明胶接枝共聚制备高吸水性树脂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以丙烯酸(钾)、丙烯酰胺、丙烯酸铵其中的一种或两种单体与明胶接枝共聚合成可生物降解性高吸水性树脂,明胶为可完全生物降解的天然高分子材料,其与各种单体聚合后所得的树脂经降解性能测试可知产物具有可生物降解性。
     本文采用水溶液聚合法,以过硫酸钾为引发剂,N,N′-亚甲基双丙烯酰胺为交联剂,分别以氢氧化钾部分中和的丙烯酸单体、氢氧化钾部分中和的丙烯酸和丙烯酰胺、氨水中和的丙烯酸和丙烯酰胺三种不同类型的单体接枝到明胶上,试验结果表明接枝共聚产物的吸(盐)水倍率、吸水速率、保水能力等各项性能均较好,并且在吸液性能上存在如下规律:明胶/丙烯酸(钾)接枝共聚物远小于明胶/丙烯酸(钾)/丙烯酰胺接枝共聚物和明胶/丙烯酸铵/丙烯酰胺接枝共聚物,而明胶/丙烯酸(钾)/丙烯酰胺接枝共聚物略小于明胶/丙烯酸铵/丙烯酰胺接枝共聚物。
     高吸水性树脂的吸液性能是衡量高吸水性树脂性能的最主要指标,为了提高吸液倍率,进行了各种不同条件的研究,通过考察引发剂、交联剂、明胶的用量及丙烯酸中和度(或氨化度)、单体质量分数、单体之间的不同配比等各因素对产物吸(盐)水倍率的影响,从而得出聚合反应的最佳试验条件:明胶/丙烯酸(钾)接枝共聚高吸水性树脂的较佳试验条件为:引发剂用量为1%,交联剂用量为0.1%,明胶用量为10%~15%,丙烯酸中和度为75%,单体质量分数为20%;明胶/丙烯酸(钾)/丙烯酰胺接枝共聚高吸水性树脂的较佳试验条件为:引发剂用量为1%,交联剂用量为0.01%,明胶用量为4%,丙烯酸:丙烯酰胺的质量比为1.5:1,丙烯酸中和度为75%,单体质量分数为20%;明胶/丙烯酸铵/丙烯酰胺接枝共聚高吸水性树脂的较佳试验条件为:引发剂用量为1%,交联剂用量为0.05%,明胶用量为2%,丙烯酸:丙烯酰胺的质量比为1.5:1,丙烯酰胺的氨化度为120%,单体质量分数为15%。
     本文还对高吸水性树脂的其它性能进行了表征,如在不同温度或压力下的保水性、接枝率、吸水速率、不同盐分下的吸液比较、吸水凝胶对盐水的应答性等,结果表明所制得的高吸水性树脂具有较好的保水性,接枝率较高,吸水速率较快。为了检验所得产物是否已发生了接枝共聚反应,本文通过傅立叶红外光谱仪分析了其结构。IR分析表明,高吸水性树脂乃是明胶与单体的接枝共聚物,为一种均一性聚合物,并非简单的加合。
     生物降解性能的探索性研究讨论了活性污泥法对高吸水性树脂的降解效果,通过几组试验的对比可得出:天然高分子明胶10d左右即可降解完,随后合成系聚合物高分子聚丙烯酸、聚丙烯酰胺也能降解一部分。结果表明,本文所研究的三种类型的高吸水性树脂的都具有一定的生物降解性,属于环境友好材料。而且由于氢氧化钾或氨水参加了聚合反应,其中的钾和氮元素以及明胶中的氮元素等对于农业上的施肥性具有较大的好处,故初步认为此类树脂具有较好的应用前景,特别是在农业上的应用。
With one or two of potassium acrylate, acrylamide, ammonium acrylate as raw material, biodegradable SAP was prepared by grafting copolymerizing with gelatin. The resin prepared by copolymerized with several monomers and gelatin, which is natural polymer material and can biodegrade completely, had the performance of biodegradability by testing. Three types of high water absorbent resin were prepared by grafting acrylic acid partly neutralized by potassium hydroxide, acrylamide and acrylic acid partly neutralized by potassium hydroxide, acrylamide and acrylic acid neutralized by ammonia onto gelatin with potassium persulfate as initiator, N,N' -methylene-bis-acylamide as cross-linker, by means of water solution copolymerization. The result of these experimentation showed that the grafting copolymers had good performance of every item, for instance, water absorbency, saline water absorbency, water-absorption velocity, water-holding power, etc., and the performance of liquid absorption had such rule as following: the liquid absorption of the grafting copolymer of potassium acrylate, acrylamide and gelatin far more than the grafting copolymer of potassium acrylate and gelatin, but less than the grafting copolymer of ammonium acrylate, acrylamide and gelatin.
     The capability of absorbing water is the uppermost index to judge the resin. To improve the capability of liquid absorption of the resin, the synthesis under a series of process conditions was done. The factors of amount of initiator, cross-linker and gelatin, degree of neutralization of acrylic acid, concentration of monomer, the ratio of two monomers influencing on the capability of pure water-absorption or brine-absorption of the resins were investigated, and the optimal experimental condition was educed according to these factors. The optimal condition of synthesis of the SAP grafted copolymerization of gelatin and acrylic acid was: initiator amount 1%, cross-linker amount 0.1%, gelatin amount 10%~15%, neutralization degree 7.5%, and monomer concentration 20%; the optimal condition of synthesis of the SAP grafted copolymerization of gelatin, acrylic acid and acrylamide was: initiator amount 1%, cross-linker amount 0.01%, gelatin amount 4%, ratio of acrylic acid and acrylamide 1.5:1, neutralization degree 75%, and monomer concentration 20%; the optimal condition of synthesis of the SAP grafted copolymerization of gelatin, ammonium acrylate and acrylamide was: initiator amount 1%, cross-linker amount 0.05%, gelatin amount 2%, ratio of acrylic acid and acrylamide 1.5:1, neutralization degree 120%, and monomer concentration 15%.
     In addition, other performances of the resins were also studied, including the water-holding power under different temperature and different pressure, the grafting efficiency, the water-absorption velocity, the compare of liquid-absorption in different electrolytical solutions, the respondent performance, and so on. The result of the experimentation showed that the SAP had good water-holding power, high grafting efficiency, and rapid water-absorption velocity. The structure property of the SAP was tested by Fourier Transform Infrared (FTIR) Spectroscopy so as to check up whether the grafting copolymerizing reaction had occurred in the experimentation. IR analysis indicated that SAP was the grafting copolymer of the gelatin and monomer, homogeneous but not mixture.
     The biodegradability of SAP was studied with the active mud method, and the effect of the biodegradability was tested. From the contrast of several experimentations, it showed that the biodegradability of nature polymer, gelatin could biodegraded completely in about 10 days, then the polymers based on synthesized macromolecule, poly (acrylic acid), poly (acrylamide), could biodegrade in a measure. So it made sure that the three types of SAP researched in this thesis had excellent property of biodegradability, and was friendly to the environment. Furthermore nitrogen, which came from gelatin and ammonia as raw material in the copolymerization action, and potassium, which hailed from potassium hydroxide, are good for fertilizing at agriculture, so the SAP prepared in this thesis is considered good-future for application, especially practice at agriculture.
引文
[1] Suda Kiatkamjomwong, Kanlaya Mongkolsawat, Manit Sonsuk. Synthesis and property characterization of cassava starch grafted poly[acrylamide-co-(maleic acid)] superabsorbent via γ-irradiation[J]. polymer, 2002, 43: 3915-3924.
    [2] 孙举.天然多羟基高分子在高吸水性材料中的应用[J].辽宁化工,1994,6:26-29.
    [3] 肖春妹,林松柏,李云龙.高吸水性树脂的制备及结构性能的研究进展[J].福建化工,2002,4:68-71.
    [4] 王庆军,全一武,张粉英等.利用~(60)Co γ辐射聚合技术研制淀粉型农用高吸水材料[J].核技术,2003,26(4):311-314.
    [5] 张东平,吴岳英,夏春娟.淀粉-丙烯酸接枝共聚物的生物降解研究[J].上海大学学报(自然科学版),2002,8(3):261-263.
    [6] 刘晓洪,曾莹.淀粉接枝类高吸水性树脂的生物降解性与毒性研究[J].精细石油化工,2003,6:25-26.
    [7] 赵妍嫣,姜绍通,郑志等.淀粉基高吸水树脂降解菌的筛选及初步鉴定[J].微生物学通报,2004,31(6):83-86.
    [8] 刘建树,廖丽金,邹黎明.可生物降解高吸水材料的制备以及制备工艺对吸水倍率的影响[J].东华大学学报(自然科学版),2002,28(5):80-85.
    [9] W.M.Choi, I.D.Jung, S.K.Kwon, et al. Syntheses and photobiogradable properties of graft copolymers of vinyl ketones andstarch[J]. Polymer Ddgradation and Stability, 1998, 61: 15-20.
    [10] 王冠海,卢红伟,张黎明等.可降解多糖基水凝胶的溶胀动力学及性能影响因素[J].中山大学学报(自然科学版),2004,43(5):44-46.
    [11] 牛宇岚.高吸水性树脂的研究与开发[J].山西化工,2003,23(2):7-13.
    [12] 邱海霞,于九皋,林通.高吸水性树脂[J].化学通报,2003,9:598-605.
    [13] 张向东,陈志来,赵小军.由纤维素醚制造高吸水材料的研究[J].天津化工,2001,3:5-7.
    [14] H. T. Lokhande, V. D. Gotmare. Utilization of textile loomwaste as a highly absorbent polymer through graft co-polymerization[J].Bioresource Technology, 1999, 68: 283-286.
    [15] 杨连利,王晓玲,白国强.纸浆接枝改性制备高吸水性树脂的研究[J].咸阳师范学院学报,2004,19(2):33-35.
    [16] 许晓秋,刘延栋.高吸水性树脂的工艺与配方[M].第二版.北京:化学工业出版社,2004.
    [17] 聂华荣,柳明珠,陈振斌.羧甲基纤维素水凝胶生物降解动力学研究[J].物理化学学报,2004,20(4):386-390.
    [18] 聂华荣,柳明珠.羧甲基纤维素钠水凝胶的制备及其生物降解性研究[J].功能高分子学报,2003,16(4):553-556.
    [19] 何淑兰,尹玉姬,张敏等.组织工程用海藻酸盐水凝胶的研究进展[J].化工进展,2004,23(11):1174-1178.
    [20] 秦益民.海藻酸纤维在医用敷料中的应用[J]。合成纤维,2003,4:11-13.
    [21] Soon Hong Yuk, Sun Hang Cho, Byung Chunl Shin, et al. A novel semi-interpenetrating networks system as an absorbent material[J]. Eur. Polym. J., 1996, 32(1): 101-104.
    [22] 张高奇,查刘生,周美华等.海藻酸钠和聚N-异丙基丙烯酰胺半互穿网络水凝胶的溶胀动力学研究[J].高分子学报,2005,1:35-38.
    [23] 许立新,王秀芬,甘霓等.智能海藻酸钙/PNIPAAm互穿网络水凝胶微囊制备研究[J].北京化工大学学报,2005,32(1):55-58.
    [24] 赵敏.多糖类生物降解医用纤维[J].产业用纺织品,1998,16(6):8-12.
    [25] 武建平.白鹏.壳聚糖在缓控释制剂中的研究进展[J].天津医药,2005,33(4):252-254.
    [26] 杨丹,刘毅,何兰珍.甲壳素交联改性制备超级保水凝胶[J].石油化工,2003,32(2):133-137.
    [27] 邹新禧.超强吸水剂[M].北京:化学工业出版社,2002.
    [28] Toshio Yoshimura, Ikumi Uchikoshi, Yuko Yoshiura, et al. S, vnthesis and characterization of novel biodegradable superabsorbent hydrogels based on chitin and succinic anhydride[J]. Carbohydrate Polymers, 2005, 61: 322-326.
    [29] 郝晋清,李金玲,李武宏等.新型含胆酸功能基生物降解性水凝胶的合成与表征[J].离子交换与吸附,2005,21(3):202-208.
    [30] Hiroyuki. Yarnamoto, Masato Amaike, Hideki Saitoh, et al. Gel formation oflignin and biodegradation of the lignin gels by microorganisms[J]. Materials Science and Engineering. C, 2000 7: 143-147.
    [31] 浦炳寅,竺亚斌.海带中多糖类化合物的提取和应用[J].天然产物研究与开发,1998,11(1):61-63
    [32] 郭红霞,宋延卫,秦振平等.松蒿接枝共聚制备高吸水树脂的研究[J].延安大学学报(自然科学版),2002,21(3):56-58.
    [33] 王云普,袁昆,李金莲等.可生物降解的pH敏感水凝胶的合成及其溶胀性能研究[J].功能高分子学报,2004,17(4):586-590.
    [34] 韩丽妹,方晓玲.生物可降解嵌段共聚物在药剂学中的应用[J].中国药学杂志,2004,39(3):167-169.
    [35] 张新民,游庆红,徐虹等.生物可降解型聚谷氨酸高吸水树脂的制备[J].高分子材料科学与工程,2003,19(2):203-205.
    [36] Hyuk Joon Choi, Masao Hunioka. Preparation conditions and swelling equilibria of hydrogel prepared by γ-irradiation from microbial poly(γ-glutamic acid) [J]. Radiat. Phys. Chem., 1995, 46(2): 175-179.
    [37] 张新民,姚克敏,徐虹.新型高效吸水材料(γ-PGA)的农业应用研究初报[J].南京气象学院学报,2004,27(2):224-228.
    [38] Kuusaku Ohkawa, Tomohiro Kitsuld, Masato Amaike, et al. Biodegradation of ornithine-containing polylysine hydrogels [J]. Biomaterials, 1998, 19: 1855-1860.
    [39] Masayuki Tomida, Masayoshi Yube, Yukiharu Arakawa. Preparation conditions and properties of biodegradable hydrogels prepared by γ-irradiation of poly(aspartic acid)s synthesized by thermal polycondensation[J]. Polymer, 1997, 38(11): 2791-2795.
    [40] Gaetano Giammona, Giovanna Pitarresi, Vincenzo Tomarchio, etal. Crosslinked α, β-polyasparthydrazide hydrogels: effect of crosslinking degree and loading method on cytarabine release rate[J]. Journal of Controlled Release, 1996, 41: 195-203.
    [41] Francesco Castelli, Olga La Camera, Giovanna Pitarresi, et al. Temperature and polymer crosslinking degree influence on drug transfer from α, β-polyasparthydrazide hydrogel to medel membranes: A Calorimetric study[J]. Intemational Journal of Pharmaceutics, 1998, 174: 81-90.
    [42] Giuseppe Spadaro: Clelia Dispenza, Gaetano Giammona, et al. Cytarabine release from α,β-poiy(N-hydroxyethyl)-DL-aspartamide matrices cross-linked throughγ-irradiation[J]. Biomaterials, 1996, 17: 953, 958.
    [43] Francesco Castelli, Giovanna Pitarresi, Vincenzo Tomarchio, et al. Effect of pH on the transfer kinetics of an anti-inflammatory drug from polyaspartamide hydrogels to a lipid model membrane[J]. Journal of Controlled Release, 1997, 45: 103-111.
    [44] G. Pitarresi, F. S. Palumbo, G. Giammona, et al. Biodegradable hydrogels obtained by photocrosslinking of dextran and polyaspartamide derivatives[J]. Biomaterials, 2003, 24: 4301-4313.
    [45] Gaetano Giammona, Giovanna Pitarresi, Oennara Cavallaro, et al. New biodegradable hydrogels based on a photocrosslinkable modified polyaspartamide: synthesis and charcterization [J]. Biochimica et Biophysica Acta, 1999, 1428: 29-38.
    [46] 黄汉生.日本研究开发可降解的高吸水性树脂[J].江苏化工,2000,4:42.
    [47] 殷燕芳,彭少贤.茁霉多糖结构分析和应用[J].湖北工学院学报,1996,14(1):75-78.
    [48] 罗明典.微生物发酵产品开发动向[J].科学中国人,1997,3:33-34.
    [49] 余文兵,周华,韦萍.生物降解材料聚苹果酸的合成方法及应用进展[J].化工进展,2004,23(10):1086-1090.
    [50] 刘俊来,黄明智,缪进康.明胶的接枝共聚反应及其产物的应用[J].明胶科学与技术,1996,16(1):1-13.
    [51] 李忠.明胶的生产技术与应用开发[J].应用科技,1998,2:11-12.
    [52] 乌兰,柳明珠.玉米淀粉接枝丙烯酸制备高吸水性树脂[J].高分子材料科学与工程,2006,22(1):250-253.
    [53] 郑彤,王鹏,张志谦,等.纤维素接枝丙烯酸制备高吸水性树脂及树脂的保水性能的研究[J].哈尔滨商业大学学报(自然科学版),2002,18(2):192-196.
    [54] 刘毅,杨丹,何兰珍.壳聚糖接枝丙烯酸制备高强吸水材料[J].化学研究与应用,2005,17(4):565-567.
    [55] 张小红,崔英德,潘湛昌.聚丙烯酸/海藻酸钠高吸水树脂的制备及生物降 解性能[J].化工学报,2005,56(6):1134-1137.
    [56] 冷延国,黄雅钦,董春玲,等.明胶接枝丙烯酰胺的研究[J].高分子材料科学与工程,2002,18(1):93-97.
    [57] 高珊,郑俊萍,杨学稳,等.明胶-甲基丙烯酸甲酯接枝共聚物的溶胀性能[J].高分子材料科学与工程,2005,21(2):200-203.
    [58] 巫拱生,程世英,程振刚,等.接枝交联明胶的研究(Ⅰ)甲基丙烯酸与明胶的接枝共聚反应[J].感光材料,1995,5:30-34.
    [59] 王俊,屈伟月,李明玉,等.明胶与丙烯酸甲酯在~(60)Co辐照下的接枝共聚反应[J].暨南大学学报(自然科学版),2004,25(5).647-649.
    [60] 陈友强.APS-U引发丙烯酸丁酯与明胶接枝共聚(Ⅲ)[J].青岛大学学报,2002,15(4):18-21.
    [61] 邵双喜,刘力,王金明,等.丙烯酸铈(Ⅲ)-丙烯酸丁酯对明胶的接枝共聚鞣制[J].合成化学,2000,8(6):537-540.
    [62] 张宇,叶华,赵建青.耐盐性高吸水树脂的研究进展[J].合成材料老化与应用,2003,32(3):42-47.
    [63] 赵军子,翁志学.耐电解质高吸水性树脂[J].高分子通报,2001,6(12):72-76.
    [64] 熊蓉春,卜爱华,赵曦,等.聚(丙烯酸铵-丙烯酰胺)高吸水性树脂的合成与性能研究[J].北京化工大学学报,2005,32(2):42-46.
    [65] 张元琴,黄勇.以纤维素材料为基质的生物降解材料的研究进展[J].化学世界,1999,40(1):3-6.
    [66] 冀玲芳,么敬霞.可生物降解材料[J].塑料科技,2002,5:52-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700