方法的基础上,研制适合于炉前快速检测的表面张力检测仪,并研究评价液态合金相关质量参数的新方法。研究内容主要包括液态合金表面张力理论分析及快速检测新方法的研究,炉前当量表面张力快速检测仪的研制和求解当量表面张力数学模型的建立,铸铁石墨形态、铝硅合金变质处理效果、液态合金充型潜力等质量参数快速评价的方法研究及相应评价模型的建立。研究结果表明,基于新方法的当量表面张力快速检测仪可在炉前快速测得液态合金的当量表面张力,并实时给出相应质量参数的非浇注性评价。
     通过分析最大气泡压力法检测表面张力的原理和过程,认为精确测定毛细管插入液面的深度和严格控制吹出气泡的速度是气泡最大压力法检测表面张力的关键,在此基础上,系统研究了检测液态合金表面张力的新方法——气泡幅频当量法实施过程中的具体问题,为实现表面张力的快速检测奠定了技术基础。通过对气泡压力曲线影响因素的分析和试验研究,确定了求解当量表面张力的基本信息参数和基本数学模型,且毛细管内径为1.8-2.2mm、外径3.5-4.0mm、端口磨平、开口向上,出泡速度控制在每秒2-3个气泡,插入液体深度在可10-20mm内变化。
     基于新方法研制了当量表面张力炉前快速检测仪,它采用电控电动方式工作,可在10秒钟内测得液态合金的当量表面张力和温度值。分析了信息参数的高精度检测方法,由于毛细管探头属一次性消耗品,设计的自动升降和锁紧机构可方便的锁紧/松开探头和驱动探头上下平稳运动。通过大量实验,建立了当量表面张力的求解模型,将该求解模型固化于机内后,表面张力快速检测仪炉前检测液态合金当量表面张力准确度为:绝对误差≤±15.0mN/m,相对误差≤3.0%,温度的准度度为:铸铁≤±2.5℃,铝硅合金≤±1℃。
     根据晶体生长理论和相间张力理论分析了铸铁凝固过程中石墨形态与表面张力的变化,表明它们之间确实存在着一定的关系,完善了表面张力评价铸铁石墨形态的理论基础。实验室条件下,通过对铸铁大量试验研究,建立了当量表面张力评价铸铁石墨形态的评价模型,即:当量表面张力σe≤990mN/m时,石墨形态为完全的片状;当990≤σe≤1108mN/m时,为片状石墨和蠕虫状石墨共存;当1108≤σe≤1283mN/m时,为大量的蠕虫状石墨和少量的球状石墨共存;当1283≤σe≤1385mN/m时,为大量的球状石墨和少量的蠕虫状石墨共存;当σe≥1385mN/m时,为完全的球状石墨。该模型的准确度高于95%。
     从理论上分析了表面张力评价铝硅合金变质处理效果的可行性,并从试验上证实:变质剂是引起铝硅合金当量表面张力变化的主要因素,而温度对当量表面张力的影响较小。通过二元共晶铝硅合金的大量炉前实验,建立了当量表面张力快速评价铝硅合金变质处理效果的模型,即:当量表面张力σe≥530mN/m时,变质处理效果为变质不足,包括未变质和部分变质,相当于AFS的1-2级;当400≤σe≤530mN/m时,为变质中等,相当于AFS的3-4级;当σe≤400mN/m时,为变质完全,相当于AFS的5-6级。实验证明,该模型的准确度达到96%以上。
     通过合金停止流动通用模型的分析可知:表面张力与液态合金充潜力(包括充型长度和充填尖角能力)之间存在着固定的关系,且在铸型条件、浇注条件和铸型(铸件)结构等不变的前提下,可以用液态合金的当量表面张力预测充型潜力的大小。为了测试液态合金的充型潜力,改进了评价液态合金充型长度的装置,保证浇注温度和静压头压力恒定不变;设计了评价液态合金充填尖角能力的新装置,并提出了相应的评价参数和计算方法。分别以HT200和ZL102为例,建立了液态合金当量表面张力与充型长度和充填尖角能力的关系,为了提高测试精度,测试仪采用查表方法来预测液态合金的充型能力,其充型长度预测结果的绝对误差≤±10mm,充填尖角能力≤±3mm-1。
Surface tension is one of the important physicochemical features of the molten alloy. Not only is it the foundation of studying the interface reaction dynamics of the molten alloy, but also plays very important roles in metal solidification process and forecasting parameters of the casting alloy, such as fining and inoculating effect, gas isolation, graphite shape, modification effect, filling mould ability and surface roughness of castings and so on. Therefore, it has very important theoretical value and practical significance to study and test surface tension of the molten alloy. Although many methods had been developed, they cannot fit for fast testing surface tension of the molten alloy in front of the furnace. On the basis of studying new method for testing surface tension, a apparatus of fast testing equivalent surface tension in front of furnace has been developed and new methods for evaluating quality parameters of the molten alloy has been put forward. The research includes theoretical analysis of surface tension and experimental studying of the new testing method, the development of the apparatus and establishment of the model of calculating equivalent surface tension, methods and models of evaluating graphite shape, modification effect, mold-filling potential in front of furnace by equivalent surface tension. The investigation results have proved that the apparatus based on the new testing method can fast test equivalent surface tension of the molten alloy in front of furnace and can fast evaluate the quality parameters before casting.
     Through further analyzing the principle and testing process of maximum bubble pressure method, it can be concluded the dipping depth of capillary must be measured exactly and the rate of gas blowing out must be slow, so, it can not fit for fast testing surface tension. Consequently, a new method, Amplitude and Frequency Equivalent of Bubble Method, for fast testing equivalent surface tension can be studied synthetically by author, which establishes the technology foundation of fast testing equivalent surface tension of the molten alloy in front of furnace. On the basis of analyzing and experimentally studying the affecting factors of bubble pressure curve, information parameters and mathematical model form have been determined and the requirements of capillary are that inner diameter of capillary is 1.8-2.2mm, outer diameter is 3.5-4.0mm, the rate of blowing out bubbles is 2-3 per second and the dipping depth can be alter at 10-20mm.
     Equivalent surface tension and temperature of the molten alloy can be tested in 10 seconds by the apparatus that had been developed based on the new method and the high precision methods of testing the information parameters ahd been studied by author. Because the capillary is one-off, a special mechanism is designed to carry out the functions of crimpling detector automatically and driving detector forward or backward. By experiments the model calculating equivalent surface tension has been obtained and programmed in the computer, and it has been testified that the absolute error and relative error of testing equivalent surface tension are below±15.0mN/m, 3.0% respectively, and that the absolute errors of testing temperature are cast iron≤±2.5℃, Al-Si alloy≤±1℃.
     According to crystal growth theory and interfacial tension theory, the relationship between graphite shape and surface tension has been analyzed and it really exists, which supplies the theoretical foundations of evaluating graphite shape by surface tension. The model evaluating graphite shape has been got by many experiments on cast iron, namely,σe≤990mN/m, graphite shape is complete flake; 990≤σe≤1108mN/m, flake and vermicular; 1108≤σe≤1283mN/m, many vermicular and little nodular; 1283≤σe≤1385mN/m, many nodular and little vermicular;σe≥1385mN/m, complete nodular. The accuracy of evaluating results is higher than 95%.
     Feasibility of evaluating modification effect by surface tension of Al-Si alloy has been analyzed theoretically; experiments have proved that modifier content is the major factor of varying equivalent surface tension and that temperature effect on equivalent surface tension is faint. The model of evaluating modification effect in front of furnace has been achieved through experiments on binary eutectic Al-Si alloys, namely,σe≥530mN/m, under modification, including unmodified and partial modification, equals AFS1-2; 400≤σe≤530mN/m, moderate modification, equals AFS3-4;σe≤400mN/m, perfect modification, equals AFS5-6. The accuracy of evaluating results is higher than 96%.
     Through analyzing the general model of alloy Cessation flow, the relationship between mold-filling potential, including the length of filling mold and the ability of filling taper angle, and surface tension really exists and when mold conditions, pouring conditions and casting structure kept invariable mold-filling potential can be evaluated by equivalent surface tension. The device measuring the length of filling mold has been improved to keep the pouring temperature and static pressure constant and the new device measuring the ability of filling taper angle has been developed and its parameter has been put forward. Took as examples of HT200 and ZL102, the practical relationship between the length of filling mold, the ability of filling taper angle and equivalent surface tension has been found and mold-filling potential can been evaluated by equivalent surface tension by means of table lookup. The absolute errors oft he length of filling mold and the ability of filling taper angle are below±10mm and±3mm-1 respectively.
引文
1 P. Janule Victor. The Dynamics of Surface Tension. European Coatings Journal, 2005, (7-8): 24-27
    2 M. Nasu, K. C. Mills, B. J. Monaghan, et al. Effect of Slag-metal Interfacial Tension on Kinetics of Dephosphorisation. Ironmaking & Steelmaking, 2003, 26(5): 353-357
    3 V. V. Semak, G. A. Knorovsky, D. O. MacCallum, et al. Effect of Surface Tension on Melt Pool Dynamics During Laser Pulse Interaction. Journal of Physics D: Applied Physics, 2006, 39(3): 590-59
    4 S. H. Pundale, R. J. Rogers, G. R. Nadkarni. Finite Element Modeling of Elastic Modulus in Ductile irons: Effect of Graphite Morphology. AFS Transactions, 1998, 102(6): 99-105
    5 王仪玖.表面张力在铸造过程中的作用.江西冶金,2002,22(2):10-13
    6 M. Morinaka, T. Okuzono. Graphite Shape Control Factors in Cast Iron. Journal of Japan Foundry Engineering, 2001, 73(8): 512-516
    7 S. Katalin, V. B. Marian. Surface Changes on the Edge of the Castings with Nodular Graphite. Materials Science Forum, 2005, 473-474: 153-158
    8 B. R. Zhao, S. Ueno, T. Abe, et al. Influence of Graphite Morphology and Matrix on Damping Capacity of Hypereutectic Cast Iron. Journal of Japan Foundry Engineering. 2004, 769(4): 303-308
    9 K. Nogita, S. D. McDonald, A. K. Dahle. Eutectic Modification of Al-Si Alloys with Rare Earth Metals. Materials Transactions, 2004, 45(2): 323-326
    10 S. Argyropoulos, B. Closset, J. Gruzleski. The Quantitative Control of Modif- ication in Al-Si Foundry Alloys Using a Thermal Analysis Technique. Materials Transactions, 2002, 44 (4): 625-628
    11 H. Jiang, J. Sokolowski, M. Djurdjevic. Recent Advances in Automated Evaluation and On-line Prediction of the Al-Si Eutectic Modification Level. AFS Transactions, 2000, 57(3): 142-151
    12 C. R. Ho, B. Cantor. Modification of Hypoeutectic Al-Si Alloys. Journal of Materials Science, 1998, 30(8): 1912-1920
    13 A. H. Zadeh, J. Campbell. Fluidity of Eutectic Grey Iron and Al-Si Alloys inThin Sections. International Journal of Cast Metals Research, 2004, 17(3): 162-169
    14 胡汉起.金属凝固.北京:冶金工业出版社,1985,29-52
    15 范建峰,袁章福,柯家骏.高温熔体表面张力测量方法的进展.化学通报,2004,(11):802-807
    16 S. Sauerland, G. Lohofer, I. Egry. Surface Tension Measurements on Levitated Liquid Metal Drops. Journal of Non-crystalline Solids, 1998, 158(5): 833-836
    17 T. H. Matsumoto, F. Hidetoshi, U. Takaharu, et al. Measurement of Surface Tension of Molten Copper Using the Free Fall Oscillating Drop Method. Measurement Science & Technology, 2005, 16(2): 432-437
    18 S. Susnar, P. Chen, O. I. D. Rio, et al. Surface Tension Response to Area Change Using Axisymmeyric Drop Shape Analysis. Colliods Surface A, 1996, 23(6): 181-194
    19 A. Bateni, S. S. Susnar, A. Amirfazli, et al. Development of a New Methodology To Study Drop Shape and Surface Tension in Electric Fields. Langmuir, 2004, 20(18): 7589-7597
    20 A. G. Meyra, G. J. Zarragoicoechea, V. A. Kuz. Drop in a Metastable Vapor Laplace Equation, Surface Tension, and Minimum Drop Size. Fluid Phase Equilibria, 2005, 235(2): 191-195
    21 李大勇,石德全,李峰等.液态合金表面张力检测技术及其研究应用进展.铸造,2004,53(1):12-17
    22 Y. Z. Zhou, J. Gaydos. Criteria for Evaluating the Accuracy of Surface Tension Values from Digital Vision Systems. The Journal of Adhesion, 2004, 80(10-11):1017-1053
    23 S. Sauerland, K. Eckler, I. Egry. High-precision Surface Tension Measurement on Levitated Aspherical Liquid Nickel Ddroplets by Digital Image Processing. Journal of Materials Science Letters, 2002, 11(6): 330-333
    24 N. Jitrapinate, V. Sriboonlue, K. Srisuk, et al. A Method for Capillary Rise Modeling. Proceedings of the Fourth International Conference on Unsaturated Soils, 2006, 4: 2535-2545
    25 F. Ferrero. Wettability Measurements on Plasma Treated Synthetic Fabrics by Capillary Rise Method. Polymer Testing, 2003, 22(5): 571-578
    26 A. Samad, M. Siamak, S. Farhad, et al. Application of Artificial Neural Network(ANN) in order to Predict the Surface Free Energy of Powders Using the Capillary Rise Method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302(1-3):280-285
    27 N. Hideo, N. Kenichi, T. Kazutaka.Surface Tension Variation of Molten Silicon Measured by Ring Tensiometry Technique and Related Temperature and Impurity Dependence. Japanese Journal of Applied Physics, 2000, 39 (12A): 6487-6492
    28 M. Fabretto, J. Ralston, R. Sedev. Contact Angle Measurements Using the Wilhelmy Balance for Asymmetrically Treated Samples. Journal of Adhesion Science and Technology, 2004, 18(1): 29-37
    29 M. Hoorfar, A. W. Neumann. Axisymmetric Drop Shape Analysis(ADSA) for the Determination of Surface Tension and Contact Angle. Journal of Adhesion, 2004, 80(8): 727-743
    30 D. R. Alejandro. Modeling the Wilhelmy Surface Tension Method for Nematic Liquid Crystals. Langmuir, 2000, 16 (2): 845-849
    31 谷里鹏, 翟光楣.气泡最大压力法测定表面张力的装置设计与测量技巧. 江汉大学学报, 1997, 14(6): 86-88
    32 李大勇, 董庆波. 用新型气泡最大压力法快速测定液体表面张力的研究. 铸造设备研究,1996, (6): 5-7
    33 K. Higuchi, K. Kimura, A. Mizuno. Precise Measurement of Density and Structure of Undercooled Molten Silicon by Using Synchrotron Radiation Combined with Electromagnetic Levitation Technique. Measurement Science & Technology, 2005, 16(2): 381-385
    34 T. Matsumoto, T. Nakano, H. Fujii, et al. Precise Measurement of Liquid Viscosity and Surface Tension with an Improved Oscillating Drop Method. Physical Review E, 2002, 65(3): 1-3
    35 H. Fujii, T. Matsumoto, S. Izutani, et al. Surface Tension of Molten Silicon Measured by Microgravity Oscillating Drop Method and Improved Sessile Drop Method. Acta Materialia, 2006, 54(5): 1221-1225
    36 J. Xu, Z. Y. Qiao, X. J. Han, et al. Measurement and Calculation of Surface Tension of Undercooled Liquid Fe-20wt.%Cu Alloy. Zeitschrift Fur Metallkunde, 2004, 95(11): 1001-1004
    37 I. Seyhan, I. Egry. The Surface Tension of Undercooled Binary Iron and NickelAlloys and the Effect of Oxygen on the Surface Tension of Fe and Ni. International Journal of Thermophysics, 1999, 20(4): 1017-1028
    38 L. I. Zushu, C. Mills Kenneth, M. McLean, et al. Measurement of the Density and Surface Tension of Ni-Based Superalloys in the Liquid and Mushy States. Metallurgical and Materials Transactions B, 2005, 36(2):247-254
    39 A. Moradian, J. Mostaghimi. High Temperature Surface Tension Measurement. IEEE Transactions on Plasma Science, 2005, 33(2): 410-411
    40 S. Schneider, I. Egry, I. Seyhan. Measurement of the Surface Tension of Undercooled Liquid Ti90Al6V4 by the Oscillating Drop Technique. International Journal of Thermophysics, 2002, 23(5): 1241-1248
    41 I. Egry. Surface Tension Measurements in Microgravity and their Relevance to Marangoni Convection. ChemPhysChem, 2003, 4(4): 329-333
    42 许忠宇,邢凯.用光栅衍射法测试液体表面张力.大学物理,2003,22(9):23-24,35
    43 刘香莲. 激光衍射法测量液体的表面张力及界面张力. 北京联合大学学报(自然科学版), 2006, 20(4): 79-82
    44 王凤坤,吴江涛,刘志刚.激光散射法测量液体表面张力系统的研制. 西安交通大学学报,2006, 40(9): 1006-1009
    45 胡亚范, 姚爱巧. 用力敏传感器测量液体表面张力系数. 物理与工程,2005, 15(6): 38-40
    46 J. Lee, A. Kiyose, S. Nakatsuka, et al. Improvements in Surface Tension Measurements of Liquid Metals Having Low Capillary Constants by the Constrained Drop Method. ISIJ International, 2004, 44(11): 1793-1799
    47 A. Amirfazli, J. Graham-Eagle, S. Pennell, et al. Implementation and Examin- ation of a new Drop Shape Analysis Algorithm to Measure Contact Angle and Surface Tension from the Diameters of Two Sessile Drops. Colloids & Surfaces A: Physicochemical and Engineering Aspects, 2000, 161(1): 63-74
    48 梁燕波,刘芳,秦正龙.金属熔体表面张力计算方法的研究.徐州师范大学学报(自然科学版),2000,18(4):50-52
    49 李大勇.铸造生产参数快速检测理论与实践.哈尔滨:黑龙江科学技术出版社,1995,150-152
    50 李峰,石德全,李大勇.球铁石墨形态炉前快速识别技术研究与应用状况评述.现代铸铁,2003,(6):36-40
    51 V. Strezov, J. Lucas, L. Strezov. Computer Aided Thermal Analysis. Journal of Thermal Analysis and Calorimetry, 2005, 72(3): 907-918
    52 P. Ruther, M. Herrscher, O. Paul. A Micro Differential Thermal Analysis (/spl mu/DTA) System. 17th IEEE International Conference on MEMS, 2004: 165-168
    53 X. Y. Mei, J. H. Gao, X. L. Xu. An Improved Method of Traditional Differential Thermal Analysis Instrument (DSC). Journal of Beijing Institute of Machinery, 2005, 20(3): 35-37
    54 X. L. Xu, G. X. Wu, Y. C. Shi. Development of Intelligent System of Thermal Analysis Instrument. 7th International Symposium on Measurement Technology and Intelligent Instruments, 2005: 59-62
    55 李大勇,张沛红.ZC-20B 型铁水质量炉前快速分析仪的研制.应用科学学报,1996,14(3):307-312
    56 张武城,涂思柏,张乃蕴.我国铸造质量控制与测试技术发展的回顾与展望.铸造,2002,51(8): 457-463
    57 K. M. Kim, I. S. Kwon, C .H. Lee, et al. Effect of Phosphorus on Modification of Eutectic Silicon in Al–7Si–0.3Mg Alloy. Materials Science and Technology, 2000, 16(3): 243-248
    58 雷鸣豹,修吉平.基于 PC 总线的热分析系统在铝合金品质控制上的应用研究.铸造技术,1999,(2):11-13
    59 刘云,杨晶.微分热分析法在铝合金变质处理上的应用.铸造,2003,(1):66-69
    60 X. Chen, H. Y. Geng, Y. X. Li. Study on the Eutectic Modification Level of Al-7Si Alloy by Computer Aided Recognition of Thermal Analysis Cooling Curves. Materials Science and Engineering: A, 2006, 419(1-2): 283-289
    61 F. Piasentini, F. Bonollo, A. Tiziani. Fourier Thermal Analysis Applied to Sodium Eutectic Modification of an AlS17 Alloy. Metallurgical Science and Technology, 2005, 23, (2): 11-20
    62 S. Hegde, G. Kumar, K. N. Prabhu. Effect of Section Thickness and Modification on Thermal Analysis Parameters of A357 Alloy. International Journal of Cast Metals Research, 2006, 19(4): 254-258
    63 熊红玲,吴树森,袁文文等. ZL104 铝合金变质等级与变质效果的热分析研究. 热加工工艺,2007, 36(5): 28-30
    64 曾辉,余坤. 涡流法判断铝硅合金活塞变质效果的方法. 内燃机工程,2000, 21(3):50-53
    65 曾辉,曾琪. 涡流法检测铝硅合金显微组织的误差分析.无损检测,2004, 26(7): 372-374
    66 张玉林, 张玲.基于微机的熔铝质量快速检测分析系统.计算机应用,2001,(8):76-77
    67 M. D. Sabatino, F. Syvertsen, L. Arnberg. An Improved Method for Fluidity Measurement by Gravity Casting of Spirals in Sand Moulds, International Journal of Cast Metals Research, 2005, 18(1): 59-62
    68 P. N. Hansen, Y. B. Zhang, X. Xue. Simulation and Prediction of Flow Patterns in Mold Filling. Transactions of Nonferrous Metals Society of China, 2001, 11(5): 743-747
    69 Q. Hua, D. M. Gao, H.J. Zhang, et al. Influence of Alloy Elements and Pouring Temperature on the Fluidity of Cast Magnesium Alloy. Materials Science and Engineering: A, 2007, 444(1-2): 69-74
    70 D. M. Xu, Q. M. Yu, X. Li, et al. Mold Filling Behavior of Melts with Different Viscosity under Centrifugal Force Field. Journal of Materials Science and Technology, 2002, 18(2): 149-151
    71 侯文生.铸造合金流动性的电测.造型材料,2001,(1):22-25
    72 H. Y. Zhang, S. M. Xing, Q. H. Zhang, et al. Evaluation of the Mold Filling Ability of Alloy Melt in Squeeze Casting. Journal of University of Science and Technology Beijing, 2006, 13(1): 60-66
    73 Q. Y. Han, H. B. Xu. Fluidity of Alloys under High Pressure Die Casting Conditions. Scripta Materialia, 2005, 53(1): 7-10
    74 徐林,刘颐广,李绪等.ZLWY-l 型铸造金合金流动性微机测试仪的研制.铸造设备研究,1991,(3):24-29
    75 O. V. Romankevich, N. A. Osipenko, V. M. Kadochnikov. Surface Tension and the Gibbs Approach. Fibre Chemistry, 2005, 37(3): 227-229
    76 T. L. Hill. On Gibbs' Theory of Surface Tension. The Journal of Chemical Physics, 1951, 19(9): 1203-1208
    77 E. A. Arinshtein. Nonlocal Theory of Surface Tension in Simple Liquids. Theoretical and Mathematical Physics, 2006, 148(2): 1573-1583
    78 C. A. Galan, A. Mulero, F. Cuadros. Calculation of the Surface Tension and theSurface Energy of Lennard-Jones Fluids from the Radial Distribution Function in the Liquid Phase. Molecular Physics, 2005, 103(4): 527-535
    79 李春喜,王子镐,宋红艳.一个基于 UNIQUAC Gibbs 自由能模型的液体表面张力方程. 石油学报,2001, 17 (2): 45-51
    80 P. D. Shoemaker, G. W. Paul, L. E. Marc de Chazal. Surface Tension of Simple Liquids from the Radial Distribution Function. The Journal of Chemical Physics, 2004, 52(2): 491-495
    81 T. Tanaka, K. Hack, S. Hara. Calculation of Surface Tension of Liquid Bi&unknown; Sn Alloy Using Thermochemical Application Library ChemApp. Calphad, 2000, 24(4): 465-474
    82 B. D. Summ. Relationship between the Temperature Coefficient of Surface Tension and the Entropy of Fusion. Journal of Physical Chemistry, 1992, 66(7):1036-1037
    83 Takamichi Iida, Roderick I. L. Guthrie. The Physical Properties of Liquid Metals. Oxford University Press, 1993: 273-281
    84 A. C. Lawson. An Improved Lindemann Melting Rule. Philosophical Magazine Part B, 2001, 81(3): 255-266
    85 N. Eustathopoulos, B. Drevet, E. Ricci. Temperature Coefficient of Surface Tension for Pure Liquid Metals. Journal of Crystal Growth, 1998, 191(1): 268-274
    86 李以圭,陆九芳. 电解质溶液理论. 北京:清华大学出版社,2005
    87 H. Lin, Y. Y. Duan, Q. Min. Gradient Theory Modeling of Surface Tension for Pure Fluids and Binary Mixtures. Fluid Phase Equilibria, 2007, 254(1-2): 75-90
    88 D. Daniel, J. C. Pamies, F. V. Lourdes. Interfacial Properties of Lennard-Jones Chains by Direct Simulation and Density Gradient Theory. The Journal of Chemical Physics, 2004, 121(22): 11395-11401
    89 J. Puibasset. Grand Potential, Helmholtz Free Energy, and Entropy Calculation in Heterogeneous Cylindrical Pores by the Grand Canonical Monte Carlo Simulation Method. Journal Physical Chemistry B, 2005, 109(1): 480-487
    90 Z. Q. Shi. Formally Exact Truncated Nonuniform Excess Helmholtz Free Energy Density Functional: Test and Application. Journal Physical Chemistry B, 2004, 108 (9): 3017-3023
    91 程传煊. 表面物理化学. 北京: 科学技术文献出版社, 1995
    92 C. F. Scott, G. C. Sander, J. Norbury. Computation of CapillarySurfaces for the Laplace Young Equation. The Quarterly Journal of Mechanics and Applied Mathematics, 2005, 58(2): 201-212
    93 H. Nakae, T. Fukui. Bubble Growth for Wetting and Nonwetting System in the Maximum Bubble Pressure Method. Materials Transactions, 2001, 42(11): 2422-2426
    94 V. I. Kovalchuk, S. S. Dukhin. Dynamic Effects in Maximum Bubble Pressure Experiments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 192(1): 131-155
    95 V. B. Fainerman, A. V. Makievski, R. Miller. Accurate Analysis of the Bubble Formation Process in Maximum Bubble Pressure Tensiometry. Review of Scientific Instruments, 2004, 75(1): 213-221
    96 V. B. Fainerman, R. Miller. Maximum Bbubble Pressure Tensiometry-an Analysis of Experimental Constraints. Advances in Colloid Interface Science, 2004, 108-109: 287-301
    97 N. Ohara, E. Kato. The Measurement of the Surface Tension of Molten Fe-3.52% C-2.02% Si Alloys by the Maximum Bubble Pressure Method. Metallurgical Transactions B, 1993, 24B(1): 200-203
    98 N.C. Christov, K. D. Danov, P. A. Kralchevsky, et al. Maximum Bubble Pressure Method: Universal Surface Age and Transport Mechanisms in Surfactant Solutions. Langmuir, 2006, 22(18):7528-7542
    99 姜继海,宋锦春,高常识. 液压与气压传动. 北京:高等教育出版社, 2002:48-49
    100 党淑雯, 郑耀林.集成温度传感器 AD590 及其在热电偶冷端补偿中的应用.仪器仪表用户,2004,11(4): 40-41
    101 李精华, 陈胜权.单片机系统中的抗干扰分析及措施.信息技术, 2005, 9(8): 138-141, 145
    102 V. K. Gebov. Main Principles at the Control of the Interuption for Processor with One Chip (mc68hc11). Proceedings of the 12th International Scientific and Applied Science Conference, 2003(2): 137-142
    103 T. G. Sabirzyanov. Subregular Version of General Mathematical Model of Thermodynamics of Metallurgical Slags. Chernaya Metallurgiya, 2001, 12(11): 53-55
    104 Z. P. Luo, J. W. Xiang. Parametric Correcting Method for Dynamic Mathematical Model via Dynamical Response. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(7): 648-651
    105 B. Seilkhan. The Method of Solution of Optimization Network Mathematical Model. International Conference of Dynamical Systems and Applications, Turkey, 2004: 5-10
    106 R. Ruxanda, D. M. Stefanescu. Graphite Shape Characterisation in Cast Iron from Visual Estimation to Fractal Dimension.International Journal of Cast Metals Research, 2001, 14(4): 207-216
    107 D. Y. Li, D. Q. Shi, F. Li, et al. A new method of fast measuring surface tension of melt cast iron and its application in graphite shape identification. China Foundry, 2005, 2(1): 34-37
    108 D. Emadi, J. E. Gruzleski, J. M. Toguri. The Effect of Na and Sr Modification on Surface Tension and Volumetric Shrinkage of A356 Alloy and their Influence on Porosity Formation. Metallurgical Transactions B, 1993, 24B(6): 1055-1063
    109 V. Pines, M. Zlatkowski, A. Chait. Surface Tension Anisotropy and Cell-like Structure Formation in Free Solidification. Journal of Crystal Growth, 1993, 128(1-4): 247-250
    110 K. Szocs. Superficial Tension and Graphite Form in the Surface Zone of Parts of Nodular Cast Iron. Metalurgia, 1997, 49(1): 35-44
    111 T. Wu, H. C. Liaw, Y. Z. Chen. Thermal Effect of Surface Tension on the Inward Solidification of Spheres. International Journal of Heat and Mass Transfer, 2002, 45(10): 2055-2065
    112 X. M. Xue, H. G. Jiang, B. Z. Ding, et al. Influence of Phosphorus Addition on the Surface Tension of Liquid Iron and Segregation of Phosphorus on the Surface of Fe-P Alloy. Metallurgical Transactions, 1996, 27(1): 71-80
    113 J. Lee, K. Morita. Effect of Carbon and Sulphur on the Surface Tension of Molten Iron. Steel Research, 2002, 73(9): 367-372
    114 T. Tanaka, S. Hara. Surface Tension and Viscosity of Liquid Iron Alloys. Materia Japan, 1997, 36(1): 47-54
    115 K. Nogi, K. Ogino. Effect of Sulphur on Surface Tension of Liquid Iron and Wettability of Solid Oxides by Liquid Iron. Journal of The Physical Society of Japan, 1990, 16(1): 20-26
    116 J. Lee, T. Tanaka, M. Yamamoto, et al. Effect of Oxygen on Surface Tension of Liquid Alloys. Materials Transactions, 2004, 45(3): 625-629
    117 Z. F. Yuan, J. Li, Y. F. Pan, et al. Comparison of Surface Tension Measured Values for Molten Tin at Different Oxygen Potentials. Steel Research International, 2006, 77(7): 495-499
    118 袁章福,柯家骏,李品.金属及合金的表面张力.北京:科学出版社,2006
    119 F. Y. Han, Y. B.Gao, H. F. Zhao. Effects of the Modification with Sodium Salt and Vibration on Microstructure and Properties of Zn-27Al-Si Alloy. Material Science and Technology, 2005, 13(2): 182-184, 188
    120 K. Nogita, S. D. McDonald, A. K. Dahle. Effects of Boron-strontium Interactions on Eutectic Modification in Al-10 mass% Si Alloys. Materials Transactions, 2003, 44(4): 692-695
    121 M. Mahmoudi, R. Taghiabadi, M. Emamy. Simultaneous Grain Refining and Modification of 356 Aluminium Alloy Using Aluminium Base Master Alloys Containing Strontium, Titanium and Boron. Light Metals, 2005, 13-17(2): 1129-1133
    122 X. Bian, Z. Zhang, X. Liu. Effect of Strontium Modification on Hydrogen Content and Porosity Shape of Al-Si Alloys. Materials Science Forum, 2000, 331-337(1):361-366
    123 王顺成,陈彦博,温景林.变质剂 Al-Sr 中间合金的制备及其变质效果.轻合金加工技术,2003,31(1): 4-6
    124 于丽娜,刘相法,乔进国.Al-Ba 中间合金及其对共晶 Al-Si 合金的变质处理.铸造,2003,52(8): 613-615
    125 H. K.Yi, D. Zhang. Modification Effect of Pure Rare Earth Metal La on As-cast Hypereutectic Al-17%Si Alloys. Transactions of Nonferrous Metals Society of China, 2003, 13(2): 358-364
    126 H. H. Zhang, H. L. Duan, G. J. Shao, et al. Modification Mechanism of Cerium on the Al-18Si Alloy. Rare Metals, 2006, 25(1): 11-15
    127 S. Sumanth, R. Yancy, M. Makhlouf. Nucleation Mechanism of Eutectic Phases in Aluminum Silicon Hypoeutectic Alloys, Acta Materialia, 2004, 52(15): 4447-4460
    128 M. M. Makhlouf, S. Shankar, Y. W. Riddle. Mechanisms of Formation and Chemical Modification of the Morphology of the Eutectic Phases in HypoetecticAluminum-Silicon Alloys. Transactions of the American Foundry Society, 2005, 113(7): 145-162
    129 H. Nakae, H. Kanamori. Modification of Al-Si Alloy Using Strontium and its Mechanism. 4th Decennial International Conference on Solidification Processing; UK, 1997: 477-480
    130 G. L. Liu, R. D. Li, Z. P. Zhou. Study on Modification Mechanism of Rare Earth in ZA27 Cast Alloy with Electronic Theory and Molecular Dynamics Method. Journal of Materials Science & Technology, 2004, 20(5): 586-588
    131 P. Li, D. Zeng, J. Jia, et al. Modification Effect and Mechanism of Sr/Na in Al-Si Alloy. Chinese Journal of Mechanical Engineering, 2000, 36(2): 81-84
    132 张承甫,龚建森,黄杏蓉等.液态金属的净化与变质.上海:上海科技大学出版社, 1989,30-31
    133 D.G. Stelios. New two-variable full Orthogonal Designs and Related Experiments with Linear Regression Models. Statistics and Probability Letters, 2007, 77(1): 25-31
    134 X. Chen, H. Y. Geng, Y. X. Li. Assessment of Modification Level of Hypoeutectic Al-Si Alloys by Pattern Recognition of Cooling Curves. China Foundry, 2005, 2(4): 246-253
    135 H. Y. Zhang, S. M. Xing, Q. H. Zhang, et al. Evaluation of the Mold-filling Ability of Alloy Melt in Squeeze Casting. Journal of University of Science and Technology Beijing, 2006, 13(1): 60-66
    136 A. K. Dahle, K. Nogita, S. D. McDonald, et al. Eutectic Modification and Microstructure Development in Al-Si Alloys. Materials Science and Engineering: A. 2005, 413-414(15): 243-248
    137 王春生,田丽,李光锡等.合金充型能力的理论分析.铸造,1994(6):1-6
    138 M. Masoumi, H. Hu, J. Hedjazi, et al. Effect of Gating Design on Mold Filling. Transactions of the American Foundry Society, 2005, 113(5): 152-169
    139 H. Shimizu, T. Habu, Y. Takada, et al. Mold Filling of Ttitanium Alloys in Two Different Wedge-shaped Molds. Biomaterials, 2002, 23(11): 2275-2281

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700