低浓度酒精燃气发生器燃烧性能试验与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过理论分析、试验和数值仿真研究了不同浓度酒精的蒸发燃烧特性、低浓度酒精/过氧化氢燃气发生器的燃烧性能,以及低浓度酒精/过氧化氢燃气发生器熄火问题。研究结果对低浓度酒精/过氧化氢燃气发生器的设计和性能改进有重要意义。
     首先,通过气氧/酒精燃气发生器开窗燃烧室试验拍摄了不同浓度酒精(50%、65%、85%)的火焰图像,研究了低浓度酒精的多组分特性对蒸发燃烧过程的影响;并利用数值仿真获得了模拟火焰图像,验证了仿真模型的准确性。研究结果表明:高速氧气对火焰的束缚作用明显,余氧系数越大,火焰锥角越小;酒精浓度越高,液滴在燃烧室蒸发越快,火焰亮度越高;余氧系数一定,酒精浓度越高,燃烧效果越好。
     其次,结合工程实践需要,利用试验和数值仿真手段,研究了影响低浓度酒精/过氧化氢燃气发生器燃烧性能的若干主要因素:余氧系数、流量密度、燃烧室停留时间等。研究结果表明:该燃气发生器能够在大范围的温度、余氧系数和流量下实现高效稳定燃烧;燃烧室停留时间对于燃气发生器能否正常工作起着关键作用。
     最后,研究了低浓度酒精/过氧化氢燃气发生器熄火问题,通过试验和数值仿真分析了过氧化氢分解后气体的喷注压降对燃气发生器非正常熄火的影响。研究结果表明:水的加入使得化学反应速率和火焰传播速率大幅下降,导致火焰不容易稳定;过氧化氢分解后气体的喷注压降对该燃气发生器着火后能否正常工作起着至关重要的作用;过氧化氢燃气分解后燃气的喷注压降为1.0MPa时,过氧化氢分解后燃气速度过大,火焰将无法在燃烧室内稳定,造成燃气发生器非正常熄火;降低喷注压降到0.2MPa后,分解后气体速度降低,燃气发生器正常工作。
The evaporation and combustion performances of different concentrations of ethanol, the combustion performance of the low concentration ethanol-hydrogen peroxide gas generator, and the problem of flameout of the low concentration ethanol-hydrogen peroxide gas generator were researched through theoretic analysis, experimental investigation and numerical simulation. Many significant results, which were important to design and optimize the low concentration ethanol-hydrogen peroxide gas generator, were acquired.
     First, the flame configuration and combustion efficiency in the conditions of different concentrations (50%, 65%, 85%) of ethanol were obtained through the ethanol/oxygen gas generator fenestration experiment and numerical simulation. The influence of multicomponent of low concentration ethanol on the evaporation and combustion performance was investigated and the exactness of the simulation was validated. The analysis showed that high speed of the oxygen had marked influence on the angle of the flame. When the excess oxidizer coefficient was bigger, the angle of the flame was smaller. The concentration of ethanol was higher, and the evaporation was quicker, the flame was brighter. When the excess oxidizer coefficient was unconverted, the concentration of ethanol was higher, the combustion efficiency was better.
     Second, for the demands of project, the influence of excess oxidizer coefficient, flux density and the stay time in the combustion chamber on the combustion performance of the low concentration ethanol-hydrogen peroxide gas generator were investigated by experiment and simulation. The results showed that the gas generation could work under a large-scale of temperature, excess oxidizer coefficient and flux density. Besides, the stay time played an important role on the combustion performance.
     In the end, the problem of flameout of the low concentration ethanol-hydrogen peroxide gas generator the flameout was studied, by means of theoretic analysis, experiment and simulation, the influence of the velocity of the decomposed gas of hydrogen on the abnormal flameout of the gas generator. The analysis showed that diluted ethanol receded the velocity of the chemical reaction, and the the velocity of the decomposed gas of hydrogen played a key role on point that whether the gas generator worked normally after ignition. When the injection pressure drop of the decomposed gas was 1.0MPa, the velocity of the decomposed gas was so high that the flame could not stay in the combustion chamber, thus the gas generator extinguishes abnormally; and if the injection pressure drop reduced to 0.2MPa, the velocity of the decomposed gas was lower, and the gas generator worked normally.
引文
[1]M.A.S.Nlinucci and J.L.S.Oliva.On the Development of a Gas Generator for C02-N2 Gas Dynamic Lasers Utilizing Liquid Fuel and Liquid Oxidizer,AIAA 93-3187,1993
    [2]Dijkstra F,Mayer A E H J,et al.Ducted Rocket Combustion Experiments at Low Gas Generator Combustion Temperatures,A1AA-95-241,1995
    [3]D.K.McGrath,T.J.Kirschner,et al.Mars Pathfinder Airbag Gas Generator Development.,the American Institute of Aeronautics and Astronautics,Inc,1998
    [4]丛敏.国际性超燃冲压发动机研究进入飞行试验阶段.飞航导弹,1998(12):53-56
    [5]周义,王永良,王自焰.高超音速武器的特点与发展现状.中国人民防空,2004(12):38-40
    [6]吴家彤.6.5马赫超燃冲压发动机的近期飞行试验结果.火箭推进,2004,30(2):48-53
    [7]美国超燃冲压发动机取得进展.环球军闻,2006(5):2
    [8]沈剑.2004年美国成功的高超声速飞行试验.飞航导弹,2005(6):34-39.
    [9]陈英硕.X-43A创新的世界记录.飞航导弹,2004(12):2
    [10]刘卫东,梁剑寒等.超燃冲压模型发动机试验研究.中国国防科学技术报告,2003.9
    [11]Murthy S N B,Curran E T.High-speed flight propulsion systems.Volume 137,Progress in astronautics and aeronautics,AIAA 1991
    [12]龙玉珍.高超音速巡航导弹用超燃冲压发动机特点与设计方案.飞航导弹,1997(8):29-37
    [13]Curran E T.,Murthy S N B.Scramjet propulsion.Volume 189,Progress in astronautics and aeronautics,AIAA 2002
    [14]Curran E T.Scramjet Engines:The first forty years.Journal of Propulsion and Power.2001,17(6):1138-1148
    [15]Andrews E H.Scramjet Development and testing in the united states.AIAA Paper 2001-1927,2001
    [16]Matthew N Y,Stephen IdemAn.Experimental investigation of cold air-to-air ejectors,AIAA 2005-4281
    [17]Nagaoka H.Suzuki S.Ejector coil employing coanda effect,AIAA 2005-5168
    [18]Lanchao Lin,Ponnappant R.Two-phase high capacity spray cooling Loop-nozzle orientation effects and performance results.AIAA 2005-5733
    [19]Singhal G,Rajesh R et al.Two-stage ejector based pressure recovery system for small scale scoil.AIAA 2005-5171
    [20]Taylor,Delbert.Supersonic Ejector.AGARD-AG-163
    [21]Chiappetta L M,Spadaccini L J,Huang H,et al.Modeling a Hydrogen Peroxide Gas Generator for Rockets.A1AA-2000-3223,2000
    [22]S.Josef,et al.Tactical High Energy Laser.The SPIE Proceedings on Laser and Beam Control Technologies,Volume 4632,January 21,2002
    [23]Wilhite B.A.,et al.Design of a MEMS-Based microChemical Oxygen-Iodine Laser(μ COIL) System.IEEE Journal of Quantum Electronics,Vol.40,No.8,2004.8
    [24]Gloyer P W.,Knuthx W H.Crawford R A.Oxygen Rich Gas Generator Design And Performance Analysis.AIAA-93-2159,1993
    [25]Mah C S.Evaluattngthe Operational Limits Ofagas Generator.AIAA 2001-3990,2001
    [26]Nguyen Hai.Flow/Thermal Analysis of X-34 Orbital Stage Gas Generator Design.AlAA-96-3226,1996
    [27]Foumet A,Lonchard J M.Thomas J L.Technological demonstration for Low Cost Gas Generator.AIAA-2004-4006,2004
    [28]加洪等著[前苏联],任汉芬、颜子初等译.液体火箭发动机结构设计.北京:宇航出版社,1992.9
    [29]李清廉.同轴式三组元喷嘴性能分析、工程应用及设计评定.国防科技大学,[博士学位论文],2003
    [30]Kwon Sun Tak,Lee Changjin,Jae-Woo Lee.Development of Fuel Rich Gas Generator for 10 tonf Liquid Rocket Engine.AIAA-2004-3363,2004
    [31]Funk J.E,Heister S.D,Humble R,et al.Development Testing of Non-Toxic.Storable Hypergolic Liquid Propellants,AIAA 1999-2878
    [32]Humble R.Bipropellant Engine development Using Hydrogen Peroxide and Hypergolic Fuel.AIAA 2000-3554
    [33]M.Venturas.Yuan.Commercial production and use of hydrogen peroxide.AIAA 2000-3556
    [34]Ventura M,Garbodem G.A Brief History of Concentrated Hydrogen Peroxide uses.AIAA 1999-2739
    [35]Ventura M,Mullens P.The Ues of Hydrogen Peroxide for Propulsion and Power.AIAA 1999-2880
    [36]Tsujikado.N,Koshima,M,et al.An Application of Commercial Grade HydrogenPeroxide for Hybrid/Liquid Rocket Engine.AIAA Paper 2002-3573,July,2002
    [37]P.Markopoulos,T.Abel,Development and Testing of a Hydrogen Peroxide Hybrid Upper Stage Propulsion System,AIAA 2001-3243
    [38]E.Wernimotit,P.Mullens,Recent Developments in Hydrogen Peroxide Monopropellant Devices,AIAA 1999-2741
    [39]Zhang Baojiong,Wang Yue.Hydrogen Peroxide/Kerosene For Spacecraft on-orbit Propulsion,1997
    [40]R.Ross,D.Morgan,D.Crockett,et al.,Upper stage flight experiment 10K engine design and test results,AIAA 2000-3558
    [41]贺芳,方涛.新型绿色液体推进剂研究进展.液体火箭推进技术发展研讨会,2005
    [42]白云峰,林庆国等.过氧化氢单元催化分解火箭发动机研试.液体火箭推进技 术发展研讨会, 2005
    
    [43]Austin, B.L.Jr, Frolik S, et al. Characterization of Non-Toxic Hypergolic Bi-Propellants. Second International Hydrogen Peroxide Propulsion Conference,1999
    [44]Kirchner J R. "Hydrogen Peroxide". Kirk-othmer Encyclopedia of Chemical Technology, New York, John Weley & Sons, 1995
    [45] Lorenzo C, Dario P. Oxidizer Conrtol And Optimal Design of Hybrid Rockets For Small Satellites, AIAA 2003-4748
    [46]Brian., M., Melof, MarkC.Grubelich., Investigation of Hypergolic Fuels with Hydrogen Peroxide., AIAA 2001-3837
    [47]Ahn Sang-Hee, Choi Tae-Hoon, S.Krishnan, et al. A Laboratory Scale Hydrogen-Peroxide Rocket-Engine Facility, AIAA 2003-4647
    [48]Matthew R L, William E A, Ronald W H. Bi-Centrifugal Swirl Injector Development For Hydrogen Peroxide And Non-Toxic Hypergolic Miscible Fuels.AIAA 2002-4026
    [49] Frolik S A. Hypergolic Liquid Fuels for Use With Rocket Grade Hydrogen Peroxide. Masters Thesis in Aeronautics and Astronautics, Purdue University, 2000
    [50] David Andrews H S. The GAMMA Rocket Engines For Black Knight. Journal of The British Interplanetary Society, 1990, Vol.43:pp301-310
    [51] Palmer K. Development and Testing of Non-Toxic Hypergolic Miscible Fuels.Masters Thesis in Aeronautics and Astronautics, Purdue University, 2002
    [52]S.A., Frolik and B.L., Austin. Development of Hypergolic Liquid Fuels for Use With Hydrogen Peroxide. AIAA 2001-0013
    [53]Rusek J J, Minthom M K, Purcell M L, et al. Non-Toxic Homogeneous Miscible Fuel Development for Hypergolic Bipropellant Engines. Sixth Annual AIAA BMDO TBMD Conference, San Diego, CA., 1997
    [54]Funk J E, Rusek J. Assessment of United States Navy Block 0 NKMF/RGHP Propellants. Second International Hydrogen Peroxide Propulsion Conference, 1999
    
    [55]Wu P K, Fuller R P, Morlan P W, et al. Development of a Pressure-Fed Rocket Engine Using Hydrogen Peroxide and JP-8. AIAA 1999-2877
    [56]Escher, W.J.D, Flornes B J. A Study of Composite Propulsion Systems for Advanced Launch Vehicle Applications. The Marquardt CoMPany Report 25194,1966
    [57]K.J.Miller, J.C.Sisco, B.L.Austin, et al. Design and Ground Testing of a Hydrogen Peroxide Kerosene Combustor For RBCC Application. AIAA 2003-4477
    [58]Quinn J E. Oxidizer Selection for the ISTAR Program. AIAA 2002-4206
    [59]Palumbo N, Moes T R, Vachon M J. Initial Flight Tests of the NASA F-15B Propulsion Test Fixture. NASA TM-2002-210736, 2002
    [60]Hulbert E, Zhang Baojiong, Wang Yue. Nontoxic Orbital Maneuvering and Reaction Control System for Reusable Spacecraft. Journal of Propulsion and Power, 1998, Vol.14:pp676-687
    
    [61]Sirignano WA., Fluid dynamics of sprays. Fluids Eng, 115, 345-378, 1993
    [62] Wood B J, Wise H, Inami S H. Heterogenous combustion of multicomponent fuels.,Combust.Flame 4,235-242,1960
    [63]Landis R B,Mills A F.Effect of internal diffusional resistance on the evaporation of binary droplets.Proc5th Int.,Heat Transfer Conf.4,345-349,1974
    [64]Randolph A L,Makino A,Law,C.K.Liquid-phase diffusional resistance in multicomponent droplet gasification.In:Proceedings of the 21st Symposium (International) on Combustion,pp.,601-608,1986
    [65]Lara-Urbaneja P,Sirignano W A.,Theory of transient multicomponent droplet vaporization in a convective field.,In:Proceedings of the 18th Symposium (International) on Combustion.,pp.1365-1374,1981
    [66]Edwards T,Maurice L.Surrogate mixtures to represent complex aviation and rocket fuel.AIAA 99-2217
    [67]Wood C P,et al.Development and application of a surrogate distillate fuel.AIAA Journal of Propulsion and Power.Vol.5(4),pp.399-405,1989
    [68]Schulz W D.Oxidation products of a surrogate JP-8 fuel.Journal of Propulsion and Power,Vol.9(1),pp.5-9,1993
    [69]Harstad K G,et al.A robust statistical model for the evaporation of multicomponent-fuel drops containing a nultitude of chemical species.AIAA 2003-1321
    [70]Manuel A Z,Rosnerb D E.Multicomponent fuel droplet vaporization and combustion using spectral theory for a continuous mixture.Combustion and Flame,135(271-284),2003
    [71]S.,K.,Aggarwal.A REVIEW OF SPRAY IGNITION PHENOMENA:PRESENT STATUS AND FUTURE RESEARCH Prog.Energy Combust,Sci.,Vol.24,pp.565-600,1998
    [72]Aggarwal,S.K.Int.J.HeatMass Transfer,1987,30,1949
    [73]S.Wittig,R.,Koch,O.,Sch(a|¨)fer,K.Prommersberger Institut fǖr thermische Str(o|¨)mungsmaschinen Universit(a|¨)t Karlsruhe(TH).Evaporation model for multi component fuels,source code,28.2.2001
    [74]王应时等著.燃烧过程数值计算.北京:科学出版社,1986
    [75]庄逢辰,陈新华,张光中.F-20型发动机燃烧室计算模型.国防科技大学学报,第11卷,第3期,1989
    [76]P.Y.Liang.Liquid Rocket Combustor Code Development.Paper Presented at the Advanced High-pressure Oxygen/Hydrogen Conference,Huntsville,Alabama,June,1984
    [77]M.Habiballah and H.Monin.Two-Dimentional Model for the Two-Phase Flow Simulation in a Viking Rocket Engine Combustion Chamber.9th Int.conf.on Numerical Methods in Fluid Dynamics,Sclay,1984
    [78]A.J.Przekwas,et al.Rocket Injector Anomalies study.NASA CR 174702
    [79]王振国.液体火箭发动机燃烧室内部工作过程数值模拟.国防科技大学,[博士学位论文],1993
    [80]冯喜平.燃气发生器三维湍流和燃烧过程的数值模拟.西北工业大学,[博士学位论文],2001.7
    [81]曹再勇,蔡体敏,谭永华.富氧燃气发生器三维燃烧流场的数值模拟.西北工 业大学学报,23(5),2005.10
    [82]王振国,周进,鄢小清,刘卫东.预燃室内气氢气氧射流燃烧过程数值分析.国防科技大学学报,1996
    [83]刘卫东,王振国,周进.液氢/液氧火箭发动机喷雾燃烧过程三维数值模拟.推进技术,20(1),1999.2
    [84]田章福.低浓度酒精/过氧化氢燃气发生器喷雾燃烧过程研究.国防科技大学,[博士学位论文],2007.6
    [85]Narusawa U,Springer G S.Measurement of evaporation rates of water.J.Coll,Interf.Sci,Vol.50(2):pp.392-395,1975
    [86]LeClair B P and Hamielec A E.A theoretical and experimental study of the internal circulation in water drops falling atterminal velocity in air.J.of The Atmospheric Sciences,Vol.,29,pp.,728-740,1972
    [87]Abramzpn B and Sirignano W A.Droplet vaporization model for spray combustion calculation.Vol.32(9):pp.1605-1618,1989
    [88]Miller R S.Effects of non-reacting solid particle and liquid droplet loading on an exothermic reacting mixing layer.Phys.,Fluids 13,3303-3320,2001
    [89]ANSARI A.Direct numerical simulation of turbulent mixing layers[J].AIAA Paper,1995,AIAA-95-2249
    [90]MILANE R E,NOURAZAR S.Large-eddy simulation of mixing layer using vortex method:effect of subgrid-scale models on early development[J].Mechanics Research Communication,1997,24(2):215-221
    [91]陈懋章.粘性流体力学基础.北京:高等教育出版社,1992.9
    [92]Ingebo R D.Drop size distribution for impinging-jet breakup in airstreams simulating the velocity conditions in rocket combustors[R].NACA TN4222
    [93]孙纪国,沈赤兵,王振国.一种40°撞击式双股自击式喷嘴试验.推进技术,2002.6
    [94]J.M.,Smith and H.C.,Van Ness..Introduction to Chemical Engineering Thermodynamics.McGraw Hill,New Jersey,1986
    [95]周力行.湍流气粒两相流和燃烧的理论与数值模拟.北京:科学出版社,1994
    [96]范维澄,万跃鹏.流动及燃烧的模型与计算.安徽:中国科学技术出版社,1992
    [97]B.F.Magnussen and B.H.Hjertager.On mathematical models of turbulent combustion with special emphasis on soot formation and combustion.In 16th Symp.,(Int'l.) on Combustion,The Combustion Institute,1976
    [98]唐力铁.气相燃烧模型的研究和火炬点火器的流场仿真.国防科技大学,[硕士学位论文],2000.11
    [99]周力行,燃烧理论和化学流体力学,科学出版社,1986 p431
    [100]S.V.帕坦卡(美).郭宽良译,葛新石校.传热和流体流动的数值方法.安徽科学技术出版社,1984
    [101]王承尧,王正华,杨晓辉.计算流体力学及其并行算法.长沙:国防科技大学出版社,2000.2
    [102]S.V.帕坦卡(美).郭宽良译,葛新石校.传热和流体流动的数值方法.安徽科学技术出版社,1984
    [103]吕出崇.热工参数测量与处理.清华大学出版社,2001.9
    [104]王方编译.火焰学.中国科学技术出版社,1994.12
    [105]张中钦,庄逢辰.火箭发动机原理.宇航出版社,1993
    [106]岑可法,姚强等.高等燃烧学.浙江大学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700