燃气发生器点火与燃烧性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过理论分析、试验研究和数值模拟等方法研究了燃气发生器的点火特性与燃烧性能,发现了影响直接燃烧式三组元燃气发生器点火特性与燃烧性能的关键因素及其影响规律,提出了改善燃气发生器点火特性与提高燃气发生器燃烧性能的方法,并得到了试验验证。研究结果加深了对燃气发生器内部工作过程的理解,对燃气发生器的应用和优化设计有重要指导意义。
     通过理论分析指出了燃气发生器研究的重点与难点,确定了燃气发生器研究的主要内容。分析表明:水的加入在降低燃烧室温度的同时,也显著降低了燃气发生器的点火与燃烧性能;氧气/Lf80燃气发生器燃烧效率与液滴蒸发速率密切相关;气体流速大导致火焰难以在燃烧室内稳定,是空气/ Lf80-01燃气发生器点火困难的主要原因。
     采用理论分析与试验研究方法,研究了影响燃气发生器点火性能的主要因素及其影响规律。研究结果表明:点火温度对火炬点火器的点火能力有重要影响;燃气发生器点火困难的根本原因在于水的加入使化学反应与火焰传播速率大幅下降、从而导致火焰不容易稳定;点火热气流温度、燃料含水量、燃烧室内气体流速、余氧系数、总流量等因素对燃气发生器点火性能影响很大。在此研究基础上,提出了合适的点火方案,可以保证燃气发生器具有非常高的点火可靠性。
     通过试验研究和数值模拟方法研究了氧气/Lf 80燃气发生器的燃烧性能。通过试验研究了喷嘴结构、燃料含水量、扰流环、余氧系数和总流量等因素对燃气发生器燃烧性能的影响,结合数值计算结果分析了燃气发生器燃烧过程的特点,以及扰流环对燃气发生器燃烧过程的影响。研究结果表明:水的加入对燃烧室的降温作用明显,整个燃烧室内温度较低;液滴蒸发速率是影响燃气发生器燃烧效率的关键因素,提高燃气发生器燃烧效率的主要方法是改善液滴的蒸发。通过改进喷嘴结构、降低燃料含水量、在燃烧室内安装扰流环等措施均显著提高了燃烧效率,其中在燃烧室内安装扰流环还可以提高燃气发生器的燃烧稳定性。
The ignition characteristic and combustion performances of the gas generator are studied by means of theoretical analysis, experimental investigation and numerical simulation in the paper. The factors that have significant influences on the ignition process and combustion performances of the gas generator and the influence laws are respectively acquired. Several measurements that could improve the ignition characteristic and combustion performances of the gas generator are presented and verified by tests. The results are helpful to understand the inner operation process of the gas generator and important for application and optimization design of the gas generator.
     Key difficulties in the research of the gas generator are pointed out through theoretical analysis, so the main research contents are confirmed. The analysis shows that the ignition and combustion performances of the gas generator are markedly worsened although the combustion chamber temperature is lowered by adding water ; Combustion efficiency of the gas generator with Oxygen/ Lf80 is closely related to the evaporation rate of the liquid fuel of Lf80;The gas flow velocity being too high so the flame could not stay steadily in the combustion chamber is the main reason of the ignition difficulty in gas generator with Air/ Lf80-01 propellants.
     Based on the theoretical analysis and experimental results, the primary factors affecting markedly the ignition characteristic of the gas generator as well as the influence laws are studied. The results indicate that the combustion gas temperature plays the most important role on the ignition capability of the torch igniter. For gas generator, the ignition difficulty mainly comes from the addition of water that slows down the chemical reaction rate and flame propagation speed. The results also indicate that many factors have obvious influence on the ignition characteristic of the gas generator, including the temperature of the igniting combustion gas of torch igniter, the water fraction of the special fuel, the gas flow velocity in the combustion chamber, excess oxidizer coefficient and mass flux of propellants. On the foundation of the research, the paper presents a right method outstandingly improving the ignition reliability of the gas generator.
     The combustion performance of the gas generator with Oxygen/ Lf80 propellants is studied by experiments and numerical simulation. The influence on the combustion performance of the gas generator of injector structures, water fraction of liquid fuel, disturbing ring, excess oxidizer coefficient and mass flux are studied by experiments.
     According to the numerical simulation, the combustion characteristics of the gas generator with disturbing ring are analyzed. The results show that addition of water has a notable effect on lowering the combustion temperature since the whole combustion chamber has a low temperature. The evaporation rate is the essential factor, which has great influence on the combustion efficiency of the gas generator, so the efficient method to increase the combustion efficiency is to speed up the evaporation. The combustion efficiency can also be notably improved by optimizing the injector structure, decrease the water fraction of fuel and fixing the disturbing ring in the combustion chamber through which the combustion stability is also improved.
引文
[1] Josef S,et al. Tactical high energy laser. The SPIE Proceedings on Laser and Beam Control Technologies, Volume 4632, January 21, 2002.
    [2] D. K. McGrath,T. J. Kirschner,et al. Mars Pathfinder Airbag Gas Generator Development.,the American Institute of Aeronautics and Astronautics,Inc,1998
    [3] Andrews E H.Scramjet Development and Resting in the United States.AIAA 2001-1927.
    [4] Stechman R C,Allen R C, History Of Ramjet Propulsion Development At The Marquardt Company-1944 to 1970.[C], AIAA 2005-3538
    [5]李文杰,美国海军研制冲压发动机的历程.飞航导弹[J], 2002. (10): 47-54,59
    [6] Waltrup P J, White M E, Zarlingo F, et al., History of US Navy ramjet, scramjet, and mixed-cycle propulsion development. Journal Of Propulsion And Power[J], 2002. 18(1): 14-27
    [7] Wilson R, Limage C,Hewitt P, The Evolution of Ramjet Missile Propulsion in the U.S. and Where we are Headed[C], AlAA 96-3148
    [8]郑日恒,邱新宇,冲压发动机在法国的研究与应用.飞航导弹[J], 1991. (2): 30-36
    [9] Murthy S N B, Curran E T. High-speed flight propulsion systems[J]. Volume 137.Progress in astronautics and aeronautics, AIAA 1991.
    [10] Yatsuyanagi N, Chinzei N, Mitani T, et al., RAMJET ENGINE TEST FACILITY (RJTF) IN NAL-KRC, JAPAN[C], AIAA 98-1511
    [11] FALEMPIN F, RamjetBcramjet Technology - French Capabilities[C], AIAA 99-2377
    [12] Falempin F, Levine V, Avrashkov V, et al., French-Russian Partnership on Hypersonic Wide Range Ramjets : status in 1998[C], AIAA 98-1545
    [13]郑日恒,法国冲压发动机研究进展.航天制造技术[J], 2006. (2): 6-10,22
    [14]丛敏,俄罗斯试射高超声速导弹.飞航导弹[J], 2004. (9): 24-24
    [15] Kim C K, Yu S T J,Zhang Z C, Cavity flow in scramjet engine by space-time conservation and solution element method. Aiaa Journal[J], 2004. 42(5): 912-919
    [16]刘兴洲,冲压发动机的发展和应用.中国航天[J], 1993. (3): 34-37
    [17]龙玉珍.高超音速巡航导弹用超燃冲压发动机特点与设计方案[J].飞航导弹,1997(8): 29~37.
    [18] Curran E T, Murthy S N B. Scramjet propulsion[J]. Volume 189. Progress in astronautics and aeronautics, AIAA 2002.
    [19] Andrews E H. Scramjet Development and testing in the United States[R]. AIAA 2001-1927.
    [20] Matthew N Y, Stephen IdemAn. Experimental investigation of cold air-to-air ejectors[J]. AIAA 2005-4281.
    [21] Nagaoka H, Suzuki S. Ejector coil employing coanda effect[R]. AIAA 2005-5168.
    [22] Lanchao Lin, Ponnappant R. Two-phase high capacity spray cooling loop-nozzle orientation effects and performance results[R]. AIAA 2005-5733.
    [23] Singhal G, Rajesh R et al. Two-stage ejector based pressure recovery system for small scale SCOIL[R]. AIAA 2005-5171.
    [24] P.W. Gloyer, W.H. Knuth and R.A. Crawford. Oxygen Rich Gas Generator Design and Performance Analysis[J]. AIAA 1993-2159.
    [25] Kwon Su Jeon.Jae-Woo Leet.Changjin Lee. Optimal Gas Generator Design for the Liquid Rocket Engine [J]. AIAA 2004-0032.
    [26] Kim S, Trinh H P. Design study of an advanced gas generator which can be ignited during start-up period of turbine engines[R]. AIAA 1993-2158.
    [27] Kwon S T, Lee C, Jae W L. Development of fuel rich gas generator for 10 tonf liquid rocket engine[R]. AIAA 2004-3363.
    [28] Dennis H J, Sanders T. NASA Fastrac Engine Gas Generator Component Test Program and Results[R], AIAA 2000-3401.
    [29]赵世平.李江.何国强.刘佩进.蔡体敏.固体燃气发生器动力模拟水下发射试验研究[J].固体火箭技术.29(1),2006.2.
    [30]李悦.周儒荣.燃气发生器喷喉面积对导弹发射动力的影响[J].南京航空航天大学学报.36(3),2004.6.
    [31] Nobuo TSUJIKADO, Atsushi ISHIHARA.An experimental study of hybrid/liquid rocket engine applied rocket grade hydrogen peroxide. AIAA 2004-3825.
    [32] Troy Dupuis and Tim Knowles.Oxygen Rich Hybrid Gas Generator. AIAA 2006-4673.
    [33] Gary K. Lund, Wm. David Starrett and Kent C. Jensen.Development and Lab-Scale Testing of a Gas Generator Hybrid Fuel in Support of the Hydrogen Peroxide Hybrid Upper Stage Program.AIAA 2001-3244.
    [34]毛成立,李葆萱,李逢春,胡松启,王英红.燃气发生器流量调节方案的比较.固体火箭技术.2000,23(4).
    [35]才满瑞.运载火箭发动机技术的最新进展.中国航天.2003(8).
    [36] Paul Y. Kim, Annik Majamaki, Charles Papesh, Darrick Schneider, Matt Thomson and Vladimir D. Weinstock. Design and Development Testing of the TR108– a 30Klbf-Thrust-Class Hydrogen Peroxide / Hydrocarbon Pump-Fed Engine. AIAA 2005-3566.
    [37] John C. Whitehead.HYDROGEN PEROXIDE GAS GENERATOR CYCLE WITH A RECIPROCATING PUMP. AIAA 2002-3702.
    [38] Seongmin Rang. Hydrogen Peroxide Gas Generator with Dual Catalytic Bed for Non-preheating Start-up. AIAA 2006-4548.
    [39] Hyuckmo Kwon.Study of Catalytic Decomposition for Hydrogen Peroxide Gas Generator.AIAA2005-4485.
    [40] John C. Whitehead.Thermal Performance of a Reciprocating Pump.AIAA 2006-4692.
    [41] Mark Ventura.Novel Concepts for an Advanced Non-Toxic Gas Generator.AIAA 2006-4547.
    [42]林革,凌前程,李福云.过氧化氢推力室技术研究.火箭推进.2005, 31(3).
    [43] Mark Ventura, Eric Wernimont, Jim Dillard.Hydrogen Peroxide– Optimal for Turbomachinery and Power Applications.AIAA 2007-5537.
    [44] Shwartz D J. Tactical high energy laser[R]. SPIE 4632(10-20), 2002.
    [45] Kevin Lohner, Jonny Dyer, Eric Doran, Zachary Dunn,Brian Krieger, Valentin Decker, Eric Wooley, Andy Sadhwani,Brian Cantwell and Thomas Kenny.Design and Development of a Sub-Scale Nitrous Oxide Monopropellant Gas Generator.AIAA 2007-5463.
    [46]刘盛田,胡兴伟,巴俊州. N20/C2H5OH单喷嘴燃气发生器研究[J].舰船防化.No2, 2007.
    [47]刘盛田.柳琪.胡兴伟.等N20 / H2富燃火炬式点火器研究.舰船防化.No12007.
    [48]刘朋,张平,周源泉.某燃气发生器壳体的结构可靠性分析与评估[J].推进技术. 22(5), 2001.10.
    [49]闫璞,王敏庆,盛美萍.燃烧腔不稳定燃烧的有限元数值分析[J].噪声与振动控制.2005.8.
    [50] Fournet A,Lonchard J M. Thomas J L. Technological demonstration for Low Cost Gas Generator. AIAA2004-4006.
    [51] Nguyen H. Flow/thermal analysis of X-34 orbital stage gas generator design[R].AIAA 1996-3226.
    [52] Changjin Lee and Jungmin Yu.Prediction of Non-Equilibrium Kinetics of Fuel-rich Kerosene/LOX Combustion in Gas Generator.AIAA 2007-574.
    [53]王振国,周进,鄢小清.预燃室内气氢气氧射流燃烧过程数值分析[J].国防科技大学学报, 1996
    [54]刘卫东,王振国,周进.液氢/液氧火箭发动机喷雾燃烧过程三维数值模拟[J].推进技术. 20(1), 1999.2.
    [55]聂万胜,庄逢辰.喷雾特性对液体火箭发动机燃烧稳定性的影响[J].推进技术. 21(3), 2000.6.
    [56]苗淼,王文杰.某燃气发生器地面台架试车性能分析[J].航空动力学报.21(1).2006.2.
    [57] Jinhan Kim, Soon-Sam Hong, Eun-Hwan Jeong, Chang-Ho Choi, and Seong-Min Jeon.Development of a Turbopump for a 30 Ton Class Engine.AIAA 2007-5516.
    [58] Henry J. Dennis, Jr. and Tim Sanders. NASA Fastrac Engine Gas Generator Component Test Program and Results [J]. AIAA 2000-3401.
    [59] Mah C S. Evaluating the operational limits of a gas generator. AIAA 2001-3990.
    [60]肖锋.过氧化氢自燃点火器的试验研究[D].国防科技大学,2005,11.
    [61]陈建华,李龙飞,周立新,孙宏明.液氧/煤油补燃火箭发动机整流栅应用研究.火箭推进.2007,33(2).
    [62]童晓艳,蔡国飙,尘军,王珏.燃气发生器身部多学科设计优化.北京航空航天大学学报[J].32(10),2006.10.
    [63] Guobiao Cai, Xiaoyan Tong, Yuntao Zheng and Jie Fang.Generic Optimization of System Parameters for Liquid Rocket Engine with Gas Generator Cycle.AIAA 2005-3743.
    [64] Huzel K D, Huang H D. Modern engineering for design of liquid propellant rocket engine[J]. Progress in Astronautics and Aeronautics, 147: 155-218.
    [65] Morgan D, Beichel R. Stoichiometric gas generator—a strategic deparure[R]. AIAA 1991-2584.
    [66]田章福.低浓度酒精/过氧化氢燃气发生器喷雾燃烧过程研究[D].国防科技大学,2007.4.
    [67]周伟勇.低浓度酒精燃气发生器燃烧性能试验与仿真研究[D].国防科技大学,2007.11
    [68]冯喜平,何洪庆,葛李虎.预燃室三维湍流和燃烧过程的数值模拟(Ⅰ).计算模型和方法.推进技术[J]. 23(2), 2002.4.
    [69]冯喜平,何洪庆,葛李虎.预燃室三维湍流和燃烧过程的数值模拟(Ⅱ).计算模型和方法.推进技术[J]. 23(3), 2002.6.
    [70]韩俊峰,液氧/煤油发动机涡轮吹风用燃气发生器设计[D],西北工业大学.2003.4.
    [71]曹再勇,蔡体敏,谭永华.富氧燃气发生器三维燃烧流场的数值模拟.西北工业大学学报.Vol 23 No.5.2005, 10.
    [72] D.K.休泽尔等著,朱宁昌等译.液体火箭发动机现代工程设计.中国宇航出版社.2003.11.
    [73] Dietrich Haeseler, Chris M?dingand Dieter Preclik.LOX-Kerosene Oxidizer-Rich Gas-Generator and Main Combustion Chambers Subscale Testing. AIAA 2006-5197.
    [74]傅维标,卫景彬.燃烧物理学基础[M].机械工业出版社,1984:61.
    [75]田章福,陶玉静,苏凌宇,周进.多组分液滴蒸发过程的理论模型及试验研究.推进技术.2006,27(6).
    [76]严传俊,范玮.燃烧学[M].西北工业大学出版社,2005.8
    [77]孙纪国,王珏.高混合比火炬式电点火器试验研究[J].推进技术. 2000.2:44-46
    [78]俞南嘉,张国周,刘红军,吕奇伟,何伟锋,马彬.氦气谐振点火器和气氧/煤油火炬点火器研究[J].推进技术. 2003.12:553-556.
    [79]庄逢辰.液体火箭发动机喷雾燃烧的理论、模型及应用.国防科技大学出版社,1995.7.
    [80] Kushari A, Neumeier Y and Zinn B T. A theoretical investigation of the performance of a internally mixed liquid atomizer, AIAA 2000-1021.
    [81]顾善建,范全林.气泡喷嘴下游雾化与流场特性的研究.燃烧科学与技术. 1996:2(4).
    [82] Zaller M and Klem M D. Coaxial injector spray characterization using water/air as simulants. NASA TM-105322, 1991.11.
    [83]孙纪国.氢氧同轴式喷嘴燃烧性能试验研究.火箭推进.2005,31(3).
    [84]加洪等著[前苏联],任汉芬、颜子初等译.液体火箭发动机结构设计.北京:宇航出版社,1992,9.
    [85]崔文.火炬点火器数值仿真和试验[D].硕士学位论文,国防科技大学研究生院,2004.11:38.
    [86]张中钦,庄逢辰.火箭发动机原理[M].宇航出版社,1993.
    [87]黄兵,张楠.液体火箭发动机初始雾化液滴分布预测[J].火箭推进.2007,33(2).
    [88]刘观伟,王顺森,毛靖儒,韩超.小流量离心式喷嘴雾化特性的实验研究[J].燃气轮机技术.2007,20(1).
    [89] Falk A Y. Coaxial Spray Atomization in accelerating gas stream. Final Rept. NASA CR-134825,June 1975.
    [90] Zaller M and Klem M D. Coaxial injector spray characterization using water/air as simulants. NASA TM-105322, 1991.11.
    [91] Burick R J. Atomization and mixing of Gas/Liquid coaxoal injectors. Journal of Spacecraft and Rockets, Vol.9,No.5,1972.
    [92] Sankar S V and Brena de la Rossa, et al. Liquid atomization by coaxial rocket injectors. AIAA Paper 91-0691.
    [93] Yang V, Anderson W E. Liquid Rocket Engine Combustion Instability[M]. Progress in Astronautics and Aeronautics, 1995.169.
    [94]孙纪国,庄逢辰,王珏.缩进深度对同轴式喷嘴流量特性的影响[J].推进技术.2003,24(5).
    [95]休泽尔等著(美).朱宁昌等译.液体火箭发动机现代工程设计[M].中国宇航出版社.2003.11.
    [96]银仁亮,周进,张中光.加扰流环双组元LAE的流场数值仿真[J].上海航天.2004, (6).
    [97]银仁亮,周进,张中光.双组元液体远地点火箭发动机扰流环的设计方法研究[J].火箭推进.2004, 30(1).
    [98]刘昌国,张中光,韩宏印,汪允武,孙得川.高比冲双组元液体远地点火箭发动机研究[J].上海航天.2003(4).
    [99] Narusawa U,Springer G S. Measurement of evaporation rates of water. J.Coll,Interf.Sci,Vol.50(2):pp.392-395,1975.
    [100] LeClair B P and Hamielec A E. A theoretical and experimental study of the internal circulation in water drops falling atterminal velocity in air. J.of The Atmospheric Sciences,Vol.,29,pp.,728-740,1972.
    [101] Abramzpn B and Sirignano W A. Droplet vaporization model for spray combustion calculation. Vol.32 (9): pp.1605-1618,1989.
    [102] Miller R S. Effects of non-reacting solid particle and liquid droplet loading on an exothermic reacting mixing layer. Phys.,Fluids 13,3303–3320,2001.
    [103] ANSARI A. Direct numerical simulation of turbulent mixing layers[J]. AIAA Paper,1995,AIAA-95-2249
    [104]王承尧,王正华,杨晓辉.计算流体力学及其并行算法.长沙:国防科技大学出版社,2000,2.
    [105] S. V.帕坦卡(美).郭宽良译,葛新石校.传热和流体流动的数值方法.安徽科学技术出版社,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700