空气/煤油/水燃气发生器点火特性与燃烧性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过理论分析、试验和数值仿真研究了空气/煤油/水燃气发生器的点火特性与燃烧性能。研究结果对空气/煤油/水燃气发生器的设计、性能改进和试验方案的制定具有重要意义。
     首先,通过冷态喷雾试验研究了燃气发生器喷嘴的流量特性和雾化特性,并对燃气发生器喷注器两种布局结构进行了喷雾试验,优选雾化性能较好的喷注器布局方式。试验结果表明:涡流器离心式喷嘴较其他喷嘴具有更优的雾化性能,因此选用涡流器离心式喷嘴进行热试;单圈6喷嘴均布的喷注器布局方式比单圈3喷嘴的布局方式具有更好的雾化粒子均匀性,雾化粒度也更细。
     其次,搭建了燃气发生器热试试验台,通过试验研究该型燃气发生器点火特性和燃烧性能。通过改变燃气发生器余氧系数、调节空气环缝宽度、加装火焰稳定器及更换火焰稳定器位置等方式、调节时序等方式,实现该型燃气发生器的可靠点火。研究了余氧系数、火焰稳定器、含水量等因素对燃气发生器燃烧稳定性和燃烧效率的影响规律。研究结果表明:对于该型燃气发生器,实现点火必须借助合适的火焰稳定器;余氧系数过低和过高都不能实现成功点火,余氧系数过低总温低,无法点着火,同等流量下余氧系数过高会导致气流过大,火焰无法稳定;恰当的时序对于点火成功与否至关重要。
     最后,对安装V型槽火焰稳定器的燃发器稳态流场、V型槽安装位置、V型槽阻塞比、双V型槽火焰稳定器方案等进行了数值仿真。仿真结果表明:V型槽火焰稳定器存在合适的安装范围;高阻塞比的火焰稳定器可以提高点火成功率;水的加入可以在一定程度上提高煤油的蒸发速率,但是存在一个最优值;双V型槽火焰稳定器需要对阻塞比搭配、V型槽安装距离和稳定器安装位置进行优化设计。
Theoretical analysis, experimental investigation and numerical simulation of the ignition characteristic and combustion performance of air/kerosene/water gas generator are conducted in this essay. The results are of great significance to the design, performance improvement and experiment setup of air/kerosene/water gas generator.
     Firstly, cold spray experiments are used to study the flow characteristics and atomization property of gas generator injector, and spray experiments of two distribution structures of gas generator injectors are conducted to choose one distribution manner of better atomization property. The results suggest that: swirl injector used vortex generator has better atomization property than other injectors, so it is used in hot tests; compared with the distribution manner of single circle with three injectors, the distribution manner of single circle with six injectors equally distributed has better atomization particle equality and thinner atomization particle.
     Secondly, gas generator hot test test-bed has been set up to investigate the ignition characteristic and combustion performance of this gas generator by experiments. The reliable ignition of this gas generator is achieved by changing gas generator excess oxidizer coefficient, adjusting air slot width, installing flame stabilization facility and varying its position, regulating time sequence, etc. Excess oxidizer coefficient, flame stabilization facility, water content, etc. have been studied in the influence of flame stability and combustion efficiency in gas generator. The results show that: it is necessary to rely on appropriate flame stabilization facility in this gas generator to realize ignition; excessive high or low oxidizer coefficient is unable to realize ignition, for excessive low oxidizer coefficient contributes to low total temperature and excessive high oxidizer coefficient in same flux results in high flow and flame instability; appropriate time sequence is quite important to ignition.
     Finally, numerical simulation method has studied the flow field of gas generator with Vee gutter flameholder, Vee gutter installation position, Vee gutter choke ratio and double Vee gutter flameholder design. Results indicate that: the installation of Vee gutter flameholder has a proper range; high choke ratio improves the success rate of ignition; water injection can increase kerosene evaporation rate with a certain extent, however, there exists an optimum amount; choke ratio matching, Vee gutter installation distance and flameholder installation position need to be optimum designed in double Vee gutter flameholder.
引文
[1]魏毅寅,张冬青等.美国X-51A飞行器完成首次动力飞行试验[J].飞航导弹.2010.6:2-7.
    [2] M.A. S. NIinucci and J. L. S. Oliva. On the Development of a Gas Generator for C02-N2 Gas Dynamic Lasers Utilizing Liquid Fuel and Liquid Oxidizer,AIAA 93-3187,1993.
    [3] Dijkstra F,Mayer A E H J,etc. Ducted Rocket Combustion Experiments at Low Gas Generator Combustion Temperatures,AlAA-95-241,1995.
    [4]高岩飞,杨海青.汽油及RP-3航空煤油喷雾特性的数值分析.2010中国汽车工程学会年会论文集.
    [5] Subith S. Vasu, David F. Davidson. Jet fuel ignition delay times: Shock tube experiments over wide conditions and surrogate model predictions[J]. Combustion and Flame. 2008. 152:125–143.
    [6]廖钦.煤油及其裂解产物自点火现象的初步试验研究[D].中国科学技术大学,2009.
    [7]曲连贺,朱岳麟,熊常健.航空燃料发展综述[J].长沙航空职业技术学院学报.2009.9(2):37-41.
    [8]贺武生.超燃冲压发动机研究综述[J].火箭推进,2005.31(1):29-32.
    [9] Billig F S, Waltrup PJ, Stockbridge R D. Integral-rocket dual-combustion ramjets: a new propulsion concept [J]. Journal of Spacecraft and Rockets. 1980 (5).
    [10]余勇,丁猛,刘卫东.煤油超音速燃烧的试验研究[J].国防科技大学学报,2004.26(1):1-4.
    [11]贺伟,苟永华等.冲压发动机燃烧室低总温条件下煤油点火与燃烧[C].第十一届全国激波与激波管学术会议.2004:206-209.
    [12] FAN W,YAN c J,HUANG X Q,etal.Experimental investigation on two-phase pulse detonation engine[J].Combustion and Flame,2003,133(4):441.450.
    [13]李建中,王家骅.煤油/空气脉冲爆震发动机强化燃烧装置[J].航空动力学. 2007.22(4):547-553.
    [14]王治武,严传俊,范玮等.煤油/空气吸气式脉冲爆震发动机试验研究[J].实验流体力学.2009.3.
    [15]李建中,王家骅等.燃用航空煤油脉冲爆震发动机部分填充机理研究[C].新概念发动机研讨会技术交流文集,沈阳,2004:59-65.
    [16] Kwon S T, Lee C, Jae W L. Development of fuel rich gas generator for 10 tonf liquid rocket engine[R]. AIAA 2004-3363.
    [17] Dennis H J, Sanders T. ASA Fastrac Engine Gas Generator Component Test Program and Results[R], AIAA 2000-3401.
    [18]田章福.低浓度酒精/过氧化氢燃气发生器喷雾燃烧过程研究[D].国防科技大学.2007.
    [19] Nguyen H. Flow/thermal analysis of X-34 orbital stage gas generator design[R]. AlAA 1996-3226.
    [20]纵苏.液氧/煤油燃气发生器的试验研究[J].推进技术. 1994.8.
    [21]王爱玲.运载火箭气氧/煤油姿控发动机技术研究[J].上海航天. 2006.5.
    [22]刘永兴,王魁,曹再勇. RBCC推进系统主火箭发动机气氧/煤油推力室研究[J]. 35(6),2009.12.
    [23]煤油催化重整可燃燃气发生器的试验研究[J].燃烧科学与技术. 15(2),2009.4.
    [24]卢小丰.催化重整反应在超燃冲压发动机燃气发生器中的研究[D].北京:清华大学,2006.
    [25]侯凌云,卢小丰.小型化催化重整煤油燃气发生器的数值模拟[J].航空动力学报. 23(8).2008.8.
    [26] Kushari A, Neumeier Y, Zinn B T. A theoretical investigation of the performance of the performance of a internally mixed liquid atomizer[R]. AIAA 2000-1021.
    [27]曹建明.喷雾学[M].北京:机械工业出版社,2005.
    [28]侯凌云,侯晓春.喷嘴技术手册[M].第二版.北京:中国石化出版社,2007.
    [29]朱宁昌.液体火箭发动机设计[M].北京:宇航出版社,1994.
    [30]房田文.超声速气流中液滴二次破碎与液体射流的雾化机理研究[D].国防科技大学,2010.
    [31] Hutt, J. H., D.M.McDaniels, et al. Internal flow environment of swirl injectors. AIAA 94-3262.
    [32]杜本德.喷口形状对离心式喷嘴雾化角的影响[J].推进技术. 1981,3:33-37.
    [33]钟战.燃气发生器点火与燃烧性能研究[D].国防科学技术大学. 2008.11.
    [34]周进,沈赤兵等.三组元双工况火箭发动机喷注器研究报告[R].国防科学技术报告, 1998.7.
    [35]王振国.液体火箭发动机燃烧室内部工作过程数值仿真研究[D].长沙:国防科技大学,1993.
    [36] Narusawa U,Springer G S. Measurement of evaporation rates of water. J.Coll,Interf.Sci,Vol.50(2):pp.392-395,1975.
    [37]张凯.微器件中流体的流动与混合研究[D].浙江大学航空航天学院.2007.
    [38]冯飞.直管型气泡泵气泡成形及工作特性的数值模拟[D].大连海事大学.2011.
    [39] LeClair B P and Hamielec A E. A theoretical and experimental study of the internal circulation in water drops falling atterminal velocity in air. J.of The Atmospheric Sciences,Vol.,29,pp.,728-740,1972.
    [40] Abramzpn B and Sirignano W A. Droplet vaporization model for spray combustion calculation. Vol.32 (9): pp.1605-1618,1989.
    [41] Miller R S. Effects of non-reacting solid particle and liquid droplet loading on an exothermic reacting mixing layer. Phys.,Fluids 13,3303–3320,2001.
    [42]王复杰.亚燃冲压发动机燃烧室数值仿真与试验研究[D].国防科学技术大学.2008.
    [43] ANSARI A. Direct numerical simulation of turbulent mixing layers[J]. AIAA Paper,1995,AIAA-95-2249.
    [44] Zhang B J, Wang Y, Hydrogen peroxide/kerosene for spacecraft on-orbit propulsion[J], 1997.
    [45] Ingebo R D. Drop size distribution for impinging-jet breakup in airstreams simulating the velocity conditions in rocket combustors[R]. NACA TN4222.
    [46]庄逢辰.液体火箭发动机喷雾燃烧的理论、模型及应用[M].长沙:国防科技大学出版社,1995.7.
    [47] B. F. Magnussen and B. H. Hjertager. On mathematical models of turbulent combustion with special emphasis on soot formation and combustion. In 16th Symp.,(Int'l.) on Combustion,The Combustion Institute,1976.
    [48]唐军.燃硫炉的数值模拟及其结构优化研究[D].广西大学.2008.
    [49]王承尧,王正华,杨晓辉.计算流体力学及其并行算法.长沙:国防科技大学出版社,2000.2.
    [50]余勇.超燃冲压发动机燃烧室工作过程理论和试验研究[D].国防科学技术大学. 2004.10.
    [51]廖钦,徐胜利,李卫兵等.不同压力煤油气溶胶点火延时的测量研究[J].中国科学技术大学学报. 39(6).2009.6.
    [52] Marble F E, Zukoski E E. Flame Holding and Bluff Bodies [C]. 12th meeting of Agard Combustion and Propulsion Panel. Washington, D. C, November 1957.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700