设计流水线的建模、平衡及调度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球环境和技术的快速发展,产品研发能力越来越成为企业发展的关键。目前,我国产品研发面临效率低下和成本过高的问题,无法满足产销能力、产品需求和国际技术水平高速发展的迫切需要。设计流水线正是为解决这一问题而提出的制造业产品研发管理方法。
     设计流水线借鉴了生产流水线的管理模式,充分发挥流水线标准化、通用化、高效率的优势,同时结合了产品研发过程复杂性(包括设计任务复杂性及其关系的复杂性)、不确定性(可变性和不精确性)、以及模糊性(信息不充分和唯一性)的特点,通过稳定“节拍”的设计任务以及均衡的任务流,有效、快速的进行产品设计。围绕着流水线设计的两个关键科学问题:技术设计和组织设计,以典型汽车产品设计为研究对象,结合复杂网络、模糊理论、智能算法等理论方法来实现设计流水线的建模、分析、平衡和优化调度,并建立了设计流水线的原型系统。全文从以下几个方面展开研究:
     (1)类比分析了企业当前设计环境与生产流水线的产生环境,总结了流水线相关技术方法的研究进展,归纳了设计流水线的主要特点及其科学问题,阐述了本文的主要内容和创新点。
     (2)在分析与制造过程异同点的基础上,提出了设计流水线的概念模型和定义。对于设计流水线中的关键对象,提出了基于网络(语义网络和复杂网络)的流水线建模方法,通过语义网络建立流水线中的关键对象信息模型和语义关系模型,通过单值和双模式网络模型以及双模式-单模式映射网络建立关系对象的数值信息模型。结合设计过程的特征,提出了设计流水线的构建过程和理论方法。
     (3)通过组合或分解设计任务、识别设计过程要素来实现流水线的技术设计。提出了设计任务的层次模型及基于知识单元的分解/组合方法,作为设计过程要素识别的基础,解决了设计过程唯一性与流水线批量使用冲突的问题,保证了设计流水线的通用性。构造设计过程的网络模型,应用复杂网络模体方法进行设计过程要素交互模式识别;基于复杂网络拓扑特性,定义了设计过程要素模式评价指标对任务分解的性能进行评估;并基于评价指标提出设计过程要素的优化方法。
     (4)对于流水线的组织设计,提出了基于模糊理论与改进遗传算法的设计流水线平衡问题求解算法。提出了模糊设计结构矩阵的方法来解决设计的不确定性、迭代性的问题,其中采用模糊数表达设计活动的持续时间估计;建立了基于模糊数的长周期设计流水线平衡问题数学模型,并提出了基于改进交叉算子的高效遗传算法进行求解。
     (5)对于流水线的实际应用,提出了基于多技能等级、多模式的设计资源优化调度方法。针对设计流水线的关键对象——人具有多技能与主动性等特点,提出了基于双模式网络及社会网络的资源能力计算方法,通过双模式向单模式网络的映射获取人员多能力等级,社会网络则考虑了人员从他人获取自己未知知识的能力。最后,基于资源冲突、多项目并行等约束,建立了流水线使用中的资源优化调度模型,并通过二维粒子群算法实现问题求解。
     最后,基于以上所提出的理论方法,围绕某汽车公司研发需求,开发了一个基于B/S与C/S模式结合的原型系统,实现设计流水线的管理理念,并在该公司车身研发项目中得到了实施和应用,进而检验了所提出的设计流水线理论方法的可行性和实用性。
With the rapidly change of global environment and technology development, thecapabilities of R&D (research and development) will be the key factor whether it willsurvive. However, Product development of Chinese industrial company has low efficiencyand high cost, whcih can not meet the rapid development of the production and marketingcapacity, product demand and new technology. Design stream line is born to solve theseproblems.
     With the advantage of standardization, generalization, and high efficiency ofstreamlining production, design stream line combined with the complexity, ambiguity anduncertainty of the product development process. Design stream line has the design taskswith Takt time and balancing tasks flow which support effective and rapid product design.Surrounded with the two scientific problem (technology design and organizational design),model, analysis, line balancing and scheduling of design stream line is presented by usingcomplex networks, fuzzy theory and intelligent algorithms. And a prototype system ofdesign stream line for automotile design is built. The paper is mainly focus on thefollowing aspects:
     1) The same points of the environment for the production lines which the designprocesses have are analysed. And summarizes the main characteristics and scientific issuesof design stream line are summarized, and main content and innovation of technologyresearch are then described. Furthermore, the related methods of design stream line arereviewed and summarized.
     2) With difference of the design processes and manufacturing processes, the keytechnologies and framework of design stream line are presented. The concept modelofdesign stream line and the key objects are defined. Stream line is modeled based onsemantic networks and complex networks. Information models and semantic relationmodels are built based on semantic network models, and bipartite networks and theirprojected networks are modeled for numerical information.
     3) Combination and partition of design tasks and recognization of the design-process-element is presented for technical design of stream line. The structure model of designtasks with the combination and decomposition based on knowledge units is the basic ofrecognization of the design-process-element. Network motif is used to recognize the interactive pattern of the design-process-element. Measure indices of the interactivepattern are presented based on the topology of complex networks which is the basic ofdesign-process-element optimization. The design-process-element solves the conflictbetween unique of design tasks and common of stream line.
     4) To the organizational design, line balancing based on fuzzy theory is presented fordesign stream line and improved GA is described to solve the problem. Considered theuncertainty, interation and long cycle time of product design, the duration estimationmethod of design tasks is presented integrated with fuzzy numbers and DSM. Amathematical model of line balancing is proposed, and a Genetic Algorithm (GA) isutilized to find the optimum solution.
     5) Considered of the high level of design imprecision and employees with multipleskills and different skill levels, a product development projects scheduling problem withmulti-skilled employees and multiple modes is presented. A calculation methodology ofdesigners’ Capacity based on bipartite networks and social networks is presented, whichcombines the designers’ capabilities of know-how and know-who knowledged. Amathematical model of multi projects scheduling problem subject to the precedence andresource constraints is presented, and an extended partical swarm Algorithm is presentedto find the optimum solution.
     At last, a prototype system of design stream line for automobile design is built basedon B/S and C/S modes. A case of an automobile design is used to illustrate the problemand proposed method. The results verify the feasibility and effectiveness of this algorithm.
引文
[1].滕伯乐.回顾汽车工业历史性跨越“三步走”.2003年中国汽车工业年鉴.天津:中国汽车工业年鉴期刊社,2003.
    [2].周莹.中国汽车产业创新政策体系及其系统失灵研究.[博士]:华中科技大学.2011.
    [3].赵敏.精益研发破解中国制造企业竞争力危局.中国制造业信息化.2008.08:49-50.
    [4]. Mabert V. A., Muth J. F., Schmenner R. W. Collapsing new Produc t development times: six casestudies. Journal of Product Innovation Managemenet;1992,9(3):200-212.
    [5]. Morgan J.M. and J.K. Liker, The Toyota Product Development System: Integrating People,Process and Technology, Productivity Press, Seattle, WA (2006).
    [6].卢圣春.汽车制造业人才资源管理科学发展观研究.人力资源管理.2011.03:30-32.
    [7]. The Line on Design. NY: AT Kearney;2003.
    [8]. McManus HL. Product Development Value Stream Mapping (PDVSM) Manual. Center forTechnology, Policy, and Industrial Development Massachusetts Institute of Technology.2005.
    [9].福特生产流水线. http://baike.baidu.com/view/2368678.htm
    [10]. Panchal, J. H., Paredis, C. J. J., Allen, J. K., and Mistree, F. Managing design-processcomplexity: a value-of-information based approach for scale and decision decoupling. Journal ofComputing and Information Science in Engineering.2009,9:021005.
    [11]. Panchal, J. H., Paredis, C. J. J., Allen, J. K., and Mistree, F. A Value-of-Information BasedApproach to Simulation Model Refinement. Engineering Optimization,2008,40:223-251.
    [12]. Pich, M. T., Loch, C. H., and Meyer, A. D. On Uncertainty, Ambiguity, and Complexity inProject Management. Management Science.2002,48:1008-1023.
    [13]. Duimering, P. R., Ran, B., Derbentseva, N., and Poile, C. The Effects of Ambiguity on ProjectTask Structure in New Product Development. Knowledge and Process Management.2006,13:239-251.
    [14]. Wang J. A fuzzy robust scheduling approach for product development projects. EuropeanJournal of Operational Research.2004,152(1):180-194.
    [15]. Browning, T. R. The Many Views of a Process: Toward a Process Architecture Framework forProduct Development Processes. Systems Engineering.2009,12:69-90.
    [16]. Mikell P. Groover. Fundamentals of modern manufacturing: materials, process and systems.Prentice-Hall (1996).
    [17].项目管理协会.项目管理知识体系指南(第四版).北京:电子工业出版社.2009.
    [18]. Aberdeen Group. The Design Reuse Benchmark Report: Seizing the Opportunity to ShortenProduct Development.http://www.aberdeen.com/aberdeen-library/3908/desres_out_3908.aspx.2007.2
    [19]. He D. Delayed Product Differentiation: a Design and Manufacturing Perspective, Computer-Aided Design,1998,30(2):105~113.
    [20].张东民.支持工程机械产品快速设计的关键技术研究与实现[博士]:南京航空航天大学.2005.
    [21]. Meyer, M.H. and Lehnerd, A.P.1997.The Power of Product Platforms: Building Value and CostLeadership, The Free Press, New York, NY.
    [22]. Robertson D., Ulrich K. Planning for product platforms. Sloan Management Review,1998,39(4):19~31.
    [23]. Sanderson, S.W.,&Uzumeri, M.1997. Managing Product Families. Chicago: Irwin.
    [24]. Feitzinger, E.,&Lee, H.L. Mass customization at Hewlett–Packard: The power ofpostponement. Harvard Business Review.1997.75(1):116–121.
    [25]. Oliver L.de Weck, Eun Suk Suh. Platform Architecture: A Two-Level Optimization Approach.2003ASME Design Engineering Technical Conferences,2003,2-6,Chicago, Iilinois USA.
    [26]. Muffatto, M. Introducing a platform strategy in product development. International Journal ofProduction Economics60–61,1999:145–153.
    [27]. Utterback J. Mastering the Dynamics of innovation. Harvard Business School Press, Boston,1994:61~70.
    [28]. Alizon, F., Shooter, S.B. and Simpson, T.W.2006.Assessing and Improving Commonality andDiversity within a Product Family, ASME International Design Engineering Technical Conferences,Philadelphia, PA, DETC2006/DAC-99499.
    [29]. Thevenot, H.J. and Simpson, T.W.2006. A Comprehensive Metric for Evaluating ComponentCommonality in a Product Family, ASME International Design Engineering Technical Conferences,Philadelphia, PA, DETC2006/DAC-99268.
    [30]. Ye, X., Gershenson, J.K., Khadke, K., Lai, X. and Guo, F.2005. An Introduction to ProductFamily Evaluation Graphs, ASME International Design Engineering Technical Conferences, LongBeach, CA.
    [31]. Thevenot, H. J., Simpson, T. W. Commonality indices for assessing product families. Productplatform and product family design: Methods and applications, TW Simpson, Z. Siddique, and J. Jiao,Eds. New York: Springer,2005:07-129.
    [32]. Collier, D. A. The measurement and operating benefits of component part commonality.Decision Sciences.1981,12(1):85–96.
    [33]. Martin,M. V.,&Ishii, K.1997.Design for variety: Development of complexity indices anddesign charts. In ASME design engineering technical conferences, DFM-4359, Sacramento, CA.
    [34]. Siddique, Z., Rosen, D.W.,&Wang, N.1998. On the applicability of product variety designconcepts to automotive platform commonality. ASME design engineering technical conferences,98-DETC/DTM-5661, Atlanta, GA.
    [35]. Jiao (Eds.), Product platform and product family design: Methods and applications (pp.107–129). New York: Springer.
    [36]. Kota, S., Sethuraman, K.&Miller, R. A metric for evaluating design commonality in productfamilies. Journal of Mechanical Design,2000.122(4):403–410.
    [37]. Fellini, R., Kokkolaras, M.&Michelena, N., et al.2002. A sensitivity-based commonalitystrategy for family products of mild variation, with application to automotive body structures.Proceedings of the9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,September4–6,2002, Atlanta, Georgia, USA, AIAA-2002–5610.
    [38]. McAdams, D. A.,&Wood, K. L. A quantitative similarity metric for design-by-analogy. ASMEJournal of Mechanical Design,2002.124(2):173–182.
    [39]. Simpson, T.W., Seepersad, C. C.,&Mistree, F. Balancing commonality and performancewithin the concurrent design of multiple products in a product family. Concurrent Engineering:Research and Applications,2001.9(3):177–190.
    [40]. Martin, M. V.,&Ishii, K. Design for variety: Developing standardized and modularizedproduct platform architectures. Research in Engineering Design,2002.13(4):213–235.
    [41]. Dobrescu, G.,&Reich, Y. Progressive sharing of modules among product variants. Computer-Aided Design,2003.35(9):791–806.
    [42]. Suh E, de Weck O, Kim I, Chang D. Flexible platform component design under uncertainty.Journal of Intelligent Manufacturing.2007.18:115-26.
    [43]. Meyer MH. Revitalize your product family through continuous platform renewal. ResearchTechnology Managemen.1997.40(2):17~28.
    [44]. Meyer M., Tertzakian P., Utterback J. Metrics for managing product development within aproduct family context. Management Science.1997,43(1):88~111.
    [45]. Simpson T.W., Peplinski J., Koch P.N., Allen J.K. On the use of statistics in design and theimplications for deterministic computer experiments. Proceedings of1997ASME DesignEngineering Technical Conferences, New York,1997:55~63.
    [46]. Simpson T.W., Rosen D.Allen J.K., Mistree F. Metrics for assessing design freedom andinformation certainty in the early stages of design.Mechanical Design.1998,20(4):628~635.
    [47].王毅,毛义华,陈劲,许庆瑞.新产品开发管理新范式:基于核心能力的平台方法.科研管理.1999,20(5):6~12.
    [48]. Du, X., Jiao, J.,&Tseng, M. M. Architecture of product family: Fundamentals andmethodology. Concurrent Engineering: Research and Application,2001.9(4):309–325.
    [49]. Yu, T.-L., Yassine, A. A.,&Goldberg, D.E.2003. A genetic algorithm for developing modularproduct architectures. ASME design engineering technical conferences, Chicago, Illinois
    [50]. Kurtadikar, R. M.,&Stone, R. B.2003. Investigation of customer needs frequency vs. weight inproduct platform planning. ASME international mechanical engineering congress and R&D Expo,IMECE2003-42786, Washington, DC.
    [51]. Simpson, T. W., D’Souza, B. Assessing variable levels of platform commonality within aproduct family using a multiobjective genetic algorithm, Concurrent Engineering: Research andApplications,2004.12(2):119–130.
    [52].王云霞,易红,汤文成等.基于可调节变量的内圆磨床产品族设计.计算机集成制造系统,2004,10(10):1191-1194,1206.
    [53]. Simpson, T.W., Maier, J.R.A.,&Mistree, F. Product platform design: Method and application.Research in Engineering Design,2001.13(1):2–22.
    [54]. Simpson, T. W. Product platform design and customization: Status and promise. AIEDAM,2004.18(1):3–20.
    [55]. Akundi, S., Simpson, T.W.,&Reed, P.M.2005. Multi-objective design optimization forproduct platform and product family design using genetic algorithms,ASME design engineeringtechnical conferences,DETC2005/DAC-84905, Long Beach, CA.
    [56]. Dai, Z.,&Scott, M. J.2004. Product platform design through sensitivity analysis and clusteranalysis. ASME design engineering technical conferences, DETC2004/DAC-57464, Salt Lake City,UT.
    [57]. Simpson, T. W. Product platform design and customization: Status and promise. AIEDAM,2004.18(1):3–20.
    [58]. Jiao J, Simpson T, Siddique Z. Product family design and platform-based product development:a state-of-the-art review. Journal of Intelligent Manufacturing.2007,18:5-29.
    [59]. Ullman D G. The Mechanical Design Process McGraw-Hill,1992.
    [60]. Mont OK. Clarifying the concept of product-service system. Journal of Cleaner Production,2002,10:237-245.
    [61]. N P Suh. Axiomatic Design: Advances and Applications. New York: Oxford University Press,2001
    [62]. Koller R.机械设计方法学.党志梁等译,北京:科学出版社,1990.
    [63].谢友柏.制造业产品的“创新”与我国现代设计网络.中国机械工程,1998,9(11):51-55.
    [64].谢友柏.现代设计理论和方法的研究.机械工程工程学报,2004,40(4):1-9.
    [65].谢友柏.现代设计理论中的若干基本概念.机械工程学报,2007,43(11):7-16.
    [66].邹慧君.机械设计原理.上海:上海交通大学出版社,1995.
    [67]. Moder, J.J., Phillips, C.R., Davis, E.W.1983. Project Management with CPM, PERT, andPrecedence Diagramming. Van Nostrand Reinhold, New York.
    [68]. Golenko-Ginzburg D., Gonik A.1996. On-line control model for cost simulation networkprojects. Journal of the Operational Research Society47(2):266–283.
    [69]. Steward D.V.1981. The Design structure system: A method for managing the design ofcomplex systems. IEEE transactions on engineering management28:71–74.
    [70]. Smith R.P. and Eppinger S.D. A Predictive Model of Sequential Iteration in Engineering Design.Management Science,1997.43(8):1104-1120.
    [71]. Browning T.R. Applying the Design Structure Matrix to SystemDecomposition and IntegrationProblems: A Review and New Directions. IEEE Transactions on Engineering Management,2001.48(3):292-306.
    [72]. Eppinger S.D., Whitney D.E., Smith R.P. and Gebala D.A. A Model based Method forOrganizing Tasks in Product Development. Research in Engineering Design.1994.6:1–13.
    [73]. Yassine A., Falkenburg D. and Chelst K. Engineering design management: An informationstructure approach. International Journal of Production Research,1999.37(13):2957-2975.
    [74]. Yassine A., Whitney D.E., Lavine J. and Zambito T.2000. Do-it-right-first-time (DRFT)approach to DSM restructuring. Proceedings of the12th International Conference on Design Theoryand Tethodology, Sept.10-13, Baltimore, MD, USA.
    [75]. Zheng T.L., Li Z., Li D. and Zhang, S. Re-engineering of the design process for concurrentengineering. Computers&Industrial Engineering,2000.38:479–491.
    [76]. Lin J, Chai KH, Wong YS, Brombacher AC. A dynamic model for managing overlappediterative product development. European Journal of Operational Research.2008.185:378-92.
    [77]. Braha D, Bar-Yam Y. The Structure and Dynamics of Complex Product Design.2006:40-71.
    [78]. Danilovic, M., and Browning, T. R. Managing Complex Product Development Projects withDesign Structure Matrices and Domain Mapping Matrices, International Journal of ProjectManagement,2007.25:300-314.
    [79].余本功.复杂产品开发过程建模与管理研究[博士]:合肥工业大学.2011.
    [80].杨友东.自顶向下的协同装配设计过程建模及规划研究[博士].浙江大学博士学位论文.2008.
    [81]. Rogers J.L., McCulley C.M., and Bloebaum C.L.1996. Integrating a Genetic Algorithm into aKnowledge-Based System for Ordering Complex Design Processes, Proceedings, the96ArtificialIntelligence on Design Conference, Stanford University, CA. Also NASA TM-110247.
    [82]. Altus S.S., Kroo I.M., and Gage P.J. A Genetic Algorithm for Scheduling and Decomposition ofMulti-disciplinary Design Problems. Transactions of the ASAE.1996.118(4):486–489.
    [83]. Yu T., Yassine A., and Goldberg D.2003. A Genetic Algorithm for Developing ModularProduct Architectures. Proceedings of the ASME2003International Design Engineering TechnicalConferences, Chicago, Sept.2–6.
    [84]. Whitfield R.I., Duffy A.H.B., Gartzia-Etxabe L.K.2005. Identifying and Evaluating ParallelDesign Activities using the Design Structure matrix. International Conference on Engineering Design,ICED05, Melbourne, Aug.2005.
    [85]. Meier C., Yassine A.A., et al. Design Process Sequencing With Competent Genetic Algorithms.Journal of Mechanical Design,2007.129(6):566-585.
    [86]. Talbot, F.B., Resource-constrained project scheduling with time-resource trade-offs: thenonpreemptive case. Management Science.1982.28(10):1197–1210.
    [87]. Cai X., Li K. A Genetic Algorithm for Scheduling Staff of Mixed Skills under Multi-criteria.European Journal of Operational Research,2000.125(2):359–369.
    [88]. Corominas A., Ojeda J., Pastor R. Multi-objective allocation of multi-function workers withlower bounded capacity. Journal of the Operational Research Society,2005.56(6):738–743.
    [89]. Corominas A., Pastor R., and Rodriguez E. Rotational allocation of tasks to multi-functionalworkers in a service industry. International Journal of Production Economics,2006.103(1):3–9.
    [90]. Campbell G., Diaby M. Development and evaluation of an assignment heuristic for allocatingcross-trained workers. European Journal of Operational Research,2002.138(1):9–20.
    [91]. Valls V., Pérez á., Quintanilla S.. Skilled workforce scheduling in Service Centres. EuropeanJournal of Operational Research,2009.193(3):791-804.
    [92]. Joglekar N.R., Ford D.N. Product development resource allocation with foresight. EuropeanJournal of Operational Research,2005.160(1):72-87.
    [93]. GOLDRATT E M. Critical chain. Great Barrington, Mass., USA: The Nort h River PressPublishing Corporation,1997.
    [94]. RAND G K. Critical chain: the theory of constraints applied to project management.International Journal of Project Management,2000.18(3):1732177.
    [95]. Leach L.P.2004. Critical Chain Project Management, Second Edition. Artech House Publishers.
    [96]. STEYN H. An investigation into the fundamentals of critical chain project scheduling.International Journal of Project Management,2000.19(6):36323691.
    [97]. HERROELEN W., LEUSR, DEMEUL EMEESTER E. Critical chain project scheduling: do notoversimplify [J]. Project Management Journal,2002.33(4):482601.
    [98]. WEI C. C., LIU P. H., TSAI Y. C. Resource-constrained project management using enhancedtheory of constraint [J]. International Journal of Project Management,2002.20(7):561-567.
    [99].刘士新,宋健海,唐加福.基于关键链的资源受限项目调度新方法.自动化学报,2006.32(l):60一66.
    [100]. Rabbania M, Fatemi Ghomib S M T, Jolaia F, et al. A new heuristic for resource-constrainedproject scheduling in stochastic networks using critical chain concept.European Journal ofOperational Research,2007.176(2):794-808.
    [101]. Wang, Yaning. Study on Critical Chain Project Portfolio Management2011InternationalConference on Management and Service Science (MASS),12-14Aug.2011:1-4.
    [102]. Tukel, O. I., W. O. Rom, et al. An investigation of buffer sizing techniques in critical chainscheduling. European Journal of Operational Research,2006.172(2):401-416.
    [103].王晓玲,吴丽.流水线研发:吉利的新引擎.商务周刊.2010:80-9.
    [104].李川.基于虚拟流水线的船舶制造生产调度与建模技术研究[硕士]:上海交通大学.2008.
    [105].何舢,陈建华.流水线生产作业管理精要—面向企业基层管理者的使用手册.北京:中国经济出版社.2005.
    [106]. Baybars, I.: A survey of exact algorithms for the simple assembly line balancing problem.Management Science.1986.32,909–932.
    [107]. Scholl, A. and C. Becker, State-of-the-art exact and heuristic solution procedures for simpleassembly line balancing. European Journal of Operational Research,2006.168(3):666-693.
    [108]. Boysen, N., M. Fliedner, et al. A classification of assembly line balancing problems. EuropeanJournal of Operational Research.2007.183(2):674-693.
    [109]. Capacho, L., et al., An evaluation of constructive heuristic methods for solving the alternativesubgraphs assembly line balancing problem. Journal of Heuristics,2009.15(2):109-132.
    [110]. Bard, J.F., Dar-El, E., Shtub, A., An analytic framework for sequencing mixed model assemblylines. International Journal of Production Research.1992.30:35–48.
    [111]. Yano, C.A., Bolat, A., Survey, development, and application of algorithms for sequencingpaced assembly lines. Journal of Manufacturing and Operations Management,1989.2:172–198.
    [112]. Sumichrast, R.T., Russell, R.S., Evaluating mixed-model assembly line sequencing heuristicsfor just-in-time production systems. Journal of Operations Management.1990.9:371–390.
    [113]. Sumichrast, R.T., Russell, R.S., Taylor, B.W., A comparative analysis of sequencingprocedures for mixedmodel assembly lines in a just-in-time production system. International Journalof Production Research.1992.30:199–214.
    [114]. Merengo, C., Nava, F., Pozetti, A., Balancing and sequencing manual mixed-model assemblylines. International Journal of Production Research.1999.37:2835–2860.
    [115]. Bukchin, J., Dar-El, E.M., Rubinovitz, J., Mixed-model assembly line design in a make-to-order environment. Computers and Industrial Engineering.2002.41:405–421.
    [116]. Arcus, A.L., COMSOAL: A computer method of sequencing operations for assembly lines.International Journal of Production Research.1966.4:259–277.
    [117]. Wilhelm, W.E., A column-generation approach for the assembly system design problem withtool changes. International Journal of Flexible Manufacturing Systems.1999.11:177–205.
    [118]. Bautista, J., Pereira, J., Ant algorithms for assembly line balancing. Lecture Notes in ComputerScience,2002.2463:65–75.
    [119]. Andrés, C., Miralles, C., Pastor, R. Balancing and scheduling tasks in assembly lines withsequence dependent setup times. European Journal of Operational.2008.187(3):1212-1223.
    [120]. Buzacott, J.A., Abandoning the moving assembly line: Models of human operators and jobsequencing. International Journal of Production Research,1990.28:821–839.
    [121]. Robinson, L.W., McClain, J.O., Thomas, L.J., The good the bad and the ugly: Quality on anassembly line. International Journal of Production Research,1990.28:963–980.
    [122]. Sarin, S., Erel, E., Dar-El, E.: A methodology for solving single-model, stochastic assemblyline balancing problem. The International Journal of Management Science,1999.27:525–535.
    [123]. Boucher, T.O., Choice of assembly line design under task learning. International Journal ofProduction Research.1987.25:513–524.
    [124]. Chakravarty, A.K., Line balancing with task learning effects. IIE Transactions.1988.20:186–193.
    [125]. Monden, Y.,1998. Toyota production system––An integrated approach to just-in-time,3rd ed.Kluwer, Dordrecht.
    [126]. Scholl, A.,1999. Balancing and sequencing assembly lines,2nd ed. Physica, Heidelberg.
    [127]. Miltenburg, J.: Balancing and scheduling mixed-model U-shaped production lines.International Journal of Flexible Manufacturing Systems,2002.14:119–151.
    [128]. Lehman, M., On criteria for assigning models to assembly lines. International Journal ofProduction Research,1969.7:269–285.
    [129]. Pinto, P.A., Dannenbring, D.G., Khumawala, B.M., A branch and bound algorithm forassembly line balancing with paralleling. International Journal of Production Research,1975.13:183–196.
    [130]. Ahmadi, R.H., Dasu, S., Tang, C.S., The dynamic line allocation problem. ManagementScience.1992.38:1341–1353.
    [131]. Daganzo, C.F., Blumenfeld, D.E., Assembly system design principles and tradeoffs.International Journal of Production Research,1994.32:669–681.
    [132]. Inman, R.R., Leon, M., Scheduling duplicate serial stations in transfer lines. InternationalJournal of Production Research,1994.32:2631–2644.
    [133]. Bukchin, J., Rubinovitz, J.: A weighted approach for assembly line design with stationparalleling and equipment selection. IIE Transactions,2003.35:73–85.
    [134]. Buzacott, J.A., Prediction of the efficiency of production systems without internal storage.International Journal of Production Research,1968.6:173–188.
    [135]. Suhail, A., Reliability and optimization considerations in a conveyor-paced assembly linesystem. International Journal of Production Research,1983.21:627–640.
    [136]. Hillier, F.S., So, K.C., The effect of machine breakdowns and inter stage storage on theperformance of production line systems. International Journal of Production Research,1991.29:2043–2055.
    [137]. Powell, S.G., Buffer allocation in unbalanced three station serial lines. International Journal ofProduction Research,1994.32:2201–2217.
    [138]. Malakooti, B., Assembly line balancing with buffers by multiple criteria optimization.International Journal of Production Research,1994.32:2159–2178.
    [139]. Dolgui, A., Ereemev, A., Kolokolov, A., Sigaev, V., A genetic algorithm for allocation ofbuffer storage capacities in production line with unreliable machines. Journal of MathematicalModelling and Algorithms,2002.1:89–104.
    [140]. Amen, M., An exact method for cost-oriented assembly line balancing. International Journal ofProduction Economics,2000a.64:187–195.
    [141]. Amen, M., Heuristic methods for cost-oriented assembly line balancing: A survey.International Journal of Production Economics,2000b.68:1–14.
    [142]. Amen, M., Heuristic methods for cost-oriented assembly line balancing: A comparison onsolution quality and computing time. International Journal of Production Economics,2001.69:255–264.
    [143]. Amen, M., Cost-oriented assembly line balancing: Model formulations, solution difficulty,upper and lower bounds. European Journal of Operational Research,2006.168:747–770.
    [144]. Miltenburg, J., Balancing and scheduling mixed-model U-shaped production lines.International Journal of Flexible Manufacturing Systems,2002.14:119–151.
    [145]. Ponnambalam, S.G., Aravindan, P., Naidu, G.M., A multi-objective genetic algorithm forsolving assembly line balancing problem. International Journal of Advanced ManufacturingTechnology,2000.16:341–352.
    [146]. Tonge FM. Summary of a Heuristic line balancing Ptocedure. Management Science,1960,7(1):21-42.
    [147]. Wester L, Kilbridge M. D. A Review of Analytical Systems of line balancing. OperationsResearch,1962,10(5):626-638
    [148]. Kilbridge M.D., Wester L. A heuristic Method of Assembly line balancing. Journal ofindustrial Engineering,1961,7(4):292-298
    [149]. Moodie C.L. and Young H.H. A heuristic method of assembly line balancingfor assumptionsconstant or variable work element times. Journal Industrial Engineering,1965.16(1):23-29.
    [150]. Bennett G.B. and Byrd J. A trainable heuristic procedure for the assembly line balancingproblem. AIIE Transations,1976,8:195-201
    [151]. Tasan, S. and Tunali S. A review of the current applications of genetic algorithms in assemblyline balancing. Journal of Intelligent Manufacturing.(2008).19(1):49-69.
    [152]. XU Hong-li, LOU Ying-yan, YIN Ya-feng, et al. A prospect-based user equilibrium modelwith endogenous reference points and its application in congestion pricing. Transportation ResearchPartB,2011.45(2):311-328.
    [153]. Ribas, Imma, Leisten, Rainer, Frami an, Jose M. Review and classification of hybrid flowshop scheduling problems from a production system and a solutions procedure perspective.Computers&Operations Research.2010,37(8):1439-1454.
    [154]. Vignier A, Billaut JC, Proust C. Hybrid flowshop scheduling problems: state of the art. Rairo-Recherche Operationnelle-Operations Research.1999,33(2):117–83.
    [155]. Ruiz, Rubén, Vázquez-Rodríguez, JoséAntonio. The hybrid flow shop scheduling problem.European Journal of Operational Research,2010,205(1):1-18.
    [156].刘士新,宋健海,唐加福.基于关键链的资源受限项目调度新方法.自动化学报,2006,32(1):60-66.
    [157].刘勇,谷寒雨,席裕庚.基于约束理论的混合复杂流水线规划调度算法.计算机集成制造系统,2005,11(1):97-103.
    [158]. Spearman M.L.,On the theory of constraints and the goal system, Production and OperationsManagement,1997,6:28-33.
    [159]. Chiang S.Y., Kuo C.T., et al. Bottlenecks in Markovian production lines: Identification andapplication. IEEE transactions on Robotics and Automation,1998.14(2):352-359.
    [160]. Clements P.C., On the importance of product line scope, in: Proceedings of the4thInternational Workshop on Software Product Family Engineering,2001:69–77.
    [161]. X.D.Zhang,H.S.Yan. Intergrated optimization of production planning and scheduling for akind of job-shop. International Journal of Advanced Manufacture Technology.2005,26(8):876~886.
    [162].严洪森,夏琦峰,朱闵如等.汽车装配车间生产计划与调度的同时优化方法.自动化学报,2002,28(6):911~919.
    [163].张晓东,严洪森.多级车间生产计划与调度的集成优化.机械工程学报.2005,41(9):98~105.
    [164].胡鸿韬,江志斌,张怀.导体生产线动态在制品水平控制方法.计算机集成制造.2008,14(9):1759-1765.
    [165].张洁,翟文彬,严隽琪,马登哲.基于模糊神经网络的半导体生产线重调度策略优化.机械工程学报.2005,41(10):75-79.
    [166].司书宾,孙树栋.批量生产企业的车间计划调度算法研究与应用.计算机工程与应用.2005,41(27):196~201.
    [167]. Pohl, K., B ckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations,Principles and Techniques. Springer, Heidelberg.2005.
    [168]. Jan Bosch. Product-Line Architectures in Industry:A Case Study. The21stiternationalConference on Software Engineering, November1998.
    [169].王广昌.软件产品线关键方法与技术研究.博士学位论文:浙江大学.2001.
    [170]. STARS. DARPA STARS Overview: Product-Line Process. March1996.http://www.asset.com/stars/darpa/Overview.
    [171].顾新建,祁国宁.知识集成初探.计算机集成制造系统,2000,6(1):8~13.
    [172].于加晴.基于分解的设计过程重用方法研究[博士]:北京交通大学.2011.
    [173].席运江.组织知识的网络表示模型及分析方法[博士]:大连理工大学;2007.
    [174].王众托.知识系统工程.北京:科学出版社.2004.
    [175].齐二石.生产与运作管理教程.北京:清华大学出版社.2006.
    [176].徐晓刚.设计结构矩阵研究及其在设计管理中的应用[博士]:重庆大学,2002.
    [177]. Milo R., Shen-Orr S., Itzkovitz S., et al. Network motifs: Simple building blocks of complexnetworks. Science,2002.298(5594):824–827.
    [178]. S. Wuchty, Z. N. Oltvai, and A. L. Barab′asi. Evolutionary conservation of motif constituentsin the yeast protein interaction network. Nature Genetics,2003.35(1):176–179.
    [179]. Schreiber F, Schw bbermeyer H. Towards motif detection in networks: Frequency conceptsand flexible search. Proc Intl Wsh Network Tools and Applications in Biology (NETTAB’04).2004:91-102.
    [180]. Kashani ZR et.al. Kavosh: a new algorithm for finding network motifs. BMC Bioinformatics.2009Oct4,10:318.
    [181]. D.J. Watts, Small Worlds: The Dynamics of Networks between Order and Randomness,Princeton University Press, Princeton, NJ,1999.
    [182]. Mozdgir A, Mahdavi I, Badeleh IS, Solimanpur M. Using the Taguchi method to optimize thedifferential evolution algorithm parameters for minimizing the workload smoothness index in simpleassembly line balancing. Mathematical and Computer Modelling.2011.
    [183].王勇,张斌.项目管理知识体系指南第四版.北京:电子工业出版社,2009.
    [184]. Yao J-S, Wu K. Ranking fuzzy numbers based on decomposition principle and signed distance.Fuzzy Sets and Systems.2000,116:275-88.
    [185]. Klir, G.J., Yuan, B., Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall PTR,New Jersey.1995.
    [186]. Nguyen Van, Hop, A heuristic solution for fuzzy mixed-model line balancing problem.European Journal of Operational Research.2006.168(3):798-810.
    [187]. Goldberg D E. Genetic Algorithms in Search Optimization and Maehine Learning. AddisonWesley,1989.
    [188]. Wang J. A fuzzy robust scheduling approach for product development projects. EuropeanJournal of Operational Research,2004.152(1):180-194.
    [189].陈晶,潘全科.求解独立任务调度的离散粒子群优化算法.计算机工程,2008.34(6):214–218.
    [190]. Jarboui B., Damak N., Siarry P., and Rebai A. A combinatorial particle swarm optimization forsolving multi-mode resource-constrained project scheduling problems, Applied Mathematics andComputation,2008.195:299-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700