土石坝地震破坏机理振动台试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源需求仍是当今世界发展的主题,我国十二五能源规划要求要加快推进水电能源等可再生资源的开发与建设,大力开发水能资源已成为确保我国能源安全、实现节能减排目标的重要战略举措。土石坝是当今坝工建设中最常见的一种坝型,我国已建和在建的近百座百米级高土石坝大多位于高地震烈度区。随着我国西部水电大开发进程的加快和南水北调西线工程的规划实施,还将兴建一批高土石坝。大坝的高度越来越高,随之而来的大坝安全性也越来越重要。强震下的大坝安全是水利枢纽的关键问题,这些高坝大库一旦因地震失事,其后果将是灾难性的。然而,由于现代碾压土石坝遭受强震破坏的记录非常少,缺乏强震区土石坝的实际震害资料和地震反应记录,对土石坝地震破坏机理的认识尚不深入,现有的土石坝抗震措施大多属经验型,缺乏定量或半定量的系统论证,抗震措施研究明显滞后于实际工程。因此,面向国家重大工程需求,开展土石坝地震破坏机理研究、论证可行的抗震措施,对提升我国土石坝抗震设计水平,保障能源需求和安全,保障社会经济可持续发展、人民生活安定和谐具有十分重要的意义。
     尽管土动力学理论、土石坝数值分析技术得到长足发展,但土石坝的振动台模型试验仍然是验证动力分析模型,阐明破坏机理、分析大坝抗震性能、验证抗震措施有效性的重要手段。由于土石材料呈现强烈的非线性性质,因此很难选择一种完全满足相似关系要求的模型材料。另外,现有振动台模型试验的测试技术,难以准确量测坝坡震损过程中堆石体滑移破坏机制,难以准确量测面板、心墙等低强度材料的变形破坏过程,无法满足土石坝地震破坏机理研究的需要。因此,研究并改进振动台模型试验的模型设计方法、模型材料的制配方法、模型的制作工艺、振动台测试技术和分析手段等,是提高模型试验水平的关键,也是国内外同行学者普遍关注的课题。这些问题的解决对于评价振动台模型试验成果,进而应用于工程实际是非常重要的。
     针对以上问题,本文开发了土石坝振动台试验新技术,利用这些新的试验技术进行了一系列振动台模型试验并结合数值模拟技术系统地研究了地震作用下土石坝(包括面板堆石坝和心墙堆石坝)的破坏机理,据此提出可行的抗震措施,并对抗震措施的有效性及其作用机制进行试验验证。本文主要工作包括:
     1)依据大量的试验数据,研制了一种混凝土面板模型材料,该材料具有高密度、低弹性模量和低强度的特性,可以同时满足弹性相似和重力相似的要求,为探明地震作用下面板的破坏机理提供了模拟技术;在土石坝(散粒体结构)振动台模型试验中引入图像识别技术,开发了一套完善的图像采集、快速存储和图像识别系统,解决了颗粒位移和变形量测困难的问题,提高了散粒体结构变形量测的精度,实现了全断面、全时程的变形量测;将分布式光纤光栅应变传感器应用到低强度、低弹性模量的面板和心墙的应变量测中,解决了土石坝振动台模型试验中低强度、低弹性模量结构应变量测困难的问题,并通过传感器的串接,利用光纤光栅解调仪进行单通道多个传感器的同时测量,大幅度降低对大坝模型的干扰。这些新技术为深入研究强震时土石坝破坏机理提供了技术支持。
     2)阐述了模型材料的选配方法,并进行实例分析。利用选择的模型材料(堆石料和心墙材料)设计心墙堆石坝模型试验,对心墙坝的地震稳定性进行研究,并研究了不同的地震动输入对坝体变形和稳定的影响;利用图像识别技术对坝体堆石颗粒的运动和坝体的破坏过程进行全程追踪;利用光纤光栅应变传感器对心墙进行应变量测;根据试验结果对所开发试验技术的有效性进行了验证。
     3)利用所选择的模型填筑料和根据相似关系制备的模型面板材料设计了一系列面板堆石坝振动台模型试验,对面板堆石坝的地震破坏机理进行研究。根据振动台试验以及数值模拟结果,阐明了上游面板两种破坏模式(弯曲破坏和压剪破坏)的机理,为抗震措施的提出提供试验依据。
     4)针对紫坪铺面板堆石坝在“5.12汶川大地震”中的主要震害之一,即面板错台现象,设计模型试验进行研究。采用基于有限差分法的弹塑性分析和基于有限元动力时程法的极限平衡分析对试验过程进行数值模拟,将模型试验和数值分析结果同解析分析相结合,阐明了紫坪铺大坝面板错台机理。
     5)根据面板堆石坝地震破坏机理,以增强坝顶区上下游坝坡土体的稳定和抗变形能力为目标,设计振动台模型试验,通过类比的试验方法阐明了不同加固措施对坝体破坏模式、坝顶沉降率、坝宽改变率、颗粒运动速度、坝坡颗粒起滑加速度以及面板断裂和压剪破坏(错台)加速度等因素的影响规律及其作用机制,并建议了坝高4/5以上坝顶区采用胶结碎石或土工格栅联合下游护坡的加固措施。
     本文得到国家自然科学基金重大研究计划重点项目“高土石坝地震灾变模拟及安全控制方法研究”(编号:90815024)、国家自然科学基金面上资助项目“层状地基中基础穿透破坏的机理和判据研究”(编号:50978045)、国家自然科学基金委创新研究群体基金(编号:51121005)、辽宁省创新团队项目(编号:2009T017)的资助,在此一并表示感谢。
The energe demand is still a key topic of the present world. The latest five year energe plan of China proposes that we should accelerate promote the development of the water resourses. The earth-rockfill dam is the mostly used dam type in the construction of the dam engineering. An increasing number of tall earth-rockfill dams will be built in southwest China and other locations around the world, some of which are highly seismic areas. The height of the dam is more and more high, and the issue of safety of them becomes of vital importance. The safety of the earth-rockfill under strong earthquake is the key problem of the hydraulic engineering and it will be a disastrous accident if the earth-rockfill is broken. However, only a limited number of dams have been damaged by earthquakes, particularly earthquakes with high magnitude. This lack of data limits the accuracy to judge the seismic safety of earth-rockfill dams under high-magnitude earthquakes. So the dams' failure mechanism during earthquakes has remained unclear, which has limited the ability to accurately judge dam safety. The current aseismic measures mostly according to the experience and lacking of the validation of the actual projects or experiments. So researches on the seismic failure mechanism and aseismic measures of earth-rockfill dams have important significance on improving the design technology and protecting the life security of the public people.
     It is difficult to predict the deformation of the earth-rockfill due to the lack of the in-situ data and the soil complexity in both the constitutive model and calculation parameters. The shaking table model test is the most effective method for studying the failure mode and the failure mechanism of soil structures under seismic loads because of its flexibility and convenience. The rockfill has strong nonlinear characteristics so it is hard to select a model material satisfying the similitude law completely in the earth-rockfill dam shaking table model tests. In addition, the current experimental technologies have some limitations on researching the seismic failure mode and failure mechanism of the earth-rockfill dams such as it is hard to measure the displacements of the discrete material and it is also hard to measure the strain of the model slab and clay core with low strehgth and elastic modulus. So the researches on the model similarity, the development of the model material and the improments on the experimental technologies have great significance on improving the technical level of the shaking table model test of earth-rockfill. And the solving of these problems is also important on evaluating the test results and applying the test results on the practical project.
     Considering of the limitations of the current experimental technologies, some improvements on the shaking table model test technology are introduced. And then, the seismic failure mechanism and aseismic measures of earth-rockfill dams (including earth-core rockfill dam-ECRD and concreted faced rockfill dam-CFRD) are researched based on the introduced experimental technologies. The research work carried out in the present thesis can be summarized as follows:
     1) A model slab material satisfying the similitude law is developed according to numerous experimental datas. The PIV technology is applied to large-scale shaking table model tests on slope stability, and the failure criterion is also studied. A system for image collecting, fast storing and pattern recognition, by which Particle Image Velocimetry (PIV) technology can be used in shaking table tests to obtain the displacements of soil particles. A type of specially designed distributed Fiber Bragg gratings (FBG) as strain sensors to measure the strains of the model slabs which have very low elastic modulus and strength. The disturbance of the FBG sensors to the dam model are reduced by linking the sensors together and several sensors can be measured together by a single channel. These new experimental technologies provide technician support to research the failure mechanism of earth-rockfill dams under earthquake.
     2) The methods to prepare the model materials are discussed, and some examples are analyzed. A series of model experiments are designed to investigate the dynamic failure mode and failure mechanism of ECRDs. Different input waves including the gradually increasing sinusoidal waveform and a series of synthetic wave with increasing magnitude are employed to investigate the failure mechanism of ECRDs under different conditions. Then the effectivenesses of the developed experimental technologies are validated according to the test results.
     3) A series of model experiments are designed to investigate the dynamic failure mode and failure mechanism of CFRDs. Based on the experimental results and numerical simulation, the failure process of the dam and the failure mechanisms of slab fracture and slab dislocation are discussed.
     4) A shaking table model test is designed to research the main damage characteristics of the Zipingpu dam, i.e. the slab dislocation. And the failure mechanism of the slab dislocation is researched by the test results, the numerical simulation results (including the finite difference method and the dynamic finite element time history method), and also the analysis method resluts.
     5) To discuss the effects of possible measures on enhancing the stability of CFRD, a series of model experiments are conducted. The measures discussed herein include using geo-textile to enhance the upper model, placing some slope protection materials on the downstream slope surface, and replacing the top model rock-fill by cemented rock-fill material. Moreover, a new aseismic measure is presented to overcome the weakness of the current measures that is using the concrete layer to replace the geo-textile and the steel bar. Accroding to the comparison of the crest settlement rate, the surface grain yield acceleration, the slab fracture acceleration, and the slab dislocation acceleration of each model, the effectiveness of each aseismic measures on improving the stability and anti-deformation ability of CFRD are researched. Finally, the measure in which firstly the upper1/5of the dam is reinforced, and then the downstream slope is protected by the slope protection material, such as grouted stone pitching, is suggested.
     This work is funded by the National Natural Scientific Foundations of China (Grant No.90815024,51121005,50978045and2009T017). These supports are gratefully acknowledged.
引文
[1]柴国荣,冯家涛,周志星.水电能源开发与西部地区可持续发展问题研究[J].西北农林科技大学学报(社会科学版),2001(01):18-21.
    [2]林昭.碾压式土石坝设计[M].黄河水利出版社,2003.
    [3]顾淦臣,沈长松,岑威钧.十石坝地震工程学[M].北京:中国水利水电出版社,2009.
    [4]谭界雄.我国土石坝技术近年来的发展[J].人民长江,1992(06):11-16.
    [5]祁庆和.水工建筑物[M].北京:中国水利水电出版社,1996.
    [6]葛文辉.我国碾压式土石坝的发展[J].施工组织设计,1992(1):1-8.
    [7]Bayraktar A, Kartal M. E. Linear and nonlinear response of concrete slab on CFR dam during earthquake[J]. Soil Dynamics and Earthquake Engineering,2010(30):990-1003.
    [8]蒋国澄.混凝土面板堆石坝的面板裂缝问题[J].水利管理技术,1994(04):10-15.
    [9]郦能惠,王君利,米占宽,等.高混凝土面板堆石坝变形安全内涵及其工程应用[J].岩土工程学报,2012,34(2):193-201.
    [10]中国水力发电工程学会混凝土面板堆石坝专业委员会.混凝土面板堆石坝安全监测技术实践与进展[M].北京:中国水利水电出版社,2010:1-20.
    [11]赵增凯.对修建高混凝土面板堆石坝的几点回顾与建议[C].第一届堆石坝国际研讨会.中国四川成都:2009,19-20.
    [12]苏幼坡,张玉敏.唐山大地震震害分布研究[J].地震工程与工程振动,2006(03):18-21.
    [13]李智.利用空间对地观测技术研究全球构造特征[D].中国地震局地质研究所,2003.
    [14]孔宪京,邹德高,邓学晶,等.高土石坝综合抗震措施及其效果的验算[J].水利学报,2006(12):1489-1495.
    [15]Dakoulas P. Nonlinear seismic response of tall concrete-faced rockfill dams in narrow canyons[J]. Soil Dynamics and Earthquake Engineering,2012(34):11-24.
    [16]Iwashita T. Elasto-plastic effective stress analysis of centrifugal shaking tests of a rockfill dam[C]. The 14th World Conference on Earthquake Engineering. Beijing:2008.
    [17]张锐,迟世春,林皋.基于大变形理论的高十石坝坝坡稳定分析[J].水电能源科学,2007(06):54-57.
    [18]赵剑明,常亚屏,陈宁.加强高土石坝抗震研究的现实意义及工作展望[J].世界地震工程,2004(01):95-99.
    [19]王复来,陈洪天.土石坝变形与稳定分析[M].北京:中国水利水电出版社,2007.
    [20]Comision Federal De Electricidad Effects of the September 1985 Earthquake on Dams Built on the Balsas River[R].Comision Federal De Electricidad Mexico:1987.
    [21]Cfde Performance of El Infiernillo and La Villita dams including the earthquake of March 14, 1979[R].Comision Federal De Electricidad Mexico:1980.
    [22]Elgamal A. W. M, Scott R. F, Succarieh M. F, et al. La Villita Dam Response During Five Earthquakes Including Permanent Deformation[J]. Journal of geotechnical engineering,1990, 116(10):1443-1462.
    [23]王复来.碧口土石坝[J].西北水电技术,1984(03):13-25.
    [24]李永红,王平,曹荣.汶川地震中高土石坝震损初步分析[C].汶川地震中高土石坝震损初步分析.2009,427-428.
    [25]林皋.汶川大地震中大坝震害与大坝抗震安全性分析[J].大连理工大学学报,2009(05):657-666.
    [26]Nagayama I, Yamaguchi Y, Sasaki T, et al Damage to Dams Due to Three Large Earthquakes Occurred in 2003,in Japan[R].US-Japan Natural Resources Development Program 2004.
    [27]韩国城,孔宪京.混凝土面板堆石坝抗震研究进展[J].大连理工大学学报,1996(06):74-86.
    [28]Boulanger R. W, Bray J. D, Merry S. M, et al. Three-Dimensional Dynamic Response Analysis of Cogswell Dam[J]. Canadian Geotechnical Journal,1995(32):452-464.
    [29]Boulanger R. W, Bray J. D, Merry S. M, et al. Dynamic Response Analyses of Cogswell Dam During the 1991 Sierra Madre and 1987 Whittier[C]. Proceedings of Seminar on seismological and engineering implications of recent strong-motion data. California:1993.
    [30]Arrau L., Ibarra 1, Noguera G. Performance of Cogoti Dam under Seismic Loading. Concrete Face Rockfill Dams-Design, Construction and Performance[M]. New York:1985.
    [31]关志诚.紫坪铺水利枢纽工程5.12震害调查与安全状态评述[J].中国科学(E辑:技术科学),2009(07):1291-1303.
    [32]陈生水,霍家平,章为民.“5.12”汶川地震对紫坪铺混凝土面板坝的影响及原因分析[J].岩土工程学报,2008,30(6):795-801.
    [33]Bureau G, Volpe R, Roth W, et al. Seismic Analysis of Concrete Face Rockfill Dams. Concrete face rockfill dams-design, construction and performance[C]. New York:1985.
    [34]Resendiz D, Romo M. P, Moreno E. El Infiernillo and La Villita Dams:Seismic Behavior[J]. Journal of the Geotechnical Engineering Division,1982,108(GTl):109-131.
    [35]Mononobe H. A. Seismic stability of the earth dam[C]. Proceedings of 2nd Congress of Large Dams. Washington D.C.:1936.
    [36]Dakoulas P., Gazetas G. A class of inhomogeneous shear models for seismic response for dam and embankments[J]. Soil Dynamics and Earthquake Engineering,1985,4(4):166-182.
    [37]张克绪.土坝等价地震系数和水平剪应力最大幅值简化计算[J].水利学报,1985,16(9):35-42.
    [38]Oner M. Shear vibration of inhomogeneous earth dams in rectangular canyons[J]. Soil Dynamics and Earthquake Engineering,1984,3(1):19-26.
    [39]Gazetas G. Longitudinal vibrations of embankment of dams[J]. Journal of the Geotechnical Engineering Division, ASCE,1981,107(1):21-40.
    [40]栾茂田,金崇磐,林皋.非均质土石坝及地基竖向地震反应简化分析[J].水力发电学报,1990,9(1):48-62.
    [41]Clough R. W., Chopra A. K. Earthquake Stress Analysis in Earth Dams[J]. Journal of the Engineering Mechanics Division,1966,92(2):197-212.
    [42]Hardin B. O, Drnevich V. P. Shear Modulus and Damping in Soils:Design Equations and Curves[J]. Journal of Soil Mechanics and Foundations Division,1972,98(7):667-692.
    [43]沈珠江,徐刚.堆石料的动力变形特性[J].水利水运科学研究,1996(02):143-150.
    [44]田景元,李国英.Hardin土动模型的应用与讨论[J].水利水运工程学报,2009(01):22-28.
    [45]Seed H. B, Seed R. B, Lai S. S, et al. Concrete faced rock-fill dam design, Construction and performance.[M]. New York:459-478.
    [46]顾淦臣,张振国.钢筋混凝土面板堆石坝三维非线性有限元动力分析[J].水力发电学报,1988(01):26-45.
    [47]Li T. C, Zhang H. Y. Dynamic Parameter Verification of P-Z Model and Its Application of Dynamic Analysis on Rock-fill Dam[C]. Earth and Space 2010:Engineering, Science, Construction, and Operations in Challenging Environments.2010,2706-2713.
    [48]Kramer S. L, Smith M. W. Modified Newmark Model for Seismic Displacements of Compliant Slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(7):635-644.
    [49]Marcuson W. F, Hynes M. E, Franklin A. G. Evaluation and Use of Residual Strength in Seismic Safety Analysis of Embankments[J]. Earthquake Spectra,1990,6(3):529-572.
    [50]沈珠江,等.高土石坝动力分析及抗震工程措施研究[R].南京水利科学研究院报告,1995.
    [51]于玉贞,卞锋.高土石坝地震动力响应特征弹塑性有限元分析[J].世界地震工程,2010(S1):341-345.
    [52]Zou D. G, Xu B, Kong X. J, et al. Three-Dimensional Simulation of the Construction Process of the Zipingpu Concrete Face Rockfill Dam Based on a Generalized Plasticity Model[J]. Computers and Geotechnics,2012(DO1:10.1016/j.compgeo.2012.03.002).
    [53]Pastor M, Zienkiewicz O. C, Chen A. H. Generalized plasticity and the modeling of soil behavior[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1990,14(3):151-190.
    [54]Zienkiewicz O. C, Leung K. H, Pastor M. Simple model for transient soil loading in earthquake analysis.Ⅰ:basic model and its application[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1985,9(5):453-476.
    [55]Pastor M, Zienkiewicz O. C, Leung K. H. Simple model for transient soil loading in earthquake analysis. Ⅱ. Non-associative models for sands [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1985,9(5):477-498.
    [56]胡军,朱巨建.加筋技术在高土石坝抗震加固中的应用[J].辽宁工程技术大学学报:自然科学版,2009,28(4):578-580.
    [57]朱亚林,孔宪京,邹德高,等.高土石坝地震反应和破坏机理分析[J].岩土工程学报,2010(09):1362-1367.
    [58]刘君.三维非连续变形分析与有限元耦合算法研究[D].大连理工大学,2001.
    [59]Liu F. H, Liu J, Kong X. J. PFC numerical simulation of particle breakage of clay-core rock-fill dam[C].10th International Conference on Analysis of Discontinuous Deformation.2011.
    [60]Liu J, Liu F. H, Kong X. J. PFC numerical simulation of particle breakage of rock-fill dam[C]. Earth and Space 2010:Engineering, Science, Construction, and Operations in Challenging Environments.2010,2933-2940.
    [61]孙大伟,郦能惠,米占宽.深覆盖层上面板堆石坝关键技术研究进展与展望[J].水力发电,2005,31(8):67-69.
    [62]Newmark N. M. Effect of earthquakes on dams and embankments[J]. Geotechnique,1965,15(2): 139-160.
    [63]Makdisi F. Ⅰ, Seed H. B. Simplified procedure for estimating dam and embankment earthquake-induced deformations[J]. Journal of the Geotechnical Engineering Division,1978,104(7): 849-867.
    [64]邓学晶,孔究京,杜永峰,等.基于Newmark滑块系统能量分析的地震永久位移计算方法[J].兰州理工大学学报,2010(05):104-107.
    [65]Miles S. B, Ho C. L. Rigorous landslide hazard zonation using Newmark's method and stochastic ground motion simulation[J]. Soil Dynamics and Earthquake Engineering,1999,18(4):305-323.
    [66]Kramer S. L, Lindwall N. W. Dimensionality and Directionality Effects in Newmark Sliding Block Analyses[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,130(3):303-315.
    [67]陈生水,沈珠江.钢筋混凝土面板坝的地震永久变形分析[J].岩土工程学报,1990(03):66-72.
    [68]Serff H, Seed H. B Earthquake Induced Deformation of Earth Dams[R].Berkeley:University of CA 1976.
    [69]李红军,迟世春,林皋.基于模量逐步软化的真拟静力永久变形计算方法[J].大连理工大学学报,2008(01):118-123.
    [70]迟世春,林皋,孔宪京.堆石料残余体应变对计算面板堆石坝永久变形的影响[J].水力发电学报,1998(01):60-68.
    [71]郭兴文,王德信,燕立群,等.水布垭混凝土面板堆石坝地震永久变形分析[J].河海大学学报(自然科学版),2001(06):56-60.
    [72]Finn W. D. L. State-of-the-art of geotechnical earthquake engineering practice[J]. Soil Dynamics and Earthquake Engineering,2000(20):1-15.
    [73]Wang Z. L. Bounding surface hydro-plasticity model for granular soils and its application[D]. University of California,1990.
    [74]Susumu I, Yasuo M. Strain space plasticity model for cyclic mobility[J]. Soil and Foundation,1992. 32(2):1-15.
    [75]陈生水,沈珠江,郦能惠.复杂应力路径下无粘性土的弹塑性数值模拟[J].岩土工程学报,1995(02):20-28.
    [76]黄文熙.土的抗剪强度与本构关系学术讨论导言[J].岩土工程学报,1986(01):1-5.
    [77]Hunter G, Fell R. Rockfill modulus and settlement of concrete face rockfill dams[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(10):909-917.
    [78]Bray J. D, Travasarou T. Simplified Procedure for Estimating Earthquake-Induced Deviatoric Slope Displacements[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(4): 381-392.
    [79]Won M. S, Kim Y. S. A case study on the post-construction deformation of concrete face rock-fill dams[J]. Journal of Canada Geotechnical,2008(45):845-852.
    [80]Swaisgood J. R. Embankment dam deformation caused by earthquakes[C].2003 Pacific Conference on Earthquake Engineering.2003.
    [81]Xu Y, Zhang L. M. Breaching Parameters for Earth and Rockfill Dams[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(12):1957-1970.
    [82]Liu J, Xu C. L. Parameter statics and reliability analysis of rockfill dam's slope stability[C]. The 3rd international geotechnical engineering symposium on disaster prevention and reduction. Haerbin: 2009.
    [83]Yi P, Xu C. L. The effect of nonlinear strength of rockfill material on dam's stability[C]. Earth and Space 2010:Engineering, Science, Construction, and Operations in Challenging Environments.2010.
    [84]刘君,刘博,孔宪京.地震作用下土石坝坝顶沉降估算[J].水力发电学报,2012.
    [85]沢田义博.剪切波速分布特性及堤坝振动特性[R].日本电力中央研究所,1977.
    [86]韩国城,孔宪京.关于土石坝动力模型试验问题[C].第二届全国青年岩土力学与工程会议论文集.1995,82-87.
    [87]韩国城,孔宪京,王炳乾,等.关门山面板堆石坝现场弹性波试验研究[J].大连理工大学学报,1990(05):559-568.
    [88]日本大坝会议.现有水坝的抗震性能评价的现状和问题[R].地震时的大坝安全分委员会,2002.
    [89]孔宪京,邹德高,周扬,等.汶川地震中紫坪铺混凝土面板堆石坝震害分析[J].大连理工大学学报,2009(5):667-674.
    [90]Clough R. W, Pirtz D. Earthquake resistance of rock-fill dams[J]. Soil Mechanics and Foundations Division,1956,82(2):1-26.
    [91]丹羽羲,等.地震和土石坝抗震研究[C].土木学会论文集.1958.
    [92]Seed H. B, Clough R. W. Earthquake resistance of sloping core dams[J]. Journal of Soil Mechanics and Foundation division,1963,89(1):209-242.
    [93]西安交通大学水利系抗震研究组.堆石坝抗震试验研究[R].1960.
    [94]中国科学院工程力学研究所译.地震工程译文集:用大型振动台进行的模型堤坝的振动试验[M].北京:地震出版社,1978.
    [95]田村重四郎.模型坝振动破坏试验[J].大水库,1975.
    [96]汤书明.土石坝抗震模型试验述评[J].河海科技进展,1992(01):47-55.
    [97]堤一等.国外工程抗震:供建筑坝抗震设计用的动力试验[M].重庆:科学出版社重庆分社,1978.
    [98]Nose M, Baba K. Dynamic behaviour of rockfill dams:Dams and Earthquake[M]. London:Thomas Telford Limited,1981.
    [99]王克成,郭天德,刘恭忍,等.堆石坝散填体动力性态的实验研究[J].水利学报,1986(10):26-34.
    [100]王克成,杨德健.堆石坝三维模型动力性态及抗震稳定性研究[J].水利学报,1987(10):60-65.
    [101]韩建强.土工建筑物动态模型试验及地震反应分析[D].河海大学,1989.
    [102]韩国城,孔宪京.面板堆石坝坝体永久变形、面板应力及抗震措施研究[R].大连理工大学土木工程系,1995.
    [103]姜朴,汤书明.土石坝模型动力试验与计算[J].水利学报,1992(02):53-57.
    [104]韩国城,孔宪京,王承伦,等.天生桥面板堆石坝三维整体模型动力试验研究[C].第三届全国地震工程会议论文集.大连:1990,1373-1378.
    [105]Han G. C, Kong X. J, Li J. J. Dynamic experiments and numerical simulations of model concrete-face rockfill dams[C]. Proceedings of ninth world conference on earthquake engineering. Tokyo-Kyoto:1988.
    [106]韩国城,孔宪京,李俊杰.面板堆石坝动力破坏性态及抗震措施试验研究[J].水利学报,1990(05):61-67.
    [107]李俊杰,孔宪京,韩国城.钢筋混凝土面板堆石坝动力模型破坏的初步试验研究[J].东北水利发电学报,1990,6(1).
    [108]刘小生,王钟宁,汪小刚,等.面板坝大型振动台模型试验与动力分析[M].北京:中国水利水电出版社,知识产权出版社,2005.
    [109]杨正权,刘小生,刘启旺,等.猴子岩高面板堆石坝地震模拟振动台模型试验研究[J].地震工程与工程振动,2010(05):113-119.
    [110]刘启旺,刘小生,陈宁,等.双江口心墙堆石坝振动台模型试验研究[J].水力发电学报,2009(05):114-120.
    [111]杨玉生,刘小生,刘启旺,等.双江口心墙堆石坝地震加速度反应的振动台模型试验研究[J].水力发电学报,2011(01):120-125.
    [112]Masukawa S, Yasunaka M, Kohgo Y. Dynamic failure and deformations of dam models on shaking table tests[C]. Thirteenth World Conference on Earthquake Engineering. Canada:2004.
    [113]章为民,赖忠中,徐光明.电液式土工离心机振动台的研制[J].水利水运工程学报,2002(01):63-66.
    [114]张延亿.糯扎渡心墙堆石坝离心模拟试验研究[D].中国水利水电科学研究院,2007.
    [115]Peiris L. M. N, Madabhushi S. P. G, Schofield A. N. Centrifuge Modeling of Rock-Fill Embankments on Deep Loose Saturated Sand Deposits Subjected to Earthquakes.[J]. JOURNAL OF GEOTECHNICAL AND GEOENVI RON MENTAL ENGINEERING,2008,134(9):1364-1374.
    [116]Arulanandan K, Seed H. B, Yogachandran C, et al. Study on Volume Changes and Dynamic Stability of Earth Dams[J]. Journal of Geoteehnical EngineeringCentrifuge,1990,119(11):1717-1731.
    [117]Charles W. W. N, Li X. S, Paul A. V. L, et al. Centrifuge modeling of loose fill embankment subjected to uni-axial and bi-axial earthquakes[J]. Soil Dynamics and Earthquake Engineering, 2004(24):305-318.
    [118]Mourad Z, Ahmed W. E, Zeng X. W, et al. Mechanism of Liquefaction Response in Sand-Silt Dynamic Centrifuge Tests[J]. Soil Dynamics and Earthquake Engineering,1999(18):71-85.
    [119]Kim M. K, Lee S. H, Choo Y. W, et al. Seismic behaviors of earth-core and concrete-faced rock-fill dams by dynamic centrifuge tests[J]. Soil Dynamics and Earthquake Engineering,2011(31): 1579-1593.
    [120]王年香,章为民.混凝土面板堆石坝地震反应离心模型试验[J].水利水运工程学报,2003(01):18-22.
    [121]王年香,章为民.吉林台一级水电站混凝土面板砂砾堆石坝离心模型试验[R].南京水利科学研究院,南京:2001.
    [122]程嵩,张建民.面板堆石坝的动力离心模型试验研究[J].地震工程与工程振动,2011(02):98-102.
    [123]朱维新.用离心模型研究土石坝心墙裂缝[J].岩土工程学报,1994(06):82-95.
    [124]邹越强.土石坝静力学模型材料研究[J].岩土工程学报,1986(06):66-75.
    [125]孔宪京.混凝土面板堆石坝抗震性能研究[D].大连理工大学,1990.
    [126]龙冈文夫.加筋土中护面板刚度的作用[M].大连:大连理工大学抗震研究室译,1993.
    [127]沈珠江.高面板堆石坝抗震措施有效性分析[R].南京水利科学研究院,1993.
    [128]Wang L. P, Zhang G, Zhang J. M. Centrifuge model tests of geotextile-reinforced soil embankments during an earthquake[J]. Geotextiles and Geomembranes,2010(29):222-232.
    [129]杨星,刘汉龙,余挺,等.高土石坝震害与抗震措施评述[J].防灾减灾工程学报,2009(05):583-590.
    [130]李国英,沈婷,赵魁芝.高心墙堆石坝地震动力特性及抗震极限分析[J].水利水运工程学报,2010(01):1-8.
    [131]胡军.高土石坝动力稳定分析及加固措施研究[D].大连理工大学,2008.
    [132]蒋国澄,赵增凯.水电建设回顾与展望-中国混凝土面板堆石坝20年回顾[Z].中国电力出版社,2005159-168.
    [133]邹越强.土石坝松散体模型材料研究的新进展[J].合肥工业大学学报(自然科学版),1991(02):8-13.
    [134]李国英,沈珠江,吴威.覆盖层上混凝土面板堆石坝离心模型试验研究[J].水利水电技术,1997(09):51-54.
    [135]Torisu S. S, Sato J.1-G model tests and hollow cylindrical torsional shear experiments on seismic residual displacements of fill dams from the viewpoint of seismic performance-based design[J]. Soil Dynamics and Earthquake Engineering,2010(30):423-437.
    [136]Masukawa S, Yasunaka M, Kohgo Y. Dynamic failure and deformations of dam models on shaking table tests[C]. Thirteenth World Conference on Earthquake Engineering. Vancouver, Canada:2004.
    [137]Sabermahani M, Ghalandarzadeh A, Fakher A. Experimental study on seismic deformation modes of reinforced-soil walls[J]. Geotextiles and Geomembranes,2009(27):121-136.
    [138]Dakoulas P. Nonlinear seismic response of tall concrete-faced rockfill dams in narrow canyons[J]. Soil Dynamics and Earthquake Engineering,2012(34):11-24.
    [139]Cihan K, Yuksel Y, Berilgen M, et al. Behavior of homogenous rubble mound breakwaters materials under cyclic loads[J]. Soil Dynamics and Earthquake Engineering,2012(34):1-10.
    [140]Baldassarrea A, Lucia M. D, Nesi P, et al. A new particle tracking velocimetry[C]. Proc. of Europto Conference on Optical Measurement Systems for Industrial Inspection.1999,187-198.
    [141]孙鹤泉,康海贵,李广伟.PIV的原理与应用[J].水道港口,2002(01):42-45.
    [142]禹明忠,王兴奎,庞东明,等.PIV流场量测中图像变形的修正[J].泥沙研究,2001(05):59-62.
    [143]Murai Y, Yamamoto F. Simultaneous PIV/PTV measurements of bubble and particle phases in gas-liquid two-phase flow based on image separation and reconstruction[J]. Journal of Hydrodynamics,2004,16(6):756-766.
    [144]冯旺聪,郑士琴.粒子图像测速(PIV)技术的发展[J].仪器仪表用户,2003(06):1-3.
    [145]White D. J, Take W. A, Bolton M. D. Soil deformation measurement using Particle Image Velocimetry (PIV) and photogrammetry[J]. Geotechnique,2003,53(7):619-631.
    [146]Hossain M. S, Hu Y, Randolph M. F, et al. Limiting cavity depth for spudcan foundations penetrating clay[J]. Geotechnique,2005,55(9):679-690.
    [147]李元海,朱合华,上野胜利,等.基于图像相关分析的砂土模型试验变形场量测[J].岩土工程学报,2004(01):36-41.
    [148]张嘎,牟太平,张建民.基于图像分析的土坡离心模型试验变形场测量[J].岩土工程学报,2007(01):94-97.
    [149]Michalowsk R. L, Shi L. Deformation patterns of reinforced foundation sand at failure[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(6):439-449.
    [150]张丹丹,任亮,李东升,等.光纤光栅冰力传感器的开发及应用[J].光电子.激光,2010(03):349-353.
    [151]Takeda S, Aoki Y, Nagao Y. Monitoring of CFRP stiffened panel under compressive loading using FBG sensors[J]. Composite structures,2011,25(9):3703-3708.
    [152]代运水,郑宁斯.分布式光纤传感技术在冶勒大坝心墙基座裂缝监测中的应用实践[J].大坝与安全,2008(06):35-39.
    [153]朱鸿鹄,殷建华,张林,等.大坝模型试验的光纤传感变形监测[J].岩石力学与工程学报,2008(06):1188-1194.
    [154]Meymand P. J. Shaking Table Scale Model Tests of Nonlinear Soil-Pile-Superstructure Interaction in Soft Clay[D]. Berkeley,1998.
    [155]林皋.研究拱坝震动的模型相似律[J].水利学报,1958(01):79-104.
    [156]林皋,林蓓.结构动力模型试验的相似技巧[J].大连理工大学学报,2000,40(1):1-8.
    [157]Iai S. Similitude for shaking table tests on soil-structure fluid model in 1-g gravitational field[J]. Soils and Foundations,1989,29(1).
    [158]中华人民共和国水利部.土工试验规程SL-237[S].中国水利水电出版社,1999.
    [159]Seo M. W, Ha I. S, Kim Y. S, et al. Behavior of Concrete-Faced Rockfill Dams during Initial Impoundment[J]. Journal of Geotechnical -and Geoenvironmental Engineering,2009,135(8): 1070-1081.
    [160]朱彤,林皋,马恒春.混凝土仿真材料特性及其应用的试验研究[J].水力发电学报,2004(04):31-37.
    [161]Clough R. W, Pirtz D结构动力学[M].王光远等译.高等教育出版社.1979.
    [162]徐玉明,迟卫,莫立新.PIV测试技术及其应用[J].舰船科学技术,2007(03):101-105.
    [163]杨小林,严敬.PIV测速原理与应用[J].西华大学学报(自然科学版),2005(01):19-20.
    [164]Griffiths D. V, Lane P. A. Slope stability analysis by finite elements[J]. Geotechnique,1999,49(3): 387-403.
    [165]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程学报,2001(04):407-411.
    [166]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997(02):4-10.
    [167]徐卫亚,肖武.基于强度折减和重度增加的边坡破坏判据研究[J].岩土力学,2007(03):505-511.
    [168]吴春秋,朱以文,蔡元奇.边坡稳定临界破坏状态的动力学评判方法[J].岩土力学,2005(05):784-788.
    [169]黄盛铨,刘君,孔宪京.强度折减DDA法及其在边坡稳定分析中的应用[J].岩石力学与工程学报,2008(S1):2799-2806.
    [170]张翠,甘维兵.应用光纤Bragg光栅测量光纤基本参数的研究[J].武汉理工大学学报,2009(01):128-131.
    [171]阎石,丁傲,任亮.光纤Bragg光栅温度传感器光学特性研究[J].沈阳建筑大学学报(自然科学版),2009(02):250-254.
    [172]Ren L, Chen J. Y, Li H. N, et al. Design and application of a fiber Bragg grating strain sensor with enhanced sensitivity in the small-scale dam model[J]. Smart Mater Structure,2009,18(3).
    [173]任亮,李宏男,胡志强,等.一种增敏型光纤光栅应变传感器的开发及应用[J].光电子.激光,2008(11):1437-1441.
    [174]任亮,张莹,李东升,等.FBG传感器在粘土心墙坝模型试验中的应用[J].光电子.激光,2011(08):1124-1129.
    [175]中华人民共和国水利部.水工建筑物抗震设计规范SL 203-97[S].1997.
    [176]于惠敏,张云,鄢丽芬.粘性土试样高度对抗拉强度的影响[J].水文地质工程地质,2012(01):68-71.
    [177]王韦.横山坝心墙开裂的可能性[J].岩土工程学报,1984(05):85-91.
    [178]水利系工程地质及土力学教研组.用粘结试件端部的方法进行粘性土的拉力试验[J].清华大学学报(自然科学版),1973(01).
    [179]土石坝抗裂研究小组.粘性土抗拉特性的测量和对土石坝裂缝的初步研究[J].清华大学学报(自然科学版),1973(03):61-71.
    [180]李文平,于双忠,姜振泉,等.淮河大堤土体工程地质特性及采动裂缝研究[J].煤田地质与勘探,1992(02):47-50.
    [181]沈珠江.理论土力学[M].北京:中国水利水电出版社,1999.
    [182]Khalid S, Singh B, Nayak G. C, et al. Nonlinear Analysis of Concrete Face Rockfill Dam[J]. Journal of Geotechnical Engineering,1988,116(5):822-837.
    [183]Pradhan T. B. S, Kong X. J, Tatsuoka F, et al. Dynamic deformation properties of sand at extremely low pressures-testing method[J]. Seisan-Kenkyu/Report of the institute of industrial science, University of Tokyo,1986,38(2):24-27.
    [184]Kong X. J, Pradhan T. B. S, Tatsuoka F, et al. Dynamic deformation properties of sand at extremely low pressures-test results[J]. Seisan- Kenkyu/Report of the institute of industrial science, University of Tokyo,1986,38(2):28-31.
    [185]Kong X. J, Pradhan T. B. S, Tatsuoka F, et al. Dynamic deformation properties of sand at extremely low pressures-empirical relations[J]. Seisan-Kenkyu/Report of the institute of industrial science, University of Tokyo,1986,38(3):11-14.
    [186]Itasca Consulting Group. FLAC-3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) Version 3.0, User manual[S].2004.
    [187]Duncan J. M, Chang C. Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundation Engineering,1970,96(5):1629-1653.
    [188]Puzrin A. M, Shiran A. Effects of the constitutive relationship on seismic response of soils. Part I: Constitutive modeling of cyclic behavior of soils[J]. Soil Dynamics and Earthquake Engineering, 2000,19(5):305-318.
    [189]邹德高,孔宪京.Geotechnical Dynamic Nonlinear Analysis-GEODYNA使用说明[R].大连理工大学工程抗震研究所,大连:2003.
    [190]徐斌,邹德高,孔宪京,等.高土石坝坝坡地震稳定分析研究[J].岩土工程学报,2012(01).
    [191]陈厚群,徐泽平,李敏.汶川大地震和大坝抗震安全[J].水利学报,2008(10).
    [192]Jensen B. C. Lines of discontinuity for displacements in the theory of plasticity of plain and reinforced concrete[J]. Magazine of Concrete Research,1975,92(27):143-150.
    [193]Mattock A. H. Cyclic shear transfer and type of interface[J]. Journal of the Structural Division,1981, 107(10):1945-1964.
    [194]Kong X. J, Zhou Y, Xu B, et al. Analysis on Seismic Failure Mechanism of Zipingpu Dam and Several Reflections of Aseismic Design for High Rock-Fill Dam[C]. Proc., Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments.,3177-3189.
    [195]朱晟,杨鸽,周建平,等.“5·12”汶川地震紫坪铺面板堆石坝静动力初步反演研究[J].四川大学学报(工程科学版),2010,42(5):113-119.
    [196]李昀,杨果林,林宇亮.土工格栅加筋土挡墙地震响应分析[J].铁道科学与工程学报,2009(03):22-27.
    [197]苗英豪,王秉纲.土工格栅加筋路堤机理研究进展[J].中外公路,2007(03):45-49.
    [198]Uchimura T, Kuramochi Y, Thai B. T. Material properies of intermediate materials between concrete and gravelly soil[C]. Soil Stress-Strain Behavior:Measurement, Modeling and Analysis, Geotechnical Symposium. Roma:2006,473-478.
    [199]Asghari E, Toll D. G, Haeri S. M. Triaxial behaviour of a cemented gravely sand, Tehran alluvium[J]. Journal of Geotechnical and Geological Engineering,2003(21):1-28.
    [200]王强.胶结粗粒土强度与变形特性试验研究[D].大连理工大学,2010.
    [201]Londe P, Lino M. The faced symmetrical hardfill dam:a new concept for RCC[J]. International WaterPower & Dam Construction,1992,44(2):19-24.
    [202]何蕴龙,彭云枫,熊垫.Hardfill坝筑坝材料工程特性分析[J].水利与建筑工程学报,2007(04):1-6.
    [203]贾金生,马锋玲,李新宇,等.胶凝砂砾石坝材料特性研究及工程应用[J].水利学报,2006(05):578-582.
    [204]贾金生,袁玉兰,郑璀莹,等.中国2008水库大坝统计、技术进展与关注的问题简论[R].2008.
    [205]Lade P. V, Overton D. D. Cementation effects in frictional materials[J]. Journal of Geotechnical Engineering,1989,115(10):1373-1387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700