液体火箭发动机响应特性研究及稳定性的非线性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动态特性包括响应特性和稳定性,本文采用理论分析、数值仿真和试验研究等手段对目前这两方面研究的不足及存在的难题开展了深入的研究工作。设计了用于液氧流量调节的低温可调汽蚀文氏管;建立了低温可调汽蚀文氏管汽蚀状态和非汽蚀状态下统一的动力学模型;对低温流量控制系统进行了大量冷态、热态试验,得到了流量系数、压力恢复系数随文氏管入口压力及调节针锥位移的变化规律,并成功实现了多级流量调节和工况转换。
     建立了两位五通常开式电动气阀、杠杆式气动液阀的动力学模型;分析了控制气体压力、最大气隙以及工作电压等因素对电动过程的影响;分析了控制气体压力、控制腔容腔半径、与电动气阀之间连接管长度以及工质腔入口压力等因素对气动液阀启动过程的影响;对电动气阀和气动液阀联立时的工作特性进行了大量试验研究。
     建立了三组元工况和两组元工况下统一的燃烧室模型;对三组元发动机地面试验系统的常温和低温推进剂充填过程、起动时序、转工况时序以及动态响应过程进行了深入的仿真研究,提出了用液体体积分数来直观描述容腔的充填过程;进行了大量地面热态试验,验证仿真分析的结果。
     首次将基于相空间重构的非线性时间序列分析方法用于液体火箭发动机稳定性分析中,从一个全新的视角来研究复杂的液体火箭发动机系统的稳定性,得到发动机工作的稳定性极限,揭示出系统的动力学本质,为解决系统稳定性和燃烧过程稳定性这一理论和工程上的难题提供新的思路和手段。
     非线性时间序列分析的基础是干净、真实的时间序列数据,本文对现有小波去噪方法进行改进,提出了一种基于小波变换模极大值与阈值决策相融合的去噪方法。该方法融合了小波变换模极大值去噪法和阈值去噪法的优点,克服了将非模极大值点的小波系数全部置为0,从而舍弃部分有用信息的缺陷,也克服了对阈值简单设置的不足,针对不同尺度下模极大值的情况,进行合理的阈值设置;利用经典的Lorenz非线性动力系统对改进方法进行验证,结果表明改进方法具有精度高、算法简单、计算效率高的优点;利用改进方法对PCB高频压力传感器测得的试验数据进行去噪处理,既达到了良好的去噪效果,又保留了原始信号的主要特征。
     对基于相空间重构的非线性时间序列分析进行了深入的理论研究,开发出重构参数(时间延迟、嵌入维数)、关联维数和最大Lyapunov指数的计算程序;针对三组元发动机地面试验系统,首次计算出正常工况下发动机系统的关联维数在2.9和3.2之间,最大Lyapunov指数在0.0006和0.001之间。且利用两种非线性特征量的突变,可以检测出发动机的故障以及看似正常的燃烧室压力脉动曲线对应的参数稳定性边界。
     对三组元发动机地面试验系统的客观试验数据进行了基于相空间重构的非线性时间序列分析,定量计算出:氢含量的稳定性边界是12%左右,氢温度的稳定性边界是112K左右,氢喷注压降的稳定性边界为室压的16%左右,一旦低于这些边界,系统就容易激发不稳定;余氧系数的稳定性裕度较宽,在0.6~1的范围内发动机都可以正常工作,这利于工况设定。
Dynamic characteristic includes response characteristic and stability. The shortcoming and problems of these two parts are resolved in the thesis by means of theoretical analysis, numerical simulation, and experiment research.
     The cryogenic throttling venturi is designed for liquid oxygen in the thesis. Uniform dynamic models of throttling Venturi are established when Venturi is cavitated or not. Large numbers of cold tests and firing tests are taken based on the mass flow control system, which show the system can control the mass flow of liquid oxygen accurately and change the operating conditions successfully. By the tests, the rules of discharge coefficient and pressure recovery factor changing with inlet pressure of Venturi and the displacement of the tapered rod are found.
     The dynamic models of the electro-pneumatic valve and the lever pneumatic liquid valve are established. The effects of the pressure of control gas and voltage etc. on the electro motion are analyzed in the thesis. And the effects of the pressure of control gas, radius of the control cavity, the length between the solenoid valve and the pneumatic valve, the inlet pressure of the propellant etc. on the startup of the pneumatic valve are also analyzed in the thesis. Many experiments are taken to study the response characteristic of the electro-pneumatic valve and the lever pneumatic liquid valve.
     Uniform dynamic models of the combustion chamber are established for tripropellant mode and twipropellant mode. The dynamic response processes of the ground test system of the tripropellant model engine are studied detailedly, which include the priming process of normal temperature and cryogenic propellants, the timing sequence of startup and mode-transition. The liquid volume fraction is proposed to describe the priming process of the cavity. Large numbers of ground firing tests are taken to validate the simulation results.
     Nonlinear time series analysis based on phase space reconstruction is introduced to analyze the stability of liquid rocket engine for the first time, which is a new visual angle to study the stability of complicated engine system. The new method can give the boundary of stability and reveal the dynamics essence of the engine system. It can provide a brand-new method to resolve system dynamic instability and combustion instability, which are difficult problems in theory and engineering.
     The foundation of nonlinear time series analysis is clean and real data. A new wavelet-denoising method is proposed in the thesis, which is based on wavelet transform modulus maximum and nonlinear threshold denoising method on wavelet. This method absorbs the advantages and overcomes the disadvantages of traditional methods. Lorenz system is used to validate the improved method, which shows the new method has the advantage of the high precision and the simple arithmetic and the high computing efficiency. And the improved method is used to denoise the test data. The results show it can denoise very well and also keep the important information of the test data.
     The in-depth theory study of nonlinear time series analysis based on phase space reconstruction is taken in the thesis. The program is developed to compute the reconstruction parameter including the time delay and the embedding dimension, correlation dimension and maximum Lyapunov exponent. For the ground test system of the tripropellant model engine, it’s the first time to compute correlation dimension between 2.9 and 3.2 and maximum Lyapunov exponent between 0.0006 and 0.001 when the state of engine is normal. The abrupt change of correlation dimension and maximum Lyapunov exponent can detect the fault of the engine and decide the boundary of stability.
     Nonlinear time series analysis based on phase space reconstruction is used to analyze the data from experiments of the ground test system of the tripropellant model engine. The results show the stability boundary of hydrogen percentage is about 12% and hydrogen temperature is about 112K and hydrogen injection pressure drop is about 16 percent of the combustion chamber pressure. Once these parameters are under the boundary, instability may be excitated. The range of stability of the oxygen-fuel ratio is broad. Engine can work normally when the oxygen-fuel ratio is between 0.6 and 1, which is advantageous for liquid rocket engine.
引文
[1] Vigor Yang. Combustion instability of liquid propellant rocket engine. AIAA Progress in Aeronautic and Astronautic. 2001
    [2] T. Murphy and R. McMillion. Propulsion for Future Launch Vehicles. AIAA 93-4127
    [3] Douglas O. Stanley, Walter C. Engelund and Roger Lepsch. Propulsion System Requirements for Reusable Single-Stage-to-Orbit Rocket Vehicles. AIAA 92-3504
    [4] Gerald Hagemann, Hans lmmich, Daimler-Benz AG, Thong Van Nguyen, GenCorp Aerojet. Advanced Rocket Nozzles. Journal of Propulsion and Power. 1998:14(5)
    [5] James A. Martin. Hydrocarbon Rocket Engines for Earth-to-Orbit Vehicles. J. Spacecraft. 1983:20(3)
    [6] 胡平信. 三组元液体火箭发动机发展概况. 中国航天. 1992,12
    [7] B D Goracke, D J H Levack. Tripropellant Engine Option Comparison for SSTO. AIAA 95-3609
    [8] Zurawski. Current Evaluation of the Tripropellant Concept. NASA Technical Paper 2602. 1986,6
    [9] T Vongpaseuth, G Venkatasubramanyam, J A Martin. Russian Tripropellant Engines for SSTO. AIAA 95-2952
    [10] J R Olds, P X Bellini, Argus. A Highly Reusable SSTO Rocket-Based Combined Cycle Launch Vehicle with Maglifter Launch Assist. AIAA 98-1557
    [11] J Olds, L Ledsinger, D R Komar. A SSTO Bantam-X Vehicle Concept Utilizing Rocket-Based Combined Cycle Propulsion. AIAA 99-4888
    [12] R Daines. Combined Rocket and Airbreathing Propulsion Systems for Space Launch Applications. Journal of Propulsion and Power. Vol.14, No.5, 1998
    [13] A S Roudakov, V L Semenov, J W Hicks. Recent Flight test Results of the Joint CIAM-NASA Mach 6.5 Scramjet Flight Program. AIAA 98-1643
    [14] J L Cambier. Strategies for Pulsed Detonation Engine Performance Optimization. Journal of Propulsion and Power. Vol.14, No.4,1998
    [15] T Kammash. High-Thrust High-Specific Impulse Gas-dynamic Fusion Propulsion System. Journal of Propulsion and Power. Vol.13, No.4,1997
    [16] 谭建国. 三组元液体火箭发动机系统设计与动态特性研究:[博士学位论文]. 国防科技大学研究生院. 2003,10
    [17] 李清廉. 同轴式三组元喷嘴性能分析、工程应用及设计评定:[博士学位论文]. 国防科技大学研究生院. 2003,4
    [18] 王振国, 谭建国, 陶玉静. 三组元双工况喷注器与燃烧室关键技术研究—系统研究报告. 国防科技报告. 2003,9
    [19] 黄玉辉. 燃烧不稳定性的理论、数值与试验研究:[博士学位论文]. 国防科技大学研究生院. 2001,6
    [20] H M Park, W J Lee. Recursive Identification of Thermal Convection. Journal of Dynamic System, Measurement and Control. Vol.125, No.1, 2003
    [21] A Sarkar, M P Paidoussis. A Compact Limit-cycle Oscillation Model of a Cantilever Conveying Fluid. Journal of Fluid and Structure. Vol.17, No.4, 2003
    [22] L M Santi. Integrated Model Development of Liquid Fueled Rocket Propulsion System (Final Report). N94-27166,1993
    [23] R Salkeld. Mixed-mode propulsion for the space shuttle. Astronautics & Aeronautics. 1971,9
    [24] J A. Martin. Effects of Tripropellant Engines on Earth-to-Orbit Vehicles. Journal of Spacecraft and Rocket. Vol.22, No.6, 1985
    [25] R A Lepsch. Dual Fuel Propulsion in Single Stage Advanced Manned Launch System Vehicle. Journal of Spacecraft and Rockets. Vol.3, No.3, 1995
    [26] W A Visek, J Whitney. Design Concept for LOX/Hydrocarbon Tripropellant Booster Engine. AIAA 97-1854
    [27] W A Visek, J Whitney. LOX/Hydrocarbon Booster Engine Concepts. AIAA 86-1687;
    [28] J O Vilja, J R Lobitz. Bell Annular Tripropellant Engine Concept. AIAA 94-4680
    [29] M J Bayer. Comparative Assessment of Rocket-Propelled Single-Stage-to-Orbit Concept. Journal of Spacecraft and Rocket. Vol.40, No.2, 2003
    [30] T D Kmiec, R G Carroll. Tripropellant Combustion Process. N90-28631
    [31] M G Schmidt, M M Micci. Combustion Performance of RP-1/O2/H2 Tripropellants. AIAA 98-3686
    [32] N O Rhys, C W Hawk. Tripropellant Combustion: Chemical Kinetics and Combustion Instability. AIAA 95-3151
    [33] V A Turtushov, V A Orlov, J Hulka. Final Model Development and Full-Scale Testing of a Soot-Free Fuel-Rich Kerosene Tripropellant Preburner. AIAA 96-2630
    [34] V A Turtushov, V A Orlov, J Hulka, C Dexter. Development Status of a Soot-Free Fuel-Rich Kerosene Tripropellant Preburner for Reusable Liquid Rocket Engine Applications. AIAA 95-3002
    [35] J A Martin, T Vongpaseuth, G. Venkatasubramanyam. Russian RD-704 for Single-Stage Vehicles. Journal of Spacecraft and Rocket. Vol.33, No.2, 1995
    [36] J N Tkachenko, C D Limerick, J Whitney. Powerful Liquid Rocket Engine (LRE) Created by NPO Energomash for Up to Date Space Rockets. AIAA 93-1957
    [37] A Kumakawa, F Ono, N Yatsuyanagi. Combustion and Heat Transfer of LO2/HC/Hydrogen Tripropellant. AIAA 95-2501
    [38] K Ramamurthi, G. M Nair. Coaxial Swirl Injection Element for A Tripropellant Engine. AIAA 98-3514
    [39] 王振国, 罗世彬等. 可重复使用运载器研究进展. 国防科学技术报告. 2000,8
    [40] 黄奕勇. 以火箭为动力单级入轨飞行器推进理论研究:[博士学位论文]. 国防科技大学研究生院. 1999,9
    [41] 黄奕勇, 张育林. 变混合比及三组元发动机用于单级入轨. 推进技术. 1998,10
    [42] 王振国, 周进等. 三组元双工况火箭发动机喷注器研究(三): 燃烧过程及系统理论研究报告. 国防科学技术报告. 2001,5
    [43] 王振国, 谭建国等. 三组元双模式喷注器与燃烧室技术研究(三): 系统方案研究报告. 国防科学技术报告. 2003,1
    [44] 陶玉静, 范才智, 吴海燕. 液氧/煤油/气氢三组元燃烧室技术研究(二): 系统分析与仿真研究报告. 2004,11
    [45] 周进, 沈赤兵等. 三组元双工况火箭发动机喷注器研究总结报告. 国防科学技术报告, 1998,7
    [46] 周进, 沈赤兵等. 三组元双工况火箭发动机喷注器研究报告(二): 缩尺试验件设计报告. 国防科学技术报告. 2000,5
    [47] 王振国, 周进, 李清廉. 三组元双工况火箭发动机喷注器研究报告(一): 喷嘴设计及冷态试验研究报告. 国防科学技术报告. 2001,5
    [48] 王振国, 周进, 李清廉. 三组元双模式喷注器与燃烧室关键技术研究(二): 内混同轴式三组元喷嘴冷试研究报告. 国防科学技术报告. 2003,1
    [49] 沈赤兵, 童荣瑜等. 三组元喷嘴流量特性的试验研究. 中国空间科学技术. 1999:19(3)
    [50] 沈赤兵, 周进, 王振国等. 三组元喷嘴雾化特性的试验研究. 推进技术. 1999,10
    [51] 李清廉, 田章福等. 新型三组元喷嘴雾化特性研究. 工程热物理学报. 2002, 9
    [52] 李清廉, 田章福, 王振国. 模型三组元喷嘴喷注通道流量特性研究. 推进技术. 2002, 8
    [53] 李清廉, 田章福, 王振国. 模型三组元喷嘴雾化 SMD 变化规律研究. 国防科技大学学报. 2001, 12: 23(6)
    [54] Li Qinglian, Tian Zhangfu, Wang Zhenguo etc. Experiment study of two phase mixing volume operating status in GH2/LO2/kerosene tripropellant injector. AIAA 2001-3714
    [55] Li Qinglian, Yao Shiqiang etc. Experimental study of Atomization Characteristic of Internal-mixing Tripropellant Injector. AIAA 2003-5065
    [56] Li Qinglian, Shen Chibing etc. Analysis for Flow Parameters of Gas and Liquid in the Internal-mixing Tripropellant Injector. AIAA 2003-5066
    [57] 李清廉, 王振国, 周进. 内混式喷嘴混合腔压力变化规律研究. 南京: 中国工程热物理学会燃烧学 2002 学术会议. 2002, 9
    [58] Li Qinglian, Wang Zhengguo etc. The Progress in the Study of Tripropellant injector. BeiJing: Sino-French Workshop on Space Propulsion. 2001, 9
    [59] 李清廉, 王振国. 三组元喷嘴内混式外喷嘴综合流量特性研究. 长沙: 国防科学技术大学 2002 研究生活动周论文集. 2002, 11
    [60] 田章福, 李清廉等. 三组元喷嘴结构参数对混合腔中两相流的影响. 推进技术. 2002, 8: 23(4)
    [61] Lixin Zhou, Fanpei Lei, etc. Numerical study of Swirl nozzle internal flow field. Beijing: Sino-French Workshop on Space Propulsion. 2001, 9
    [62] 周进, 沈赤兵等. 三组元双工况火箭发动机喷注器研究报告(一): 试验研究报告. 国防科学技术报告. 2000, 5
    [63] 沈赤兵, 黄玉辉. 三组元双工况火箭发动机喷注器研究报告(二): 热试研究报告. 国防科学技术报告. 2001, 5
    [64] 王振国, 周进等. 三组元双模式喷注器与燃烧室技术研究(一): 热试研究报告. 国防科学技术报告. 2003, 1
    [65] 沈赤兵, 李清廉, 田章福. 液氧/煤油/气氢三组元燃烧室技术研究(一)-设计与试验研究报告. 国防科学技术报告. 2004,11
    [66] 黄玉辉等. 三组元发动机燃烧稳定性试验. 推进技术. 2003, 1: 24(1)
    [67] 王占林. 三组元高压推力室试验技术研究. 导弹与航天运载技术. 1999(4)
    [68] 黄玉辉, 周进等. 三组元火箭发动机燃烧稳定性数值分析. 南京: 第一届液体推进会议
    [69] 李清廉, 王振国等. 三组元双工况火箭发动机喷注器研究报告(三): 数值仿真研究报告. 国防科学技术报告. 2000, 5
    [70] 王振国, 周进等. 三组元双模式喷注器与燃烧室技术研究(四): 数值仿真研究报告. 国防科学技术报告. 2003, 1
    [71] Li Qinglian, Huang Yuhui, etc. The Numerical Simulation of the Hot Flow Field in Tripropellant LRE. AIAA 2001-3715
    [72] 李清廉, 王振国. 三组元发动机两相湍流燃烧流场数值模拟. 中国航空学会动力专业分会 2000 年学术会议. 2000, 9
    [73] Kontogiannis E., Munro N. The Parametric Systems Toolbox. Manchester, Control Systems Center, UMIST. 1999
    [74] Bazarov V.G. and Yang V. Liquid-Propellant Rocket Engine Injector Dynamics. Journal of Propellant and Power. 1998
    [75] Biggs R.E. Space Shuttle Main Engine: The First Ten Years. AAS 89-556
    [76] Mason J.R. and Southwick R.D. Large Liquid Rocket Engine Transient Performence Simulation System (Final Report). NASA CR-184099. 1990
    [77] A. D. Garclee tc. Analysis of the Space Shuttle Main Engine Simulation. N93-20251 (NASA-CR-191063). June, 1993
    [78] 潘陆原, 王占林, 张若青. 飞机高压液压管路系统特性研究. 航空科学技术. 1999,4
    [79] 盛敬超. 工程流体力学. 机械工业出版社. 1988
    [80] 罗志昌. 流体网络理论. 机械工业出版社. 1988
    [81] 蔡亦钢. 冲击激励下的流体管道动态特性分析:[硕士论文]. 浙江大学. 1984, 10
    [82] 蔡亦钢,盛敬超. 液压管道频率特性的数学模型及在数字仿真中的应用. 中国机械工程学会第三次液压 CAD 与计算机控制学术讨论会. 1986,12 上海
    [83] R. E. Goodson and R. G. Leonard. A Survey of Modeling Techniques for Fluid Line Transients. Transactions of the ASME, Journal of Basic Engineering. 1972, Vol. 94(2): 474~482
    [84] A. S. Iberall. Attenuation of Oscillatory Pressures in Instrument Lines. J. of Research. National Bureau of Standards. Vol. 45. July. 1950. p2115
    [85] C. P. Rohtnann, E. C. Grogan. On the Dynamics of Pneumatic Transmission Lines. Trans. ASME. Vo1 79. 1957. p853
    [86] N. B. Nichols. The Linear Properties of Pneumatic Transmission Lines. Trans. Instrum. Soc. Amer. 1, 5-14(1962)
    [87] F. T. Brown. The Transient Response of Fluid lines. Trans. ASME .Ser. D.Vol 84. N04.Dec. 1962. p547
    [88] A. F. D.Souza, R. oldenburger. Dynamic Response of Fluid Lines. Trans. ASME. Ses. D. Vol 86. Sep.1964. P589
    [89] E. L. Holmboe, W. T. Rouleau. The Effect of Viscous Shear on Transients in Liquid Lines. Trans. ASME. Ser.D.Vo190. March.1967.p174
    [90] WZielke. Frequency-Dependent Friction in Transient Pipe Flow. ASME. Sec D Vol 90. No.l Mar. 1968.p109
    [91] A. K. Trikha. An Efficient Method for Simulating Frequency Dependent Friction in Transient Liquid Flow. Trans. ASME. Set. 1. March 1975.p97
    [92] R. L. Woods. A First-order Square-root Approximations for Fluid Transmission Line. Fluid Transmission Line Dynamics ASME New York 1983
    [93] S. H. Ltsang, M. WBenson, R. H. Granberg. The Open and Blocked Distributed Air Transmission Lines by the Fast Fourier Transform Method. J. of Dynamic Systems. Measurement. and Control. Sept, 1985. Vol. 107.p213
    [94] B. L. margolis, WC. Yang. Bond Graph Models for Fluid Networks Using Modal Approximation. J. of Dynamic Systems. Measurement and Control. Sept. 1985. Vol. 107. p269
    [95] Cai Yigang, Sheng Jingchao. New Approach for Simulating Frequency-Dependent Friction of Hydraulic Line Flow in Frequency and Time Domain. Fluid Power Transmission and Control Proc. of 2nd International Conference March 20-22. 1989. Hangzhou China
    [96] W. A. Woods. Method of Calculating Liquid Flow Fluctuations in Rocket Motor Supply Pipes. American Rocket Society Journal. 1961, Vol. 31(11): 1560~1567
    [97] R. G. Fashaugh and V. L. Streeter. Resonance in Liquid Rocket Engine Systems. Transactions of the ASME, Journal of Basic Engineering, 1965,Vol. 87(4): 1011~1018
    [98] Daily WL., Hankey WL., Olive R.W, and Jordan J.M. (1956). Resistance coefficients far accelerated and decelerated flows through smooth tubes and orifices. Transactions of ASME, July, 1071-1077.
    [99] Brunone B., Golia U.M., and Greco M. (1991). Some remarks on the momentum equation for fast transients. Int. Meeting on Hydraulic Transients with Column Separation, 9th Round Table, IAHR, Valencia, Spain, 140-148.
    [100] Anton Bergant, Angus R. Simpson, John Vitkovsky. Review of Unsteady Friction Models in Transient Pipe Flow. 9th International Meeting on the Behavior of Hydraulic Machinery under Steady Oscillatory Conditions, International Association of Hydraulic Research. Bmo. Czech Republic. 7-9 Sept.
    [101] Wood, D.J., and Funk, J.E. (1970). A boundary-layer theory for transient viscous losses in turbulent flow. Journal of Basic Engineering, ASME, 92(4), 865-873
    [102] J. C. Eschweiler and H. W. Wallace. Liquid Rocket Engine Feed System Dynamics by Method of Characteristics. Transactions of the ASME Series B,1968,Vol. 90(4)
    [103] P. F. Thompson and T. J. Walsh. Characterization of Attitude Control Propulsion Systems. NASA-CR-115183, 1971
    [104] J. J. Markowsky. An analytical model for predicting the pressure and flow transients in a gaseous H2-O2 100 LBF thrust reaction control system rocket engine. N73-16767, 1971
    [105] AD-A039037 (AFAPL-TR-76-43). Aircraft Hydraulic Systems Dynamic Analysis. Vol.ll. 1977
    [106] V. E. Haloulakos. The “Wave Dynamics” Program and Its Use in Solving Unsteady Compressible Flow Problems. AIAA-80-1447.
    [107] Dynamics of Propellant Feedline Systems. AD-1184865, 1988
    [108] E. K. Ruth, H. Ahn, R. L. Baker, and M. A. Brosmer. Advanced Liquid Rocket Engine Transient Model. AIAA 90-2299
    [109] 王克昌. 液体火箭发动机瞬变过程的计算机模拟. 宇航学报. 1981, Vol. 2(1): 31~41
    [110] 王珏. YF-73 氢氧发动机起动过程分析:[硕士学位论文]. 航天工业总公司第十一研究所, 1990
    [111] 沈赤兵. 液体火箭发动机静特性与响应特性研究:[博士学位论文]. 国防科技大学研究生院, 1997
    [112] 聂万胜, 陈新华, 戴德海, 夏鹏, 庄逢辰. 姿控推进系统发动机关机的管路瞬变特性. 推进技术. 2003, Vol. 24(1)
    [113] 张黎辉, 李家文, 张雪梅, 金广明, 魏彦祥. 航天器推进系统发动机动态特性研究. 航空动力学报. 2004, Vol. 19(4)
    [114] 苏龙斐, 张黎辉, 潘海林. 卫星推进系统发动机启动过程数值仿真. 航空动力学报. 2005, Vol.20(4)
    [115] E. B. Wylie. Advances in the Use of MOC in Unsteady Pipeline Flow. 4th International Conference on Pressure Surges. Sept. 21-23. 1983.p27
    [116] G. Amies. Computer Simulation of Hydraulic Systems under Dynamic Conditions. National Conference on Fluid Power 1976.p101
    [117] A. C. Spencer, S. Nakanura. Implicit Characteristic Method for One Dimensional Fluid Flow. Method of Heat Transfer and Fluid Flow. TANS. Vol. 17.Nov.1973.p247
    [118] D. E. Goldberg, E. B. Wylie. Characteristic Method Using Time-Line Interpolations. Div. ASCE.Bo1.109.No.3 May. 1983.p670
    [119] 程谋森, 刘昆, 张育林. 推进剂供应管路内液体瞬变流一维有限元计算. 推进技术. 2000, Vol. 21(4)
    [120] 赵彤,彭光正,许耀铭. 液压管道分布参数模型的精确近似. 机床与液压.1998,1
    [121] 张祥林,黄树槐,王运赣,李从心. 管道流体瞬变的有限元研究. 中国机械工程. 1995
    [122] Housner G. W. Bending Vibrations of a Pipe Line Containing Flowing Fluid. Journal of Applied Mechanics, 1952, 19: 205~208
    [123] Rousslete J, Herrmann G. Flutter of Articulated Pipes at Finite Amplitude. Journal of Applied Mechanics, 1977, 44: 154~158
    [124] Bajaj A K, Sethna P R, Lundgren T S. Hopf-bifurcation Phenomena in Tubes Carrying a Fluid. SLAM Journal of Applied Mechanics. 1980, 39: 213~230
    [125] Ch’ng E, Dowell E H. Flow-induced Vibrations. New York: ASME. 1979, 65~81
    [126] Fuller C R, Fahy F J. Characteristic of Wave Propagation and Energy Distributions in Cylindrical Elastic Shells Filled with Fluid. ASME Journal of Sound and Vibration. 1982, 81(4): 501~508
    [127] Pavic G. Vibro acoustical Energy Flow through Straight Pipes. ASME Journal of Sound and Vibration, 1992, 142(2): 293~310
    [128] Jong C A F de. Analysis of Pulsations and Vibrations in Fluid-filled Pipe Systems [dissertation]. Eindhoven: Eindhoven University of Technology, the Netherlands, ISBN 90-386-0074-7, 1994
    [129] Paidoussis M P, Denise J P. Flutter of Thin Cylindrical Shells Conveying Fluid. Journal of Sound and Vibration. 1971, 16: 459~461
    [130] Paidoussis M P, Denise J P. Flutter of Thin Cylindrical Shells Conveying Fluid. Journal of Sound and Vibration. 1972, 20: 9~26
    [131] C. Kiris and L. Chang. Computation of Incompressible Viscous Flows through Turbopump Components. NASA-CR-192296, 1993
    [132] O. O. Badmus, K. M. Eveker and C. N. Nett. Control-oriented High Frequency Turbomachinery Modeling, Part 1: Theoretical Foundations. AIAA 92-331
    [133] V. M. Kalnin and V. A. Sherstiannikov. Hydrodynamic Modeling of the Starting Process in Liquid-propellant Engines. Acta Astronautica. Vol. 8: 231~242
    [134] C. Brennen and A. J. Acosta. The Dynamic Transfer Function for a Cavitating Inducer. Journal of Fluids Engineering. 1976:182~191
    [135] C. Brennen. Bubbly Flow Model for the Dynamic Characteristics of Cavitating Inducers. J. Fluid Mech. 1978(2)
    [136] S. L. Ng and C. Brennen. Experiments on the Dynamic Behavior of Cavitating Pumps. Journal of Fluids Engineering. 1978:166~176
    [137] C. Brennen, et al. Scale Effects in the Dynamic Transfer Functions for Cavitating Inducers. Journal of Fluids Engineering. 1982, Vol. 104:428~433
    [138] SSME Model, Engine Dynamic Characteristics Related to POGO. N76-15264, 1973
    [139] Akio Kanmuri, et al. Start Transient Analysis of Turbopump-fed LOX/LH2 Rocket Engine(LE-5). N86-19371, 1983
    [140] F. Y. Kuo. Space Shuttle Main Engine Real-time Stability Analysis. AIAA 93-2078
    [141] M. P. Binder. A Transient Model of the RL10A-3-3A Rocket Engine. NASA CR-195478(AIAA-95-2968)
    [142] Sassnick Hagen-D, Kruelle Gerd. Numerical Simulation of Transients in Feed Systems for Cryogenic Rocket Engines. AIAA 95-2967
    [143] 刘红军. 补燃循环发动机静态特性与动态响应特性研究:[博士学位论文]. 航天工业总公司第十一研究所. 1998
    [144] [俄] B. Φ. 格列克曼著,顾明初,郁明桂,邱明煜译. 液体火箭发动机自动调节. 宇航出版社. 1995, 3
    [145] 刘昆. 分级燃烧循环液氧/液氢发动机系统分布参数模型与通用仿真研究:[博士学位论文]. 国防科学技术大学研究生院.1999,10.
    [146] G. Ordonneau. Low frequency oscillation phenomena during VULCAIN shutdown transient. AIAA 2001-3543.
    [147] Liu Kun, Zhang Yulin. A study on versatile simulation of liquid propellant rocket engine systems transients. AIAA 2000-3771.
    [148] A Tarafder and Sunil Sarangi. CRESP-LP: A dynamic simulator for liquid-propellant rocket engines. AIAA 2000-3768.
    [149] J. Pyotsia. A Mathematical Model of a Control Valve.PB92-141951.
    [150] 刘红军. 稳流型流量调节器动态响应特性研究. 推进技术. 1999, Vol. 20(1)
    [151] 范才智. 三组元液体火箭发动机系统方案与动态特性研究:[硕士学位论文]. 国防科学技术大学研究生院. 2004, 11
    [152] M. J. Reader-Harris, W. C. Brunton, J. J. Gibson, D. Hodges, I. G. Nicholson. Discharge coefficients of Venturi tubes with standard and non-standard convergent angles. Flow Measurement and Instrumentation 12(2001) 135-145
    [153] S. T. Hudson, W. J. Bordelon. Effect of Correlated Precision Errors on the Uncertainty of a Subsonic Venturi Calibration. AIAA 95-0797
    [154] W. Jitschin, M. Ronzheimer, S. Khodabakhshi. Gas flow measurement by means of orifices and Venturi tubes. Vacuum 53(1999) 181-185
    [155] Changhai Xu, Stephen D. Heister, Steven H. Collicott and Che-ping Yeh. Modeling Cavitating Venturi Flows. AIAA 2002-3699
    [156] E. von Lavante, A. Zachcial, B. Nath, H. Dietrich. Numerical and Experimental Investigation of Unsteady Effects in Critical Venturi Nozzles. FlowMeasurement and Instrumentation 11 (2000) 257-264
    [157] E. Von Lavante and D. Zeitz. Numerical Simulation of Flow in Critical Venturi Nozzles Considering Real Gas Effects. AIAA 2003-1143
    [158] Lijun Xu, Jian Xu, Feng Dong, Tao Zhang. On fluctuation of the dynamic differential pressure signal of Venturi meter for wet gas metering. Flow Measurement and Instrumentation 14(2003) 211-217
    [159] T. Elperin, A. Fominykh, M. Klochko. Performance of a Venturi meter in gas-liquid flow in the presence of dissolved gases. Flow Measurement and Instrumentation 13(2002) 13-16
    [160] A. N. Johnson, J. D. Wright, S. Nakao, C. L. Merkle, M. R. Moldover. The effect of vibrational relaxation on the discharge coefficient of critical flow venturis. Flow Measurement and Instrumentation 11 (2000) 315-327
    [161] J. Soubiran, J. D. Sherwood. Bubble motion in a potential flow within a Venturi. International Journal of Multiphase Flow 26 (2000) 1771-1796
    [162] J. A. S. Goncalves, M. A. M. Costa, P. R. Henrique, J. R. Coury. Atomization of liquids in a Pease-Anthony Venturi scrubber Part I. Jet dynamics. Journal of Hazardous Materials B97(2003) 267-279
    [163] A. Yu. Valdberg and F. E. Dubinskaya. Design and Operational Aspects of Venturi Scrubbers. Chemical and Petroleum Engineering. Vol.38,Nos.7-8,2002
    [164] R. W. K. Allen, A. Van Santen. Designing for pressure drop in venture scrubbers: the importance of dry pressure drop. The Chemical Engineering Journal 61(1996) 203-211
    [165] N. V. Aagoskina, O. M. Sokovnin and Yu. V. Zykin. Determination of the Spraying Rate for the Droplet Collector of a Venturi Scrubber. Chemical and Petroleum Engineering. Vol 37, Nos. 7-8, 2001
    [166] Shekar Viswanathan. Development of a pressure drop model for a variable throat venture scrubber. Chemical Engineering Journal 71(1998) 153-160
    [167] J. A. S. Goncalves, D. Fernandez Alonso, M. A. Martins Costa, B. J. Azzopardi, J. R. Coury. Evaluation of the models available for the prediction of pressure drop in venturi scrubbers. Journal of Hazardous Materials B81(2001) 123-140
    [168] Xavier Gamisans, Montserrrat Sarra, F. Javier Lafuente. Gas pollutants removal in a single- and two-stage ejector-venturi scrubber. Journal of Hazardous Materials B90(2002) 251-266
    [169] I. E. Agranovski and J. M. Whitcombe. Optimization of Venturi Scrubbers for the Removal of Aerosol Particles. J. Aerosol Sci. Vol.31.Supp1.1.pp.S164-S165,2000
    [170] X. Gamisans, M. Sarra, F. J. Lafuente, B. J. Azzopardi. The hydrodynamics of ejector-Venturi scrubbers and their modeling by an annular flow/boundarylayer model. Chemical Engineering Science 57 (2002) 2707-2718
    [171] D. K. Beale. Experimental Measurement of Venturi Discharge Coefficient Including Sensitivity to Geometric and Flow Quality Variables. AIAA-99-0304
    [172] M. Rocker. Modeling of Nonacoustic Combustion Instability in Simulations of Hybrid Motor Tests. NASA/TP-2000-209905
    [173] Neal Hass, Masashi Mizukami, Bradford A. Neal, Clinton St. John. Propellant Feed System Leak Detection-Lessons Learned From the Linear Aerospike SR-71 Experiment (LASRE). NASA/TM-1999-206590
    [174] Changhai Xu, Stephen D. Heister, Steven H. Collicott and Che-ping Yeh. Modeling Cavitating Venturi Flows. AIAA 2002-3699
    [175] E.Von Lavante, A.Zachcial, B.Nath, H.Dietrich. Numerical and Experimental Investigation of Unsteady Effects in Critical Venturi Nozzles. Flow Measurement and Instrumentation 11 (2000) 257-264
    [176] M. J. Gaston, J. A. Reizes, G. M. Evans. Modeling of bubble dynamics in a venturi flow with a potential flow method. Chemical Engineering Sceence 56 (2001) 6427-6435
    [177] R. A. Pulley. Modelling the performance of venture scrubbers. Chem.Eng.J. 1997, 6
    [178] S. Viswanathan. Modelling of venture scrubber performance. Ind. Eng. Chem. Res, 36(10) (1997) 4308
    [179] S. Viswanathan, A. W. Gnyp, C. C. St, Pierre. Estimating film flow in a venture scrubber. Particulate Sci. Technol. 15(1997) 65
    [180] B. J. Azzopardi. Gas-liquid flows in cylindrical venturi scrubbers: boundary layer separation in diffuser section. Chem. Eng. J.49 (1992) 55
    [181] B. J. Azzopardi, S.F.C.F. Teixeira, A. H. Govan, T. R. Bott. An improved model for pressure drop in venture scrubbers. Trans. Inst. Chem. Engrs B 69 (1991) 237
    [182] 杨乐平. 可调汽蚀文氏管流量系数的实验研究:[硕士学位论文]. 国防科学技术大学研究生院. 1987,2
    [183] 陈启智, 高汉如. 流量可调汽蚀文氏管的若干问题. 国防科技大学工学学报. 1979, 第 4 期
    [184] 高汉如, 李晓滨. 线性可调汽蚀文氏管研究. 国防科技大学学报. 1983, 第4 期
    [185] 曹跃云. 流量可调汽蚀文氏管压力恢复特性:[硕士学位论文].国防科技大学研究生院. 1985, 11
    [186] 高汉如. 液体火箭发动机变推力用流量可调汽蚀文氏管设计中几个问题的分析. 国防科技大学工学学报. 1978, 第 2 期
    [187] 张育林, 陈启智, 陆政林. 带有可调喷注器与文氏管的变推力液体火箭发动机响应特性分析. 推进技术. 1988, 10
    [188] 周锡文. 具有可调文氏管的变推力火箭发动机系统特性. 国防科学技术大学论文报告资料. 1982, 3
    [189] 张育林. 变推力液体火箭发动机及其控制技术. 国防工业出版社. 2001, 1
    [190] 庄逢辰. 液体火箭发动机喷雾燃烧的理论、模型及应用. 国防科技大学出版社. 1995,7
    [191] C. Prakash, et al. Thermofluid Analysis of the SSME Preburner Using a Gas-Gas Diffusion Model for Oxygen and Hydrogen Combustion at Supercritical Pressures. AIAA 86-1425
    [192] R. J. Yang, et al. A Navier-Stokes Flow Simulation of Space Shuttle Main Engine Hot Gas Manifold. AIAA 87-0368
    [193] R. J. Priem, et al. 3D Rocket Combustor Acoustics Model. AIAA 92-3228
    [194] Y. G. Lai, A. J. Przekwas and H. Nguyen. A Concurrent Multi-Disciplinary Approach for the Analysis of Liquid Rocket Engine Combustors. AIAA 94-3103
    [195] C. A. Schley, et al. Comparison of High Pressure H2/O2 Rocket Model Engine Reference Simulation. AIAA 95-2429
    [196] N. Zhou, A. Krishnan, and A. J. Prekwas. A Numerical Method for Reaction Flows with Multi-Step Stiff Chemical Kinetics. AIAA 95-2566
    [197] D T 哈杰, F H 里尔登. 液体推进剂火箭发动机不稳定燃烧. 国防工业出版社. 1980,6
    [198] A. Duyar, et al. A Simplified Dynamic Model of the Space Shuttle Main Engine. NASA-TM-104471
    [199] K. Kolcio, and A. J. Helmicki. Propulsion System Modeling for Condition Monitoring and Control: Part II, Application to the SSME. AIAA 94-3228
    [200] 张育林. 喷注器与文氏管双调的变推力液体火箭发动机响应特性分析:[硕士学位论文]. 国防科技大学研究生院. 1984
    [201] Y. L. Zhang. State-Space Analysis of the Dynamic Characteristics of a Variable Thrust Liquid Propellant Rocket Engine. Acta Astronautica. 1984, Vol. 11(7~8)
    [202] 吴建军. 液体火箭发动机故障检测与针对研究:[博士学位论文]. 国防科技大学研究生院. 1995
    [203] J. R. Mason and R. D. Southwick. Large Liquid Rocket Engine Transient Performance Simulation System. N91-24340. 1989
    [204] J. Benstsman, A. J. Pearlstein, M. A. Wilcutts. Control Oriented Modeling of Combustion and Flow Processes in Liquid Propellant Rocket Engines. AIAA 90-1877
    [205] 程谋森. 液氢液氧发动机预冷与起动过程模型及 PVM 仿真研究:[博士学位论文]. 国防科技大学研究生院. 2000,4
    [206] 高钦和, 黄先详. 复杂液压系统动态特性仿真中的刚性问题研究. 系统仿真学报. 2003,4
    [207] Kanumuri A., Kanda T., Wakamatsu Y., Torri Y., Kagawa E., Hasegawa K., Transient Analysis of LOX/LH2 Rocket Engine(LE-7), AIAA Paper 89-2736. July 1989
    [208] Nobuhiro Yamanishi. Transient Analysis of the LE-7A Rocket Engine Using the Rocket Engine Dynamic Simulator (REDS). AIAA 2004-3850
    [209] J. R. Mason and R. D. Southwick. Large Liquid Rocket Engine Transient Performances Simulation System. N91-24340. 1989
    [210] Michael Binder. An RL10A-3-3A Rocket Engine Model Using the Rocket Engine Transient Simulator (ROCETS) Software. AIAA 93-2357
    [211] Haberbusch M. S., Nguyen C. T., Skaff A. F., and Walls L. K. Modeling RL10 Thrust Increases with Densified LH2 and LOX Propellants. AIAA 2003-4485. July 2003
    [212] D. Nguyen and A. Martinez. Versatile Engine Design Software. AIAA 93-2164
    [213] Randolph F. Follett, Ph.D., P. E. Liquid Rocket Propulsion Dynamic Flow Modeling Using the ROCETS Engineering Modules in the EASY5x Environment. AIAA-93-2599
    [214] Sozen M. and Majumdar A. A Novel Approach for Modeling Chemical Reactions in Generalized Fluid System Simulation Program. AIAA Paper 2003-4467. July 2003
    [215] Rhote-Vaney R., Thomas V. and Lekeux A. Transient Modeling of Cryogenic Rocket Engines, A Modular Approach. 4th International Conference on Launcher Technology, Space Launcher Liquid Propulsion, CNES, Belgium, 2002
    [216] 刘昆, 张育林, 程谋森. 液体火箭发动机系统瞬变过程模块化建模与仿真. 推进技术. 2003,10
    [217] 李家文, 张黎辉, 张雪梅, 金广明, 魏彦祥. 空间推进系统静动态特性仿真软件研究. 推进技术. 2004,4
    [218] Lin, T. Y.,Baker, D. Analysis and Testing of Propellant Feed System Priming Process. Journal of Propulsion and Power,1995,11(3)
    [219] 陈全. 卫星推进系统液体管路真空充填动态过程分析. 控制工程. 1995,6
    [220] 程谋森, 张育林. 推进剂供应管路充填过程研究. 推进技术. 1997, 18(2)
    [221] Yaggy KL. Analysis of propellant flow into evacuated and pressurized lines. AIAA 84-1346
    [222] 程谋森. 卫星推进系统推进剂供应管网充填过程动态特性仿真与实验验证:[硕士学位论文]. 国防科技大学研究生院. 1997
    [223] 程谋森, 张育林. 航天器推进系统管路充填过程动态特性(1)理论模型与仿真结果. 推进技术. 2000, 21(2)
    [224] ПрисняковB Φ. 液体火箭发动机及其供给系统动力学. 邢耀国译. 海军航空工程学院. 1988
    [225] 刘昆, 张育林. 一维可压缩流的有限元状态空间模型. 推进技术. 1999, 20(5)
    [226] 程谋森, 刘昆, 张育林. 推进剂共应管路内液体瞬变流一维有限元计算. 推进技术. 2000, 21(4)
    [227] 忻孝康编著. 计算流体动力学. 长沙:国防科技大学出版社. 1989
    [228] 刘昆, 张育林. 液体推进系统充填过程的有限元状态变量模型. 推进技术. 2001,22(1)
    [229] Drew D. Cheng L. and Lahey R. T. Jr. The Analysis of Virtual Mass Effects in Two-Phase Flow. Int. J. Multiphase Flow. Vol.5,pp233-242,1979
    [230] Rousseau J.C. and Ferch R.L. A Note on Two-phase Separated Flow Models. Int. J. Multiphase Flow. Vol.5, pp489-493,1979
    [231] Hancox W.T., Ferch R. L., Liu W.S. and Nieman R.E. One-Dimensional Models for Transient Gas-Liquid Flows in Ducts. Int. J. Multiphase Flow. Vol.6, pp25-40,1980
    [232] Jones A.V. and Prosperetti A..On the Suitability of First-Order Differential Models for Two-phase Flow Prediction. Int. J. Multiphase Flow. Vol.11, pp133-148,1985
    [233] Ferch R.L. Method of Characteristics Solutions for Non-equilibrium Transient Flow-Boiling. Int. J. Multiphase Flow. Vol.5, pp265-279,1979
    [234] Liles D.R and Reed Vm.H. A Semi-Implicit Method for Two-Phase Fluid Dynamics. Journal of Computational Physics. Vol.26,1978,pp390-407
    [235] Khater H.A., Nicoll W.B. and Raithby G.D.The Fast Procedure for Predicting Transient Subcooled Two-Phase Flows. Int. J. Multiphase Flow. Vol.8, pp261-278,1982
    [236] Hagen-D Sabbick, Gerd Krulle, Numerical simulations of transient in feed systems of cryogenic rocket engines[R]. AIAA-95-2967
    [237] 程谋森, 刘昆, 张育林. 低温推进剂供应管路预冷充填瞬变流计算. 推进技术. 2000, 21(5)
    [238] 刘昆, 程谋森, 张育林. 低温推进剂供应管道系统充填过程的动力学模型. 国防科技大学学报. 2003, 25(3)
    [239] Transient Analysis of LOX/LH2 Rocket Engine(LE-7). AIAA-89-2736
    [240] 沈赤兵, 陈启智. 小推力推进系统起动过程的分析. 宇航学报. 1997,7
    [241] 刘红军. 补燃循环发动机启动特性仿真研究. 推进技术. 1999,6
    [242] Han V. Nguyen. Pressure Surge Analysis in the Feedlines of an X-Vehicle. AIAA 1997
    [243] 易新郁. 双调变推力液体火箭发动机的关机. 推进技术. 1992,2
    [244] 黎勤武, 张为华, 王振国. 空间发动机系统关机过程水击现象理论分析. 推进技术. 1998,6
    [245] 张黎辉, 张振鹏. 补燃循环液体火箭发动机系统的响应特性研究. 航空动力学报. 1999,10
    [246] 张黎辉, 张振鹏. 液体火箭发动机自动控制系统的过渡过程研究. 北京航空航天大学学报. 1998,12
    [247] 张黎辉, 张振鹏. 补燃循环液体火箭发动机输送系统的频率特性. 推进技术. 2000,2
    [248] 张黎辉. 补燃循环液体火箭发动机静态与动态特性的工程研究:[博士后研究工作报告]. 北京航空航天大学. 1999,3
    [249] J. S. Kim, F. A. Williams. Acoustic-Instability Boundaries in Liquid Propellant Rockets: Theoretical Explanation of Empirical Correlation. J. Propulsion. 1996(3), Vol.12
    [250] T C Lieuwen. Experimental Investigation of Limit-Cycle Oscillations in an Unstable Gas Turbine Combustor. Journal of Propulsion and Power. Vol.18, No.1, 2002
    [251] A Sarkar, M P Paidoussis. A Compact Limit-cycle Oscillation Model of a Cantilever Conveying Fluid. Journal of Fluid and Structure. Vol.17, No.4, 2003
    [252] F.Y.Kuo. Space Shuttle Main Engine Real Time Stability Analysis. AIAA-93-2078
    [253] Crocco, L., and Cheng, S., Theory of Combustion Instability in Liquid Propellant Rocket Motors. Butterworths Scientific Publications, London, 1956
    [254] Harrje, D.T., and Reardon, F.H., Liquid Propellant Rocket Combustion Instability. NASA SP-194, 1972
    [255] K-C.Lim 等. 液体推进剂火箭发动机关机期间的预燃室燃烧稳定性分析. 火箭推进. 1989 第一期. 译自 AIAA 87-1776
    [256] 张育林. 变推力液体火箭发动机稳定性研究. 宇航学报. 1986,10
    [257] Martin Summerfield. A theory of unstable combustion in liquid propellant rocket systems. Journal of the American Rocket Society. Vol.21, No.5, 1951, pp.108-114
    [258] 张宝炯, 庄逢辰, 黄崇锡. 第二届国际液体火箭推进会议概况. 出国考察技术报告. 1996(1)
    [259] Max Calabro. Future Launchers and Propulsive Systems. IAF-96-S-1-05
    [260] Alan W. Wilhite. Advanced Rocket Propulsion Technology Assessment for Future Space Transportation. J. Spacecraft. 1979, 19(4). AIAA 79-1219R
    [261] Kirk L. Christensen and Stan Kent. Advanced Rocket Engines for Earth to Orbit Transportation. AIAA 80-0821
    [262] 吴继平. 超声速气流中燃料雾化与超燃冲压发动机动态工作过程研究:[硕士学位论文]. 国防科学技术大学研究生院. 2003, 11
    [263] 张奕, 郭恩震. 传热学. 东南大学出版社. 2004, 2
    [264] 杨世铭. 传热学. 高等教育出版社. 1989, 9
    [265] 曹玉璋, 丘绪光. 实验传热学. 国防工业出版社. 1999, 9
    [266] 陈隆昌, 阎治安, 刘新正. 控制电机. 西安电子科技大学出版社. 2003, 6
    [267] 哈尔滨工业大学, 成都电机厂. 步进电动机. 科学出版社. 1979, 7
    [268] 李忠杰, 宁守信. 步进电动机应用技术. 机械工业出版社. 1988, 12
    [269] 刘国球. 液体火箭发动机原理. 宇航出版社. 1993, 6
    [270] 朱宁昌. 液体火箭发动机设计. 宇航出版社. 1994, 8
    [271] 方德寿等. 实用电子技术手册. 国防工业出版社. 1999
    [272] Mccloy D.Matin H.R. Control of Fluid Power Analysis and Design. Chichester, Ellis Horwood. 1980
    [273] 王克昌等. 液体火箭发动机系统原理. 国防科技大学. 1992
    [274] 郭霄峰. 液体火箭发动机试验. 宇航出版社. 1990, 12
    [275] 崔锦泰. 小波分析导论. 西安交通大学出版社. 1994
    [276] 陈正兴. 小波分析算法与应用. 西安交通大学出版社. 1998, 5
    [277] Mallat S. Theory for multi-resolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1989, 11 (7): 674- 693
    [278] 韩震宇, 申旭娟, 石章林. 信号的多分辨分析及其在消噪中的应用. 四川联合大学学报. 1999, 3 (1): 52- 58
    [279] Mallat S. Hwang W L. Singularity detection and processing with wavelets. IEEE Transaction on Information Theory. 1992, 38(2): 617- 643
    [280] 杜芳, 卢文胜, 曹文清. 振动台试验测试信号去噪的小波变换方法. 振动与冲击. 1999, 18 (2): 26- 29.
    [281] 刘曙光, 殷明. 子波消噪技术及其应用. 西北纺织工学院学报. 1999, 13(1): 16- 20
    [282] 彭玉华, 汪文秉. 小波用于估测散射波波达时间及去噪. 电子学报. 1996, 24(4): 113- 116
    [283] Donoho D L. Denoising by soft-thresholding. IEEE Transaction on Information. 1995, (3): 613- 627
    [284] 彭玉华. 小波变换与工程应用. 科学出版社. 1999, 59- 62
    [285] 郑海波, 陈心昭, 李志远. 基于小波包变换的一种降噪算法. 合肥工业大学学报(自然科学版). 2001, 24 (4): 459- 462
    [286] Coifman R R. Donoho D L. Translation-invariant denoising, wavelets and statistics. New York: Springer-Verlag. 1995, 125-150
    [287] Chen S. Donoho D. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing. 1999, 20 (1): 33- 61
    [288] Goodman T N T. Lee S L. Wavelets of multiplicity. Trans of AmerMath Soc. 1994, 342 (1): 307- 324
    [289] Dowine T R. Silverman B W. The discrete multiple wavelet transform and thresholding methods. IEEE Trans SP. 1998, 46 (9):2558- 2561
    [290] Bui T D. Chen G. Translation-invariant denoising using multiwavelets. IEEE Trans SP. 1998, 46 (12): 3414- 3420
    [291] Papadimitriou S. Bezerianos A. Multiresolution Analysis and Denoising of Computer Performance Evaluation Data with the Wavelet Transform. Journal of Systems Architecture. 1996, 42(1): 55-65
    [292] Bakhtazad A. Palazoglu A. Romagnoli J A. Process Data Denoising Using Wavelet Transform. Intelligent Data Analysis. 1999, 3(4): 267-285
    [293] Bakhtazad A. Palazoglu A. Romagnoli J A. Process Trend Analysis Using Wavelet-based De-noising. Control Engineering Practice. 2000, 8(6): 657-663
    [294] Fedorova A N. Zeitlin M G. Wavelets in Optimization and Approximations. Mathematic and Computers in Simulation. 1998, 46(5-6): 527-534
    [295] Aballe A. Bethencourt M. Botana F J. et al. Using Wavelets Transform in the Analysis of Electrochemical Noise Data. Electrochemical Acta. 1999, 44(26): 4805-4816
    [296] Donoho D L. Johnstone I. Ideal spatial adaptation by wavelet shrinkage. Biometrika. 1994, 81(3): 425- 455
    [297] Meyer Y. Wavelets and operators. Cambridge, UK: Cambridge University Press. 1992
    [298] Mallat S. Characterization of signals from multiscale edges. IEEE Trans. on PAMI. 1992, 7,14(7): 710 - 732
    [299] 杨福生. 小波变换的工程分析与应用. 科学出版社. 2000
    [300] 马丽萍, 石炎福, 余华瑞. 含噪声混沌信号的小波去噪方法研究. 信号处理. 2002, 2, 18(1)
    [301] 韩敏, 刘玉花, 席剑辉等. 基于小波变换阈值决策的混沌信号去噪研究. 信息与控制. 2005, 10, 34(5)
    [302] Packard N H, Crutchfield J P, Farmer J D, et al. Geometry from Time Series. Phys. Rev. Lett. 1980, 47: 712-716
    [303] Barenblatt G L, Looss G, Joseph D D. Nonlinear Dynamics and Turbulence. Pitman Advanced Publishing Program. 1983
    [304] Broomhead D S, King G P. In Phenomena and Chaos. Edited by Sarkar S, Bristol: Adam Hilger. 1986
    [305] Fraser AM, Swinney H L. Phys. Rev. A. 1986, (33): 1134
    [306] Liebert W, Schuster H G. Choice of the Time Delay for the Analysis of Chaotic Time Series. Phys. Lett. A. 1988, (142) : 101-111
    [307] Brock WA, Hsieh DA, Le Baron B. Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence. MIT Press, Cambridge, MA. 1991
    [308] Kevin Judd, Alistair Mess. Embedding as a Modeling Problem. Physica D. 1998, (120): 273-286
    [309] 汪慰军, 陈进, 吴昭同. 关联维数在大型旋转机械故障诊断中的应用. 振动工程学报. 2000, 13(2): 229-234
    [310] Brown R, Bryant P, Abarbanel H. Computing the Lyapunov Spectrum of a Dynamical System from an Observed Time Series. Phys. Rev. A. 1991, (43): 2787
    [311] Kennel MB, Brown R, Abarbanel H. Determining Embedding Dimension for Phase-space Reconstruction Using a Geometrical Construction. Phys. Rev. A. 1992,(45):3403
    [312] Nichols JM, Nichols JD. Attractor Reconstruction for Non-linear Systems: a Methodological Note. Mathematical Biosciences. 2001,(171): 21-32
    [313] 龙运佳. 混沌振动研究-方法与实践. 北京: 清华大学出版社. 1997
    [314] 龙运佳. 混沌工程学进展. 东北大学出版社. 2000, 9
    [315] M. B. K ennel, R. Brown, and H. D. I. Abarbanel. Determining minimum embedding dimension using a geometrical construction. Physical Revies A. 1992, 45: 3403-3411
    [316] Buzug T, Pfister G. Comparison of algorithms calculating optimal embedding parameters for delay time coordinates. Physics D. 1992, 58: 127-137
    [317] Aleksic Z. Estimating the embedding dimension. Physica D. 1991, 52: 362-368
    [318] Broomhead D S, King G P. Extracting qualitative dynamics from experimental data. Physical D. 1987, 20: 217-236
    [319] Vatuard R, Yiou P, Ghil M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physical D, 1992, 58: 95-126
    [320] Mees A I, Rapp P E. Singular-value decomposition and embedding dimension. Phys Rev A. 1987, 36(1): 340-346
    [321] Fraser A M. Information and entropy in strange attractors. IEEE TR on IT, Mar 1989, 35(2): 245-262
    [322] Hong Pi, Peterson C. Finding the embedding dimension and variable dependencies in time series. Neu Comput. 1994, 6: 509-518
    [323] M. Palus, I. Dvorak. Singular value decomposition in attractor reconstruction: pitfalls and precautions. Physica D,1992,55:221-234
    [324] T. Buzug, G. Pfister, Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractors. Phy. Rev. A, 1992, 45:7073-7084
    [325] T. buzug, G.Pfister. Comparison of algorithms calculationg optimal embedding parameters for delay time coordinates. Physica D, 1992, 58:127-137
    [326] A. M. Fraser, H. L. Swinney. Independent coordinates for strange attractors from mutual information. Phys. Rev.A, 1986, 33:1134-1140
    [327] Grassberger P, Procaccia I. Characterization of strange attractors. Ph ys Rev lett . 1983, 50: 346-349
    [328] Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. Physica D. 1983,9: 189-208
    [329] 吕金虎, 陆君安, 陈士华. 混沌时间序列分析及其应用. 武汉:武汉大学出版社, 2002
    [330] A. wolf, J. B. Swift, H. L. Swinney and J. A. Vastano. Determining Lyapunov exponents from a time seties. Physica 16D, 1985: 285-317
    [331] G. Barana and I. Tsuda. A new method for computing Lyapunov exponents. phys. Lett. A, 1993, (175) : 421-427
    [332] Barana G, Tsuda I. A new method for computing Lyapunov exponents. Phys. Lett., 1993, 175: 421-427
    [333] Rosenstein M T, Collins J J, Luca C J De. A Practical method for Calculating Largest Lyapunov exponents from Small Data Sets. Physical D, 1993, 65: 117-134
    [334] Briggs K. An Improved method for estimating Lyapunov exponents of chaotic time series. Phys. Lett. A, 1990, 151: 27-32
    [335] Brown R, Bryant P, Abarbanel H D I. Computing the Lyapunov spectrum of a dynamical system from an observed time series. Physi. Rev. A, 1991, 43:2787-2806
    [336] Reiss Joshua D. The Analysis of Chaotic Time Series, Georigia Institute of Technology. Thesis of Doctor of Philosophy in Physica, 2001
    [337] 朱石坚, 俞翔基. 基于 Lyapunov 指数谱的非线性隔振系统混沌运动参数区域预测. 海军工程大学学报. 2003, 15(6) : 8212
    [338] V. 杨, W.E. 安德松. 液体火箭发动机燃烧不稳定性. 科学出版社. 2001
    [339] Smith L A. Phys. Lett. A. 1988, 133(6): 283-288
    [340] Ruelle B D. Proc. R. Soc. Lond. A. 1990, 427: 241-248
    [341] Van Den Bleek C M, Schouten J C. Chem. Eng. J. 1993, 53: 75-87
    [342] 刘秉正, 彭建华. 非线性动力学. 高等教育出版社. 2005, 1
    [343] 修春波, 刘向东, 张宇河. 相空间重构延迟时间与嵌入维数的选择. 北京理工大学学报. 2003, 4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700