流形学习算法在人脸识别中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人脸是人类视觉中最常见的模式,人脸识别由于其自然、直观、非接触、安全、快捷等特点而倍受关注,已经成为最具发展潜力的生物特征识别技术之一,也是当前模式识别和人工智能领域的一个研究热点。但是,由于人脸结构的复杂性、人脸表情的多样性以及人脸成像过程的多变性等原因,人脸机器自动识别至今仍然被公认是一个具有挑战性的研究领域。一般认为,人脸从某种意义上来说是一种流形结构,人脸数据集是由某些内在变量控制形成的非线性流形,只要能从流形中寻找出光照、表情和姿态等控制变量,就能大幅降低观测空间的维数。
     流形学习是近年来机器学习及模式识别等领域的一个研究热点,其主要目标是去发现高维观察数据空间的低维光滑流形。自从2000年Roweis和Saul提出LLE算法、Tenenbaum等人提出Isomap算法,特别是Donoho等人发现Isomap算法能够准确发现人脸图像流形潜在的参数空间、张长水等人将LLE算法用于人脸识别并取得了较好的识别效果之后,基于流形学习的人脸识别研究引起了人们的广泛关注。本文对流形学习算法在人脸识别中的应用问题进行研究,提出了3种新的基于流形学习的人脸识别算法,通过仿真实验验证了它们的有效性。主要工作和创新成果集中在以下几个方面:
     1.简要介绍了流形学习研究中涉及的相关数学知识,如拓扑流形、微分流形、黎曼流形、测地线、Hausdorff距离等,为本文的研究提供理论支持。
     2.分析讨论了流形学习在人脸识别应用中的一些关键问题。1)介绍了流形学习的研究动机、技术路线,主流流形学习算法的优势及存在不足。2)分析了人脸识别主要技术的优势及存在困难,指出了流形学习应用于人脸识别的可能性及可行性。3)针对人脸图像数据高维、非结构化的特点,分析讨论了高维空间的维数约简、维数灾难、数据稀疏性、空空间现象、胖尾现象等问题,从数学模型的角度讨论了流形学习与维数约简、本征维数估计、监督学习、半监督学习、监督流形学习及半监督流形学习等问题,揭示了它们的区别与联系。
     3.构建模型、搭建实验平台,将主流流形学习算法应用于人脸识别。进行仿真实验,系统分析其应用的可能性,优势及存在的问题。1)线性流形学习算法人脸识别仿真实验:主成分分析(PCA)、线性判别分析算法(LDA)、局部保距投影(LPP)等。2)非线性流形学习算法人脸识别仿真实验:等距映射(Isomap),局部线性嵌入算法(LLE)、Laplacian特征映射(LE)、局部切空间排列(LTSA)等。
     4.针对流形学习算法未能充分利用样本的类别信息,一般不适合用于分类,不能有效的消除图像中冗余信息;Isomap算法需要较多的训练样本来描述非线性流形结构,而人脸识别本身是一个小样本问题,通常训练样本不是很多,进而影响了识别效果。提出了一种新的人脸识别算法并在公开人脸数据库中验证了算法的有效性。
     5.LTSA算法是著名的流形学习算法之一。但如果在模式识别时遇到相似的流形,两种流形相似的模型放在一起就构成了复杂流形,这时就很难用LTSA算法加以分类。针对这个问题,本文提出了一种新的人脸识别算法并在公开人脸数据库中验证了算法的有效性。
     6.针对监督学习和非监督学习在利用样本信息方面存在的不足,提出了一种基于半监督流形学习的人脸表情识别方法,在部分有标签信息的人脸表情数据的情况下,通过利用人脸表情图像数据本身的非线性流形结构信息和部分标签信息来调整点与点之间的距离形成距离矩阵,而后基于被调整的距离矩阵进行线性近邻重建来实现维数约减,提取低维鉴别特征用于人脸表情识别。仿真实验验证了算法的有效性。
Human face is the most common visual part. Human face recognition has become not only a hot research topic in the field of artificial intelligence and model recognition, but also a most potential recognition technology by biometric characteristic for the merits of being natural, directly perceived, safe and convenient. However, due to the complexity of human face structure, the diversity of face expression and the changeable in face image formation process, computer face recognition technology is universally considered a challenging study topic. In a sense, it is commonly accepted that human face is a manifold structure. Face dataset is a non-linear manifold formed by some inner variables, such as illumination condition, face pose and facial expression. If some controlled variables can be seeked, space dimensionality could be reduced greatly.
     In recent years, manifold learning become a hot study topic in the field of artificial intelligence and model recognition, and its aim is to seek low-dimensional smoothy manifold in high-dimensional observation data space. Since Roweis and Saul put forward LLE algorithm in 2000, Tenenbaum and his collegues proposed Isomap algorithm, especially after Donoho discovered Isomap algorithm can obtain the potential prameter space of face image manifold, Zhang Changshui and his collegues found LLE algorithm applied to face recognition can bring out better recognition effects, face recognition research based on manifold learning is attracting more and more attention. This dissertation focuses on the application of manifold learning in human face recognition, and proposed four novel algorithms based on manifold learning used for face recognition, and each algorithm’s effectiveness has been verified by experiments.
     The major research work in the dissertation contains the following seven aspects:
     1.A brief introduction is made on some closely relative mathmatics theories used in manifold learning as the theoretic supporting which include topology manifold, differential manifold, Riemann manifold, geodesic, Hausdorff distance.
     2.A analysis is made on some important issues when manifold learning is applied to face recognition. 1)A brief account of manifold learning’s research motive, technology support, as well as some mainstream algorithm’s advantages and shortcomings. 2) Based on the analysis on the advantages and disvantages of main face recognition techniques, this dissertation put forward the possibility and feasibility of applying manifold learning to face recognition. 3) In accordance with face image features of high-dimensional data and non-structural, some key issues such as dimensionality reduction, dimensionality curses, data sparity, empty space phenommnnon and fat tailed distribution are studied. The differences and relations between manifold learning and dimensionality reduction, intrinsic dimensionality estimation, supervised learning, semi-supervised learning, supervised manifold learning, semi-supervised manifold learning are revealed from the perspective of mathematic pattern.
     3.Constructing a model and experimental platform to applying mainstream maniflod learning algorithms to face recognition. The possibility, advantages and dificiency are studied systematically through experiments. 1) face recognition experiment with linear manifold learning algorithm: PCA, LDA, LPP. 2) face recognition experiments with non-linear manifold learning, algorithm: Isomap, LLE, LE, LTSA.
     4.Because manifold learning can’t make full use of sample’s information and can’t remove the unnecessary image information. Isomap algorithm requires a large quantity of training samples to describle non-linear manifold structure. However, face recognition itself is a small sample, for the lack of training samples, the recognition effects are lowered. This dissertation proposed a novel face recognition method. And its effects has been verified in open huamn face data base.
     5.LTSA is a famous manifold learning algorithm. However, during the process of model recognition, if two similar manifold modeds come together, a more complex manifold will be formed, where LTSA algorithm is difficult to process and classify the information. To solve the above problem, a new face recognition approach is proposed and the experimental results on open huamn face data base has showed its effectiveness.
     6. To solve the weakpoints which occur during the period of supervised and semi-supervised learning processing sample information, a novel face expression recognition approach is proposed based on semi-supervised manifold learning. In this approach, firstly, the distance between two points is adjusted to form distance matrix by nonlinear structure information and some label’s information from face expression image data. Secondly, low-dimensionality discriminant property useful for face expression recognition can be extracted by reconstructing neighbouring linear and dimensionality reduction. Experimental results has indicated its effective performance.
引文
[1]陈省身,陈维桓.微分几何讲义[M].北京:北京大学出版社,2004 .
    [2] Seung H S,LEE D D.The manifold ways of perception[J]. Science, 2000, 290(5500): 2268-2269.
    [3]王守觉.仿生物模式识别(拓扑模式识别)------一种模式识别新模型的理论与方法[J].电子学报,2002,30(10):1417-1420.
    [4]孙明明.流形学习理论与算法研究[D]南京理工大学博士论文,2007.5.
    [5] Tenenbaum J. B., Silva V. de, Langford J. C. A global geometric framework for nonlinear dimensionality reduction[J] Science, 2000,290(12): 2319-2323.
    [6] Roweis S. T, Saul L. K. Nonlinear dimensionality analysis by locally linear embedding[J]. Science, 2000,290(12):2323-2326.
    [7]徐蓉等.流形学习概述[J]智能系统学报2006(1):44-51.
    [8] Donoho D,Grimes C.When does Isomap Recover the Natural Parameterization of Families of Articulated Images? Technical Report 2002-27, Department of Statistics, Stanford University.
    [9] Zhang C S,Wang G J,Zhao N Y,Zhang D,Reconstruction and analysis of multi-pose face images based on nolinear dimensionality reduction [J].Pattern Recognition, 2004, 37(1):325-336.
    [10]詹德川,周志华.基于集成的流形可视化[J].计算机研究与发展,2005,42(9):1533-1537.
    [11]赵连伟,罗四维,等.高维数据的低维嵌入及嵌入维数研究[J] .软件学报,2005,16(8):1423-1430 .
    [12]何力,张军平,周志平.基于放大因子和延伸方向研究流形学习[J] .计算机学报,2005,28(12):2000-2009.
    [13] Belkin M,Niyogi P.Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering.IN:Dietterich T G, Becker S, Ghrmani Z, editor Advances in Neual Information Processing Systrms(NIPS).MIT Press,2001,585-591.
    [14] Zhang Z,Zha H.Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment,SIAM J.Scientific Computing, 2004, 26(1):313-338.
    [15]周志华,曹存根.神经网络及其应用[M].北京:清华大学出版社,2004.
    [16]施恩伟著.流形上的微积分[M].北京:科学出版社,2004.
    [17] Huttenlocher D P,Klanderman GA,Rucklidge WJ.Comparing images using the Hausdorff distance .IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15(9):859-863.
    [18]臧铁非等.改进的Hausdorff距离和遗传算法在图像匹配中的应用[J].北京理工大学学报,2000,12 .
    [19]冷雪飞,刘建业等.鲁棒Hausdorff距离在SAR/惯性组合导航图像匹配中的应用研究[J].东南大学学报(自然科学版)2004(34sup):141-144.
    [20]罗四维,赵连伟.流形学习研究综述,中国科技论文在线, http://www. Paper edu.cn, 2005-12-12.
    [21] J G Daugman.High confidence visual recognition of persons by a test of statistical independence . IEEE Trans. PAMI,1993,13(11): 1148-1161.
    [22] J G Daugman.Recognizing persons by their iris patterns. Biometrics: Personal Identification in Networked Society [M]. Amsterdam: Kluwer-Academic Publisher, 1999: 103-121.
    [23] R P Wildes,et al.A machine vision system for iris recognition [J]. Machine Vision Application,1996,9:1-8.
    [24] R P Wildes.Iris recognition: an emerging biometric technology . Proceedings of IEEE,1997,85(9):1348-1363.
    [25]王蕴红,朱勇,谭铁牛.基于虹膜识别的身份鉴别[J].自动化学报, 2002, 28(1): 1-10.
    [26]卢官明,李海波,刘丽.生物特征识别综述[J].南京邮电大学学报(自然科学版),2007,27(1):81-88.
    [27] Brunellir, Falavinga D. Person Identification Using Multiple Cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(10) : 955-966.
    [28] Kittler J,Hatef M,Duinr PW, et al. On CombiningClassifiers. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(3) : 226-239.
    [29] Hong L, Jain A K. Integration Faces and Fingerprints for Personal Identification. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(12) : 1295-1307.
    [30] Jain A K, Ross A. Learning User-specific Parameters in a Multi-biometric System[C] // Proceedings of the Ninth IEEE International Conference on Image Processing, Rochester, New York: 2002: I57- I60.
    [31]孙冬梅,裘正定.生物特征识别技术综述[J].电子学报,2001,12A:1744-1748.
    [32]杨艳,生物特征识别技术综述[J].大众科技,2006,94(8):31-33.
    [33]刘党辉,沈兰荪,Kin-Man Lam.人脸识别研究进展[J].电路与系统学报,2004,9(1):85- 94.
    [34]曾宪华,罗四维.动态增值流形学习算法[J].计算机研究与发展2007,4(49): 1462-1468 .
    [35] Krammer M. Nonlinear Principal Component Analysis Using Autoassociative Neural Networks. AICHE Journal,1991,37(2):233-243.
    [36] Kohonen, T. Self-organizing maps. Berlin: Springer-Verlag. 1995.
    [37] Christopher M. Bishop, Markus Svensen, Christopher K. I. Williams. GTM: The Generative Topographic Mapping. Neural Computation 10, 215–234 (1998).
    [38] Chang Kui-yu and Joydeep Ghosh. A Unified Model for Probabilistic Principal Surfaces. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2001,23(1):22-41.
    [39] Hastie T. Principal Curves and Surfaces:[PHD Thesis].Stanford: Stanford University,1984.
    [40] Hastie T, Stuetzle W, Principal Curves. Journal of the American Statistical Association, 1989,84 (406):502-516.
    [41]张平军,王钰.主曲线研究综述[J].计算机学报2003,26(2):129-146.
    [42] Banfield J D, Ranftery A E Ice floe identification in satellite images using Mathematical morphology and clustering about principal curves [J]. Joumal of The American Statistical Association, 1992,87(417): 7-16.
    [43] Tibshiranir. principal curves revisited[J] Statistics and computation, 1992,2: 183-190.
    [44] Kegl B, Krzyzak A, et al Leaming and design of principal curves[J]. Trans. on Pattem Analysis and Machine Intelligence,2000,22(3): 281-297.
    [45] Smola A J, Mika S, Scholkope B, et al Regularized principal manifolds: proc of the 4th European Conference on Couputation Leaming Theory[C]. New York: Springer, 1999:251-256.
    [46] Delicado P. Another look at principal curves and surfaces[J]. Joumal of Multivariate Analysis,2001,77(1):84-116.
    [47] Gomes J, Mojslovic A. A variational approach to recovering a manifold from sample points. Proc. of the 7th European Conference on computer vision-partⅡ[C].London: Springer-Verlag,2002:3-17.
    [48] Hnton G, Roweis S. Stochastic Neghbor Embedding: Proc. of neural information Systems: Natural and Synthetic[C].Cambridge: MIT press,2003:833-840.
    [49]周红,吴炜等.流形学习中的算法研究[J].计算机应用研究,2007,24(7):214-217.
    [50]罗四维,赵连伟.基于谱图理论的流形学习算法,计算机研究与发展[J].2006,43(7):1173-1179.
    [51] B. Scholkopf, A. Smola and K-R. Muller. Nonlinear component analysis as a kernel eigen value problem. Neural Computation, 10:1299-1319, 1998.
    [52] Shawe-Taylor, J. and Williams, C. (2003). The stability of kernel principal components analysis and its relation to the process eigen spectrum. In Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural Information Processing Systems 15. MIT Press.
    [53] Lee, M.D. Determining the dimensionality of multidimensional scaling models for cognitivemodeling[J]. Journal of Mathematical Psychology.2001, 45(4), 149-166.
    [54] M. Balasubramanian, E. L. Schwartz. The Isomap algorithm and topological stability[J]. Science, 295(5552):7, January 2002 .
    [55] L.K.Saul, S.T.Roweis. Thinking locally, fit lcoally: unsupervised learning of low dimensional manifolds [J]. Journal of Machine Learning Research,2003,4(6):119-155.
    [56] V.De Silva, J. B. Tenenbaum. Global versus local methods in nonlinear dimensionalty reduction[G].In :Advances in NIPS15.Cambridge,MA:MIT Press,2002.705~712.
    [57]邵超,黄厚宽,赵连伟.P-Isomap一种新的对邻域大小不甚敏感的数据可视化方法[J].电子学报,2006(8):1497-1501.
    [58] F.R.K.Chung.Spectral Grph Theory [M].Fresno American Mathmatical Socity.1997.
    [59] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in Neural Information Processing Systems 14, pages 585-591. MIT Press, 2002.
    [60] Donoho D, Grimes C. Hessian Eigenmaps: new Locally linear embedding techniques for high-dimensional data. Proceedings of the National Academy of Sciences, 2003,100 (10): 5591-5596.
    [61] Z.Zhang,H.Zha,Principal manifolds and domension reduction via local tangent Space alignment,SIAM J.Scientific Computing 26(1)(2004):313-338.
    [62] Wang Jing,Zhang Zhenyue,Zhang Hongyuan.Adptive manifold learning [G].In:AdvanCes in NIP 17.Cambridge,MA:MIT Press,2004.
    [63]杨剑,李伏欣,王钰.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590.
    [64] M. Brand. Charting a manifold. In Neural Information Processing Systems. MIT Press, 2003.
    [65] Bledsoe W. Man-machine facial recognition. Tech Report PRI-22, Panoramic Research Inc., Palo Alto, CA, 1966.
    [66] Kirby M, Sirovich L. Application of the Karhunen-Loeve procedure for the charaterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12(1): 103-108.
    [67] Turk M, Pentland A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991,3(1): 72-86.
    [68] Phillips P J, Moon H, Rizvi S, Rauss P. The feret evaluation methodology for face recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(10): 1090-1104.
    [69]刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法[J].自动化学报2003,29(6):900-911.
    [70] Scholkopf B, Smola A, Muller K R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J]. Neural Computation,1998,10(5):1299-1319.
    [71] Baudat G.Generalized Discriminant Aanalysis Using a Kernel Approach [J].Neural Computation,2000,12:2358-2404.
    [72] Bach F R,Jordan M I. Kernel Independent Component Analysis[J]. J. Machine Learning Res.,2002,3:1-48.
    [73] Moghaddam B. Principal Manifolds and Probabilistic Subspaces for Visual Recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 24(6),:780-788.
    [74] Moghaddam B, Nastar C, Pentland A. Bayesian Face Recognition with Deformable Image Models[A].Proceedings 11th International Conference on Image Analysis and Processing[C].2001:26-35.
    [75] Kim H C, Kim D, Bang S Y. Face Recognition Using LDA Mixture Model[A]. Proceedings.16th International Conference on Pattern Recognition[C] 2002, 2:486-489.
    [76] Lades M,Vorbruggen J C,J Buhmann et al.Distortion Invariant Object Recognition in the Dynamic Link Architecture. IEEE Trans.Comput.1993,42:300-311.
    [77] Wiskott L, Fellows J M, Kruger N et al. Face Recognition by Elastic Bunch Graph Matching.IEEE Trans.on Pattern.Anal.Mach.Intell. 1997, 19:775-779.
    [78] Würtz R P. Object Recognition Robust under Translations, Deformations and Changes in Background[J]. IEEE Trans. on Pattern Anal. Mach. Intell. 1997,19:769-774.
    [79] Grudin M A, Lisboa P J G,Harvey D M.Compact Multi-level Representation of Human Faces for Recognition[C]. Proceedings of IEE Conference on IPA-97.1997:111-115.
    [80] Nastar C,Moghaddam B A.Flexible Images:Matching and Recognition Using Learned Deformations[J].Computer Vision and ImageUnderstanding, 1997, 65(2):179-191.
    [81]张翠平,苏光大.人脸识别技术综述[J].中国图象图形学报5(11)(2000):855-894.
    [82] Ping W, Wei Qing X, Xiao-Quan W. A design and complement for face recognition[A]. Proc of 2004 International Conference on Machine Learning and Cybernetics[C]. 2004.3 666-3 669.
    [83] Lawrence S, Giles C L, Tsoi A C, et al. Face Recognition: A Convolutional Neuralnetwork Approach. IEEE Transactions on Neural Networks, 1997,8(1):98-113.
    [84] Lin S H, Kung S Y, Lin L J. Face Recognition Detection by Probabilistic Decision-based Neural Nnetwork. IEEE transactions Neural Networks, 1997,8(1):114-132.
    [85] Gutta S, Wechsler H. Face Recognition Using Hybrid Classifiers[J]. Pattern Recognition,1997,30(4):539-553.
    [86]孟德宇,徐宗本,戴明伟.一种新的有监督流形学习方法[J].计算机研究与发展.2007,44(12):2072-2077.
    [87]祝磊,朱善安.KSLPP:新的人脸识别算法[J].浙江大学学报(工学版)2007, 41(7):1066-1069.
    [88]艾英山,张德贤.人脸识别方法的综述与展望[J].计算机与数字工程2005,33(10):24-27.
    [89]谭璐,高维数据的降维理论及应用[D].国防科技大学博士论文,2005,4.
    [90] Kouropteva , kun , Pietikainen M. Supervised locally linear embedding algorithm for pattern recognition[J]. Pattern Recognition and Image Analysis, IbPRIA2003, LNCS2652, 2003 .386-394.
    [91] R. Bellman, Adaptive Control Process: A Guided Tour, Princeton University Press, Princeton, 1961.
    [92] L.Sualnad S.ORweis .Think Globally, Fit Locally: Unsupervised Learning of Nonlinear Manifolds[J]. Technical Report MSCIS-02-18 Universiy of Pennsy-lvnaia, 2002.
    [93] Vin de Silva and Joshua B.Tenenbaum,Unsupevrised lenaring of euvred manifolds,Nonlinear Estimation and Classi fieation eds.DavidD.Denison Mark H.Hnasen,christopher V.Holmens,Bnai Malliek,and Bin yu,Leeurte Notesin Statisties. 2002.171:453-466.
    [94] M.Belkinnad. PNiyogi. Laplacian Eigemnpas and Spectral Techniques for Embedding And Clustering,Neural Information Proeessing Systems14(NIPS,2001),2002.
    [95] Zhen yue Zhnag nad Hong yuna Zha.Loeal Linear Smoohting for Nonlinear Manfold learing.CSE-03-003,TeehniealRePort,CSE,PennStateUniv, 2003.
    [96] Dvaid L.Donoho and Carrie Grimes,Hessina Eigenmaps:new locally linear embedding Techniques for high-dimensional data,Technical Report2003-08 Department of Statistics,Stanford Universiy.
    [97] D.W.Scott and J.R.ThomPson.Probability densiy estimation in higher dimensions. InJ.E.Genile,editor,Computer Science and Statisties: Proce edings of the Fitfteenth Symposium on the Interface, Pages 173-179, Amsterdma,New York,Oxford, 1983.North Holland-Elsevier Seience Publi-shers.
    [98]杨风召.高维数据挖掘中若干关键问题的研究[D].复旦大学博士论文,2003-4-25.
    [99] Bellman Riehard. Adpative Control Proeesses: A Guided Tour. Princeton Universiyt Perss.2000.
    [100]张振跃,查宏远.线性低秩逼近与非线性降维[J].中国科学A辑,2005,35(3):273-285.
    [101]黄启宏.流形学习方法研究及图像处理中应用[D].成都电子科技大学博士论文,2007.6.
    [102]刘建.高维数据的本征维数估计方法研究[D].国防科技大学硕士论文,2005.11.
    [103] R.S.Bennet,The Intrinsic Dimensionality of Signal Collections. IEEE Transactions on Information Theory. 517-525,1969.
    [104] K.Fukunaga and D.R. O1sen,An Algorithm for Finding Intrinsic Dimensionality of Data, IEEE Transactions on Computer C20 176-183,1971.
    [105]C.K.Chen and H. C.Andrews,Nonlinear Intrinsic Dimensionality Computations, IEEE Transactions on Computer C23,178一184,1974.
    [106] J.Bruske and G Sommer,Intrinsic Dimensionality Estimation with timally Topology Preserving Maps, IEEE Transactions on Pattern Analysis and Machine Intelligence, vo1.20,no.5,pp. 572-575,May 1998.
    [107] D.H. Schwartzmann and J. J. Vidal,An Algorithm for Determining the Topological Dimensionality of Point clusters, IEEE Transactions on Computers C24,1175-1182,1975.
    [108] K.Pettis,T.Bailey,A.K.Jain and R.Dubes,An Intrinsic Dimensionality Estimator Nearneighbor from Information, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25-27, 1979.
    [109] J.N. Srivastava,An Information Function Approach to Dimensionality Analysis and Curved Manifold Clustering,in Multivariate Analysis III, Academic Press, Inc. New York, p369-382,1973.
    [110] B.B.Mandekbrot,The Fractal Geometry of Nature,W.H. Freeman and Company, Publishers. New York. 1977.
    [111] E.Levina and P.Bickel,Maximum Likelihood Estimation of Intrinsic Dimension,Advances in Neural Information Processing Systems 15,p777- 784. MIT Press, Cambridge,MA,2005.
    [112] C.Francesco,Estimating the Intrinsic Dimension of Data with Fractal-Based Method, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002.
    [113] J.Costa and A.O.Hero, Geodesic Entropic Graphs for Dimension and Entropy Estimation in Man如Id Learning, IEEE Trans. on Signal Process. 52(8):2210-2221, Aug. 2004.
    [114] P.Mordohai and GMedioni, Unsupervised Dimensionality Estimation and Man Id Learning in high-dimensional Spaces by Tensor Voting, 19th International Joint Conference on Artificial Intelligence, pp. 798-803, Edinburgh, Scotland, July 2005.
    [115] J.Costa, A.Girotra and A.O.Hero, Estimating Local Intrinsic Dimension with k-Nearest Neighbor Graphs, IEEE Workshop on Statistical Signal Processing (SSP), Bordeaux, July 2005.
    [116] M.Belkin and P.Niyogi,Laplacian Eigenmaps and spectral Techniques for Embedding and Clustering, Neural Information Processing Systems 14 (NIPS'2001), 2002.
    [117]徐立本.机器学习引论[M] .长春:吉林大学出版社.1993.
    [118]王珏,石纯一.机器学习研究,广西师范大学学报[J].(自然科学版).2003,21(2):1-15.
    [119]王珏,周志华,周傲英.机器学习及其应用[M] .北京:清华大学出版社.2006.
    [120] Zhang J,LIS,WangJ.Nearest Manifold Approach for Face Recognition. Proeeedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004:223一228.
    [121] Geng X,Zhan D,Zhou Z.Supervised Nonlinear Dimensionality Reduction for Visualizstion And Classification. IEEE Transaction on Systems, Man. and Cybernetics-Part B: Cybernetics,2005,35(6):1098-1107.
    [122] Ridder D,Kouropteva O,Okun O,etal.Supervised Locally Linear Embedding.P roceedings of Joint International Conference on ICANN/ICONIP. Springer ,2003:333-341.
    [123] LI H,Chen W,Shen I.Supervised Local Tangent Space Alignment for Classification Proceedings of International Joint Conference on Artificial Intelligence,2005.1620.
    [124]王国强,欧宗瑛,刘典婷.基于监督保持近邻投影的人脸识别方法[J].计算机工程,2008.34(8):4-6.
    [125]鲁珂.流形学习方法在Web图像检索中的应用研究[D].成都电子科技大学博士论文,2004.
    [126]金骏,张道强.半监督鲁棒联机聚类算法[J].计算机研究与发展2008, 45(3): 496-502.
    [127] Yang X, Fu H, Zha H et al. Semi-Supervised Nonlinear Dimensionality Rduction. Proeeedings of the 23rd International Conference on Machine learning.ACM Press New York,NY,USA,2006.1065-1072.
    [128]张军平.流形学习及应用[D].北京:中国科学院自动化研究所博士论文2003.
    [129] I.T.Jolliffe, Principal Component Analysis. Springer , New York , 1986.
    [130]王正洪,邹凌.基于主成分分析方法的人脸识别研究[J].微机算机信息.1008-0570(2007).
    [131]余晓梅,徐丹.基于外观的子空间人脸识别方法研究[J].计算机应用研究1001- 3695(2007).
    [132]钟向阳,胡仕明.基于主分量线性判别方法人脸识别系统的实现[J].嘉应学院学报.1006-624X(2006)03-0083-05.
    [133]鲁珂,赵继东,叶娅兰,曾家智.保局投影算法在图象检索中的应用研究[J].计算机应用研究.2006:1001-3695.
    [134] R.A.Fisher.The use of multiple measurements in taxonomic problems.Annals of Eugenics. 1936.7: 179-188.
    [135] D.L.Swets and J.Weng.”Using discriminant eigenfeatures for image retrieval”.IEEETransactions on Pattern Analysis and Machine Itelligence.1996.18(8).
    [137] P.N.Belhumeur,J.P.Hespanha and D.J.Kriegman.”Eigenfaces vs.Fisher-faces: Recognition using class specific linear projection”.IEEE Transactions on Pattern Analysis and Machine Intelligence.1997. 19(7): 711-720.
    [138] W.Zhao,R.Chellappa and P.J.Phillips.”Subspace Linear Discriminant Analysis for face recognition”.Technical report CAR-TR-914,Center for Automation research ,university of Maryland,1999.
    [139] C J.Liu and H.Wechsler.”Enhanced Fisher linear discriminant models for face recognition”.In proceedings of International Conference on Pattern recognition. 1998.
    [140] L.F.Chen , H.Y.M.Liao , J.C.Lin , M.T.Ko and G.J.Yu.A new LDA-based face frecognition system which can solve the small sample size problem . Pattern Recognition.2000.33(10): 1713-1726.
    [141]傅博,王暄,马建峰.基于流形学习的用户身份认证[J].计算机工程与应用.2007: 1002-8331.
    [142]文贵华,包丽,丁月华.局部线性嵌入算法中参数的选取[J].计算机应用研究.2007: 1001-3695.
    [143] M.Belkin , P.Niyogi.Laplacian eigenmaps for dimensionality reduction and data representation [J].Neural Computation , 2003 ,15(6): 1373-1396.
    [144] Zhang Zhenyue ,Zha Hongyuan . Linear low-rank approximations and nonlinear dimensionality reduction [J] . Science in China Series A-Mathematics ,2005, 35(3):273-285(in chinese).
    [145] T.Cox ,M.Cox.Multidimensional Scaling [M].London:Chapman &Hall ,1994.
    [146] Tianhao Zhang ,Jie Yang ,Deli Zhao ,Xinliang Ge.Linear local tangent space alig- nment and application to face recognition.Neurocomputing 2007,70: 1547-1553.
    [147] Liu ,C,Wechsler,H.A Gabor Feature Classifier for Face Recognition.ICCV01, 2001:270 275.
    [148] Lee T S.Image representation using 2D Gabor wavelets.IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(10):959-971.
    [149] Lades M,Vorbruggen J C,Buhmann J,et al.Distortion invariant object recognition in the dynamic link architecture.IEEE Transactions on Computers,1993,42(3):300-311.
    [150] De Silva V , Tenenbaum J.Global versus local methods in nonlinear dimensionali-ty redction.Advances in Neural Information Processing System 2003, 15:705-712.
    [151] Vlachos M , Domeniconi C.Gunopulos D.Kollios G.Koudas N.Non-linear dimensionality reduction techniques for classification and visualization.In Procee-dings of the 8th ACMSIGKDD International Conference on Knowledge Discovery and Data Mining , Edmonton Canada , 2002:645-651.
    [152] Francis R B ,Michael I J.Kernel independent component analysis.Journal of Machine Learning Research.2002,3 :1-48.
    [153] Brand M.Continuous nonlinear dimensionality reduction by kernel eigenmaps. Artificial Intelligence ,Acapulco ,Mexico.2003: 547-554.
    [154]刘健.局部线性嵌入的流形学习算法研究与应用[D].国防科技大学硕士论文,2005.11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700