过氧化氢自燃点火器的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究的过氧化氢自燃点火器,采用分段式结构,燃料喷入过氧化氢的高温分解产物中,蒸发并自燃。
     介绍了有关自燃的燃烧动力学理论、Semenov自燃理论以及应用Semenov方程对自燃范围进行预测的方法。介绍了过氧化氢的催化分解过程、催化分解方式、催化评估以及一维情况下的催化分解模型。对过氧化氢的催化分解进行了一维数值仿真。
     对过氧化氢催化床的催化性能进行了试验研究,分析了催化床床载、催化床初始温度对过氧化氢催化分解的影响,与一维情况下的数值仿真结果进行了对比。
     对喷注器类型、喷管等结构进行了试验研究。研究结果表明,采用带后向台阶的横向喷注器比气液同轴剪切喷注器更易于自燃,后向台阶的高度对燃烧室火焰稳定有影响,燃烧室的特征长度越长,越利于自燃。
     对燃料喷入时的燃烧室温度、压力及推进剂余氧系数等工作参数进行了试验研究。研究结果表明,当推进剂处于余氧系数小于1或略大于1时,在燃烧室压力相同的情况下喷入燃料,燃烧室温度越高,可自燃的余氧系数越小;在燃烧室温度大致相同的情况下喷入燃料,燃烧室压力越高,可自燃的余氧系数越小;在燃烧室温度、压力大致相同的情况下喷入燃料,余氧系数越高,自燃发生的可能性越大。
     通过本文的工作,验证了过氧化氢自燃点火器的可行性,积累了相关的设计与试验经验,为深入研究该点火器奠定了基础。
In the auto-ignition igniter with knock-down subsections that uses decomposed hydrogen peroxide as the oxidizer, the liquid fuel is vaporized and autoignites when injected into the hot decomposition products.
     Theory of combustion dynamics, Semenov auto-ignition and method of prediction of auto-ignition by the Semenov Equation were introduced in the dissertation. The decomposition process, proven decomposition methods, decomposition evaluation and decomposition model of hydrogen peroxide were discussed. The decomposition process of hydrogen peroxide in a catalyst bed was numerically simulated with a 1-D model.
     The performance of catalyst beds was experimentally studied. The influence on decomposition was investigated with changing the mass flux through the cross of the catalyst bed and the initial temperature of the catalyst bed. The experimental results were compared with those of the numerical simulation.
     The influence on auto-ignition of different injectors and nozzles was experimentally researched. The results indicate that auto-ignition occurs more easily when the igniter uses the cross injector with rearward facing step, the height of the rearward facing step influences the stability of the combustion flame, the longer the combustor characteristic length is, the more easily auto-ignition occurs.
     The effect of the combustor temperature, pressure and coefficient of residual oxygen was experimentally investigated when the fuel was injected into the combustor. The results indicate that with the coefficient of residual oxygen being less than 1 or around 1, when the fuel is injected into the combustor at the same combustor pressure, the higher the combustor temperature is, the less the coefficient of residual oxygen is when auto-ignition occurs; when the fuel is injected into the combustor at the same combustor temperature, the larger the combustor pressure is, the less the coefficient of residual oxygen is when auto-ignition occurs; when the fuel is injected into the combustor at the same combustor temperature and pressure, the bigger the coefficient of residual oxygen is, the more easily auto-ignition occurs.
     The research shows the feasibility of the hydrogen peroxide auto-ignition igniter. Knowledge and experience of auto-ignition igniter design and test have been acquired, which is a good foundation of further study.
引文
[1] Funk J.E., Heister S.D., Humble R, et al., Development Testing of Non-Toxic, Storable Hypergolic Liquid Propellants, AIAA 1999-2878,
    [2] Humble R, Bipropellant Engine development Using Hydrogen Peroxide and Hypergolic Fuel, AIAA 2000-3554,
    [3] M.Ventura, s.Yuan, Commercial production and use of hydrogen peroxide, AIAA 2000-3556,
    [4] Ventura M, Garbodem G, A Brief History of Concentrated Hydrogen Peroxide uses, AIAA 1999-2739,
    [5] Ventura M, Mullens P, The Ues of Hydrogen Peroxide for Propulsion and Power, AIAA 1999-2880,
    [6] Austin, B.L.Jr., Frolik S, et al., Characterization of Non-Toxic Hypergolic Bi-Propellants, Second International Hydrogen Peroxide Propulsion Conference, 1999,
    [7] Kirchner J R, "Hydrogen Peroxide",Kirk-othmer Encyclopedia of Chemical Technology, New York, John Weley & Sons, 1995,
    [8] Lorenzo C, Dario P, Oxidizer Conrtol And Optimal Design of Hybrid Rockets For Small Satellites, AIAA 2003-4748,
    [9] Brian. M. Melof, MarkC.Grubelich, Investigation of Hypergolic Fuels with Hydrogen Peroxide, AIAA 2001-3837,
    [10] P.Markopoulos, T.Abel, Development and Testing of a Hydrogen Peroxide Hybrid Upper Stage Propulsion System, AIAA 2001-3243,
    [11] Lewis, Richard J S, Hazardous Chemicals Desk Reference, New York, John Wiley & Sons, 1997,
    [12] Ahn Sang-Hee, Choi Tae-Hoon, S.Krishnan, et al., A Laboratory Scale Hydrogen-Peroxide Rocket-Engine Facility, AIAA 2003-4647,
    [13] E.Wernimotit, P.Mullens, Recent Developments in Hydrogen Peroxide Monopropellant Devices, AIAA 1999-2741,
    [14] Matthew R L, William E A, Ronald W H, Bi-Centrifugal Swirl Injector Development For Hydrogen Peroxide And Non-Toxic Hypergolic Miscible Fuels, AIAA 2002-4026,
    [15] E.Wernimont, P.Mullens, Capabilities of hydrogen peroxide catalyst beds, AIAA 2000-3555,
    [16] Zhang Baojiong, Wang Yue, Hydrogen Peroxide/Kerosene For Spacecraft on-orbitPropulsion, 1997,
    [17] David Andrews H S, The GAMMA Rocket Engines For Black Knight, Journal of The British Interplanetary Society, 1990, Vol.43:pp301-310,
    [18] Frolik S A, Hypergolic Liquid Fuels for Use With Rocket Grade Hydrogen Peroxide, Masters Thesis in Aeronautics and Astronautics, Purdue University, 2000,
    [19] J.C.Sisco, B.L.Austin, J.S.Mok, et al., Autoignition of Kerosene By Decomposed Hydrogen Peroxide In a Dump Combustor Configuration, AIAA 2003-4921,
    [20] J.C.Sisco, B.L.Austin, J.S.Mok, et al., Ignition Studies of Hydrogen Peroxide And Kerosene Fuel, AIAA 2003-831,
    [21] J.S.Mok, J.C.Sisco, W.E.Anderson, Analysis and Experiments of Hydrogen Peroxide Vaporization and Decomposition, AIAA 2003-4621,
    [22] J.S.Mok, W.J.Helms, J.C.Sisco, et al., Decomposition and Vaporization Studies of Hydrogen Peroxide, AIAA 2002-4028,
    [23] Palmer K, Development and Testing of Non-Toxic Hypergolic Miscible Fuels, Masters Thesis in Aeronautics and Astronautics, Purdue University, 2002,
    [24] S.A.Frolik, B.L.austin, J.J.Rusek, et al., Development of Hypergolic Liquid Fuels for use with Hydrogen Peroxide, AIAA 2000-3684,
    [25] Rusek J J, Minthom M K, Purcell M L, et al., Non-Toxic Homogeneous Miscible Fuel Development for Hypergolic Bipropellant Engines, Sixth Annual AIAA BMDO TBMD Conference, San Diego, CA, 1997,
    [26] Funk J E, Rusek J, Assessment of United States Navy Block 0 NKMF/RGHP Propellants, Second International Hydrogen Peroxide Propulsion Conference, 1999,
    [27] R.Ross, D.Morgan, D.Crockett, et al., Upper stage flight experiment 10K engine design and test results, AIAA 2000-3558,
    [28] Wu P K, Fuller R P, Morlan P W, et al., Development of a Pressure-Fed Rocket Engine Using Hydrogen Peroxide and JP-8, AIAA 1999-2877,
    [29] Escher, W.J.D., Flornes B J, A Study of Composite Propulsion Systems for Advanced Launch Vehicle Applications, The Marquardt Company Report 25194, 1966,
    [30] K.J.Miller, J.C.Sisco, B.L.Austin, et al., Design and Ground Testing of a Hydrogen Peroxide Kerosene Combustor For RBCC Application, AIAA 2003-4477,
    [31] Quinn J E, Oxidizer Selection for the ISTAR Program, AIAA 2002-4206,
    [32] Palumbo N, Moes T R, Vachon M J, Initial Flight Tests of the NASA F-15B Propulsion Test Fixture, NASA TM-2002-210736, 2002,
    [33] Hulbert E, Zhang Baojiong, Wang Yue, Nontoxic Orbital Maneuvering and Reaction Control System for Reusable Spacecraft, Journal of Propulsion and Power, 1998,Vol.14:pp676-687,
    [34] 田含晶, 高浓度过氧化氢分解催化剂的研究, 中科院大连化物所, 2000,
    [35] 杨黄河, 过氧化氢分解反应及其催化剂的研究, 中科院大连化物所, 2001,
    [36] 贺芳,方涛, 新型绿色液体推进剂研究进展, 液体火箭推进技术发展研讨会, 2005,
    [37] 白云峰,林庆国,金盛宇,汪允武,张中光, 过氧化氢单元催化分解火箭发动机研试, 液体火箭推进技术发展研讨会, 2005,
    [38] A.M.Kanury, 燃烧导论, 庄逢辰等译, 长沙, 国防科技大学出版社, 1981,
    [39] Kenneth.K.Kuo, 燃烧原理, 陈义良,张孝春,孙慈,季鹤鸣编译, 北京, 航空工业出版社, 1992,
    [40] Freeman G, Lefebvre, A. H., Spontaneous Ignition Characteristics of Gaseous Hydrocarbon-Air Mixtures, Combustion and Flame, 1984, Vol.58:pp153-162,
    [41] Freeman G, The Spontaneous Ignition Characteristics of Gaseous Hydrogen-Air Mixtures at Atmospheric Pressure, Purdue University, 1984,
    [42] Mestre A, Ducourneau, F., Recent Studies on the Spontaneous Ignition of Rich Air-Kerosene Mixtures, Combustion Institute European Symposium, 1973, pp225-229,
    [43] Spadaccini L.J., TeVelde J.A, Autoignition Characteristics of Aircraft-Type Fuels, NASA CR-159886, 1980,
    [44] Colket III M.B., Spadaccini L.J., Scramjet Fuels Autoignition Study, Journal of Propulsion and Power, 2001, Vol.17:pp315-323,
    [45] Plee S.L, Mellor A.M, Characteristic Time Correlation for Lean Blowoff of Bluff-Body-Stabilized Flames, Combustion and Flame, 1979, Vol.35:pp61-80,
    [46] Schumb W., Satterfield C.N., Wentworth R.L., Hydrogen Peroxide, New York, Reinhold Publishing Corporation, 1955,
    [47] N.Pearson, T.Pourpoint, W.E.Anderson, Vaporization And Decomposition of Hydrogen Peroxide Drops, AIAA 2003-4642,
    [48] Hoare D.E., Protheroe J.B., Walsh A.D., The Thermal Decomposition of Hydrogen Peroxide Vapour, Transactions of the Faraday Society, Vol.55:pp548-557,
    [49] Wu P K, Kirkendall K A, Fuller R P, et al., Breakup Processes of Liquid Jets in Subsonic Crossflows, AIAA 1996-3024,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700