PiggyBac转座子介导的嗜热菌β-糖苷酶转基因牛研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛奶作为营养丰富的全蛋白食品,对于补充机体营养物质,促进钙、磷吸收和增强人体免疫力具有重要作用。然而,在我国高达92%的人群对牛奶中的乳糖存在消化和吸收障碍,表现为“乳糖不耐症”。如何降低牛奶中乳糖含量,进而减少“乳糖不耐症”的发生,是奶牛育种研究中亟待解决的问题。嗜热菌B-糖苷酶(LacS)具有催化糖苷键水解进而分解乳糖的作用。通过转基因方法在牛奶中表达此酶,可以从根本上减少“乳糖不耐症”的发生。PiggyBac转座子作为近年来发现的转基因新技术,具有整合效率高、负载容量大、以单拷贝形式整合,更易模拟内源基因的表达状况等优点,在转基因研究中具有重要的应用前景。目前,利用PiggyBac进行的转基因牛研究未见有成功报道。因此,本研究构建了PiggyBac介导的牛乳腺特异性表达嗜热菌B-糖苷酶载体,结合体细胞克隆技术,以期降低牛奶中的乳糖含量,为今后培育低乳糖奶牛新品种进行探索性研究。
     实验一将来源于古细菌的嗜热菌β-糖苷酶基因根据牛的密码子使用频率进行了密码子优化,并将优化后的基因在公司合成。随后分别克隆了牛乳球蛋白(BLG)启动子、PiggyBac转座元件,通过酶切连接等方法分别构建了不含转座子元件的普通载体plox-EGFP-LacS和含有转座元件的乳腺特异性表达嗜热菌糖苷酶的载体ZGL-LacS-EN。两个载体都添加了LOXP锚定的GFP和Neomycine双标记基因。目的在于进一步提高转基因的筛选效率和安全性。实验二将普通载体转染鼠乳腺癌细胞,并筛选得到单克隆。将数个单克隆混合后进行整合检测和RT-PCR检测。结果表明,BLG启动子能正确启动经密码子优化后和嗜热菌β-糖苷酶基因在乳腺细胞中的表达。且测序结果表明目的基因的编码区未发生突变。实验三将PiggyBac转座子载体与转座酶载体以5:1的比例共转染牛成纤维细胞。48h后以1:30、1:60、1:100的比例进行细胞传代和药物筛选。对筛选得到的单克隆进行Gimasa染色和计数。分析结果表明,上述传代比例下,添加/不添加转座酶的细胞克隆数分别为177/5、134/0.2、79/0。上述结果表明,PiggyBac在很大程度上提高了目的基因的整合效率。同时实验中发现,这种高效整合对于牛成纤维细胞的形态和生长状态产生了一些不利影响。对分离培养的单克隆提取基因组进行Tail PCR检测插入位点侧翼序列,并对40个有效测序结果分析表明,PiggyBac转座子介导的目的基因倾向于整合到牛染色体基因组内含子和基因间序列中。实验四将两种质粒转染母牛成纤维细胞,筛选得到含有目的基因的单克隆用于核移植实验。结果表明,普通载体转染的转基因胚胎卵裂率(83.2%)稍高于转座子介导的转基因胚胎(75.7%),而囊胚率(15.3%/14.9%)无明显差别,但两者均明显低于非转基因的胚胎(卵裂率88.2%,囊胚率36.7%)。将体外培养的绿色荧光的囊胚移植到3头经同期发情处理的代孕母牛子宫中,未见怀孕。
     本研究首次成功构建了PiggyBac转座子介导的乳腺特异性表达嗜热菌B-糖苷酶的双标记转基因载体,证明了PiggyBac转座子在牛成纤维细胞中可以高效转座,并且这种整合具有内含子和基因间序列的倾向性。体细胞核移植实验结果进一步表明,转座子介导的转基因胚胎的囊胚率与普通载体并无明显差别。上述实验结果为今后培育低乳糖奶牛新品种进行了探索性研究,并为利用PiggyBac转座子技术进行高效和安全的转基因牛育种奠定了一定基础。
Milk as a nutritious whole protein food, plays an important role in the supplement nutrition, promote absorption of calcium, phosphorus and enhance human immunity. However, in our country as much as92%of the crowd has the obstacle to digestion and absorption of lactose in milk, which termed as "lactose intolerance ". How to reduce the content of lactose in the milk, and then reduce "lactose intolerance" should be anxious solved in dairy cows breeding research area. Sulfolobus Solfataricus β-Glycosidases has a function on catalytic hydrolysis glycosidic bond and hydrolysis of lactose. So, the "lactose intolerance" could be fundamentally solved through the genetically modified method to expression of Sulfolobus Solfataricus β-Glycosidases in the milk. Piggybac transposon as a new transgenic technology, because of the advantages such as high integration rate and load capacity, single copy integration, easy simulation endogenous gene expression environment, which has an important application prospect. At present, the piggybac transposon mediated transgenic cattle research have not been reported success. So, in this study, we constructed a transgenic vector which piggybac transposon mediated mammary gland specific expression of Sulfolobus Solfataricus β-Glycosidases, combined with somatic nuclear transfer technology (SCNT) to produce transgenic cattle, in order to reduce lactose content in the milk, and do the exploratory research for low lactose dairy cows breeding.
     Experiment1, the Sulfolobus Solfataricus β-Glycosidases was codon optimized and synthetized based on the codon usage frequency of bovine. The bovine lactoglobulin and piggybac transposon element was cloned, digest and ligated to complete the mammary specific expression of Sulfolobus Solfataricus β-Glycosidases vector, which one do not contain the transposon element as a negative control; Another one contain the transposon element. All of them have the GFP and neomycine marker gene anchoraged by LOXP sequence, in order to enhance the screen efficiency and safety of transgenic. Experiment2, verification of expression vector by mammary gland cell. The PCR and RT-PCR analysis result showed that, the BLG promoter could direct the codon optimized Sulfolobus Solfataricus β-Glycosidases expressed in mammary gland cells, and there are no mutations in coding region of Sulfolobus Solfataricus β-Glycosidases verified by sequencing. Experiment3, piggybac transposon and transposase were co-transfected to fibroblasts at proportion of5:1. After48h, cells were passaged at1:30,1:60,1:100proportion and screened with G418. Gimasa and cell counting result showed that, the cell colonies was177/5、134/0.2and79/0under add with transposase or without transposase condition at above three passage proportion. These results showed that piggybac transposon could enhance integration rate greatly. However, the high integration rate may have some adverse effect on cell shape and growth condition.40available sequencing data of tailPCR results of colonies showed that, the piggybac transposon mediated gene integration is more tend to intron and intergenic of bovine chromosome. Experiment4, transfection and screening of fibroblasts with vector which with or without transposon element, then, SCNT with single colonies. Result showed that, the embryo cleavage rate of plox-EGF-LacS is slightly higher than ZGL-LacS-EN (83.2%/75.7%), and the blastosphere rate was no obvious differences between them (15.3%/14.9%), but both of them was obvious higher than non-modified embryos (cleavage rate88.2%, blastosphere rate36.7%). The blastosphere with green fluorescent were transfered to uterus of three receptor cattle treated with synchronization, no pregnant of them.
     In this study, we first constructed piggybac mediated a double marker gene vector, which specific expression of Sulfolobus Solfataricus β-Glycosidases in mammary gland. Our result showed that the piggybac transposon could mediated transposition of target gene in fibroblasts efficiently, and the integration of targeting gene have more tend to intron and intergenic of bovine chromosome. Result of SCNT showed that, there are no obvious differences between plox-EGF-LacS and ZGL-LacS-EN of blastosphere rate. The above study do an exploratory research at cultivating of low lactose dairy cow new species, meanwhile, lays a foundation on more efficiency and safety of genetically cattle breeding use of piggybac transposon technology.
引文
1 杨月欣, 程五凤.中国儿童乳糖不耐受发生率的调查研究[J].卫生研究,1999,Vol.28(1):44-46.
    2 吴晖, 牛晨艳, 黄巍峰, 赖富饶.乳糖不耐受症的现状及解决方法[J].现代食品科技,2006, Vol.22(001):152-155.
    3 赵显峰, 荫士安.乳糖不耐受以及解决方法的研究动态[J].中国学校卫生,2007,Vol.28(12):1151-1153.
    4 Jackson K A, Savaiano D A. Lactose maldigestion, calcium intake and osteoporosis in African-, Asian-, and Hispanic-Americans[J]. Journal of the American Col lege of Nutrition,2001, Vol.20(2):198S-207S.
    5 刘青, 金学源, 李劲松, 施卫红, 马岳珠.用氢呼气试验方法研究小儿乳糖吸收不良的发生状况[J].中国临床营养杂志,1996,vol.4(1):30-32.
    6 Wood B. The lactic acid bacteria:Volume 1:The lactic acid bacteria in health and disease[M]. London, Elsevier Applied Science.1992.
    7 陆淳, 檀志芬, 邱泉若, 生庆海.乳糖酶及其在乳品工业中的应用[J].中国乳品工业,2005, Vol.33(8):41-42.
    8 余清, 荫士安.有关乳糖不耐受的研究进展[J].卫生研究,2006,Vol.35(3):360-362.
    9 Jost B, Vilotte J L, Duluc I, Rodeau J L, Freund J N. Production of low-lactose milk by ectopic expression of intestinal lactase in the mouse mammary gland [J]. Nature Biotechnology,1999, Vol.17(2):160-164.
    10 Whitelaw B. Toward designer milk[J]. Nature a-z index,1999, Vol.17(2):135-136.
    11 吕晓华, 刘世贵.生物技术在乳糖不耐受防治中的应用[J].中国乳品工业,2002,Vol.30(1):44-47.
    12马歌丽, 魏泉增.糖苷酶的特性与应用[J].食品科技,2008, vol.33(7):30-33.
    13 Moracci M, Capalbo L, Ciaramella M, Rossi M. Identification of two glutamic acid residues essential for catalysis in the β-glycosidase from the thermoacidophilic archaeon Sulfolobus solfataricus [J]. Protein engineering,1996, Vol.9(12):1191-1196.
    14何向远, 金城.耐热β-糖苷酶的基因克隆, 表达和耐热性研究[J].生物工程学报,2002, Vol.18(1):63-68.
    15赵丰丽, 张富新, 李继红.功能性低聚糖的现状与发展[J].资源开发与市场,2000,Vol.16(6):336-339.
    16 Sako T, Matsumoto K, Tanaka R. Recent progress on research and applications of non-digestible galacto-oligosaccharides [J]. International Dairy Journal,1999, Vol.9(1):69-80.
    17 Moracci M, Capalbo L, Ciaramella M, Rossi M. Identification of two glutamic acid residues essential for catalysis in the β-glycosidase from the thermoacidophilic archaeon Sulfolobus solfataricus [J]. Protein engineering, 1996, Vol.9(12):1191.
    18 Anfinsen C. Principles that govern the protein folding chains [J]. Science,1973, Vol.181:233-230.
    19 Varenne S, Buc J, Lloubes R, Lazdunski C. Translation is a non-uniform process: Effect of tRNA availability on the rate of elongation of nascent polypeptide chains[J]. Journal of Molecular Biology,1984, Vol.180(3):549-576.
    20 Kim J K, Hollingsworth M J. Localization of in vivo ribosome pause sites[J]. Analytical biochemistry,1992, Vol.206(1):183-188.
    21 Grosjean H, Fiers W. Preferential codon usage in prokaryotic genes:the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes [J]. Gene,1982, Vol.18 (3):199-209.
    22 Varenne S, Baty D, Verheij H, Shire D, Lazdunski C. The maximum rate of gene expression is dependent in the downstream context of unfavourable codons[J]. Biochimie,1989, Vol.71(11-12):1221-1229.
    23 Lin T P. Microinjection of mouse eggs [J]. Science,1966, Vol.151 (3708):333.
    24 Gordon J W, Scangos G A, Plotkin D J, Barbosa J A, Ruddle F H. Genetic transformation of mouse embryos by microinjection of purified DNA[J]. Proceedings of the National Academy of Sciences,1980, Vol.77 (12):7380-7384.
    25 Palmiter R D, Brinster R L, Hammer R E, Trumbauer M E, Rosenfeld M G, Birnberg N C et al. Dramatic growth of mice that develop from eggs microinjected with metallothionein growth hormone fusion genes [J].Nature,1982 vol.300(5893):611-615.
    26 Wang Y A, Zheng J W, Fei Z L, Jiang X Q, Wang Z G, Fei J et al. A novel transgenic mice model for venous malformation[J]. Transgenic Research,2009, Vol.18(2):193-201.
    27 Hammer R E, Pursel V G, Rexroad C E, Wall R J, Bolt D J, Ebert K M et al. Production of transgenic rabbits, sheep and pigs by microinjection[J]. Nature. 1985, vol.315:680 683.
    28 Krimpenfort P, Rademakers A, Eyestone W, van der Schans A, van den Broek S, Kooiman P et al. Generation of transgenic dairy cattle using'in vitro'embryo product ion [J]. Nature Biotechnology,1991, Vol.9 (9):844-847.
    29 Nottle M B, Haskard K, Verma P, Du Z, Grupen C, McIlfatrick S et al. Effect of DNA concentration on transgenesis rates in mice and pigs[J]. Transgenic Research,2001, Vol.10 (6):523-531.
    30 Keefer C. Production of bioproducts through the use of transgenic animal models[J]. Animal Reproduction Science,2004, Vol.82:5-12.
    31 Clark A, Bissinger P, Bullock D, Damak S, Wallace R, Whiteiaw C et al. Chromosomal position effects and the modulation of transgene expression[J]. Reproduction, fertility and development,1994, Vol.6 (5):589-598.
    32 Jaenisch R, Fan H, Croker B. Infection of preimplantation mouse embryos and of newborn mice with leukemia virus:tissue distribution of viral DNA and RNA and leukemogenesis in the adult animal[J]. Proceedings of the National Academy of Sciences,1975, Vol.72 (10):4008-4012.
    33 Jaenisch R. Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus[J]. Proceedings of the National Academy of Sciences, 1976, Vol.73(4):1260-1264.
    34 Chan A W S, Homan E J, Ballou L U, Burns J C, Bremel R D. Transgenic cattle produced by reverse-transcribed gene transfer in oocytes[J]. Proceedings of the National Academy of Sciences,1998, Vol.95 (24):14028-14033.
    35 Ryu B Y, Orwig K E, Oat ley J M, Lin C C, Chang L J, Avarbock M R et al. Efficient generation of transgenic rats through the male germline using lentiviral transduction and transplantation of spermatogonial stem cells[J]. Journal of andrology,2007, Vol.28(2):353-360.
    36 Jahner D, Jaenisch R. Retrovirus-induced de novo methylation of flanking host sequences correlates with gene inactivity[J]. Nature,1985, vol.315:594-597.
    37 Hofmann A, Kessler B, Ewerling S, Kabermann A, Brem G, Wolf E et al. Epigenetic regulation of lentiviral transgene vectors in a large animal model[J]. Molecular Therapy,2006, Vol.13 (1):59-66.
    38 Melo E 0, Canavessi A M 0, Franco M M, Rumpf R. Animal transgenesis:state of the art and applications[J]. Journal of Applied Genetics,2007, Vol.48(1):47-61.
    39 Chalberg T W, Vankov A, Molnar F E, Butterwick A F, Huie P, Calos MP et al. Gene transfer to rabbit ret'ina with electron avalanche transfection[J]. Investigative ophthalmology & visual science,2006, Vol.47 (9):4083-4090.
    40 Schwenk F, Zevnik B, Bruning J, Rohl M, Willuweit A, Rode A et al. Hybrid embryonic stem cell-derived tetraploid mice show apparently normal morphological, physiological, and neurological characteristics [J]. Mol Cell Biol,2003, Vol.23(11):3982-3989.
    41 Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C et al. Generation of pig induced pluripotent stem cells with a drug-inducible system[J]. Journal of Molecular Cell Biology,2009, Vol.1(1):46-54.
    42 Brown W R A, Mee P J, Hong Shen M. Artificial chromosomes:ideal vectors[J]. Trends in Biotechnology,2000, Vol.18(5):218-223.
    43 Vos J M H. The simplicity of complex MACs [J]. Nature Biotechnology,1997, Vol.15(12):1257-1259.
    44 Perez C, de Jong G. Satellite DNA-based artificial chromosomes--chromosomal vectors [J]. Trends in Biotechnology,2000, Vol.18 (10):402-403.
    45 Schedl A, Montoliu L, Kelsey G, Schutz G. A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice[J]. Nature,1993, Vol.362(6417):258-261.
    46 Yang P, Wang J, Gong G, Sun X, Zhang R, Du Z et al. Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin[J]. PLoS ONE,2008, Vol.3 (10):e3453.
    47 李碧春, 孙国波, 孙怀昌, 徐琪, 高波, 周冠月et al.体内外精原干细胞介导大群生产转基因鸡[J].中国科学:C辑,2008, Vol.38(007):626-634.
    48 Yang S Y, Wang J G, Cui H X, Sun S G, Li Q, Gu L et al. Efficient generation of transgenic mice by direct intraovarian injection of plasmid DNA[J]. Biochemical and Biophysical Research Communications,2007, Vol.358 (1):266-271.
    49 Honaramooz A, Behboodi E, Blash S, Megee S O, Dobrinski I. Germ cell transplantation in goats[J]. Molecular Reproduction and Development,2003, Vol.64 (4):422-428.
    50 Honaramooz A, Megee S O, Dobrinski I. Germ cell transplantation in pigs[J]. Biology of Reproduction,2002, Vol.66 (1):21-28.
    51 Garcia-Vazquez F, Garcia-Rosello E, Gutierrez-Adan A, Gadea J. Effect of sperm treatment on efficiency of EGFP-expressing porcine embryos produced by ICSI-SMGT[J]. Theriogenology,2009, Vol.72(4):506-518.
    52 Carballada R, Degefa T, Esponda P. Transfection of mouse eggs and embryos using DNA combined to cationic liposomes[J]. Molecular Reproduction and Development, 2000, Vol.56 (3):360-365.
    53 Rieth A, Pothier F, Sirard M A. Electroporation of bovine spermatozoa to carry DNA containing highly repetit ive sequences into oocytes and detection of homologous recombination events[J]. Molecular Reproduction and Development,2000, Vol.57(4):338-345.
    54 Pinkert C A, Trounce I A. Production of transmitochondrial mice[J]. Methods, 2002, Vol.26 (4):348-357.
    55 McCreath K, Howcroft J, Campbell K, Colman A, Schnieke A, Kind A. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells [J]. Nature, 2000, Vol.405 (6790):1066-1069.
    56 Clark A, Bissinger P, Bullock D, Damak S, Wallace R, Whitelaw C et al. Chromosomal position effects and the modulation of transgene expression[J]. Reproduction, fertility and development,1994, Vol.6 (5):589-598.
    57 Thomas K R, Folger K R, Capecchi M R. High frequency targeting of genes to specific sites in the mammalian genome[J]. Cell,1986, Vol.44 (3):419-428.
    58 Brenneman M, Gimble F S, Wilson J H. Stimulation of intrachromosomal homologous recombination in human cells by electroporation with site-specific endonucleases[J]. Proceedings of the National Academy of Sciences,1996, Vol.93 (8):3608-3612.
    59 Smih F, Rouet P, Romanienko P J, Jasin M. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells [J]. Nucleic Acids Research, 1995, Vol.23(24):5012-5019.
    60 Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver R C et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases[J]. Nature Biotechnology,2009, Vol.27(9):851-857.
    61 Miller J C, Holmes M C, Wang J, Guschin D Y, Lee Y L, Rupniewski I et al. An improved zinc-finger nuclease architecture for highly specific genome editing[J]. Nature Biotechnology,2007, Vol.25 (7):778-785.
    62 Slotkin R K, Martienssen R. Transposable elements and the epigenetic regulation of the genome[J]. Nature Reviews Genetics,2007, Vol.8(4):272-285.
    63 Ivics Z, Hackett P B, Plasterk R H, Izsvak Z. Molecular reconstruction of Sleeping Beauty, a Tcl-like transposon from fish, and its transposition in human cells[J]. Cell,1997, Vol.91(4):501-510.
    64 Izsvak Z, Ivics Z, Plasterk R H. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebratesl[J]. Journal of Molecular Biology,2000, Vol.302(1):93-102.
    65 Miller J C, Tan S, Qiao G, Barlow K A, Wang J, Xia D F et al. A TALE nuclease architecture for efficient genome editing[J]. Nature Biotechnology,2010, Vol.29(2):143-148.
    66 Zhang F, Cong L, Lodato S, Kosuri S, Church G M, Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription[J]. Nature Biotechnology,2011, Vol.29 (2):149-153.
    67 Jenness R. Inter-species comparison of milk proteins[M]. Developments in dairy chemistry,1982, Vol.1:87-114.
    68 Pervaiz S, Brew K. Homology of beta-lactoglobulin, serum retinol-binding protein, and protein HC[J]. Science,1985, Vol.228(4697):335-337.
    69 Hayes H C, Petit E J. Mapping of the β-lactoglobulin gene and of an immunoglobul in M heavy chain-like sequence to homoeologous cattle, sheep, and goat chromosomes[J]. Mammalian Genome,1993, Vol.4 (4):207-210.
    70 Folch J M, Coll A, Sanchez A. Cloning and sequencing of the cDNA encoding goat beta-lactoglobulin[J]. Journal of Animal Science,1993, Vol.71 (10):2832-2836.
    71 Watson C J, Gordon K E, Robertson M, Clark A J. Interaction of DNA-binding proteins with a milk protein gene promoter in vitro:identification of a mammary gland-specific factor[J]. Nucleic Acids Research,1991, Vol.19(23):6603-6610.
    72 Whitelaw C B A, Grolli S, Accornero P, Donofrio G, Farini E, Webster J. Matrix attachment region regulates basal [beta]-lactoglobul in transgene expression[J]. Gene,2000, Vol.244 (1-2):73-80.
    73 Wright G, Carver A, Cottom D, Reeves D, Scott A, Simons P et al. High level express ion of act ive human alpha-1-ant i trypsin in the milk of trans genic sheep[J]. Nature Biotechnology,1991, Vol.9(9):830-834.
    74 Dalrymple M A, Garner I. Genetically modified livestock for the production of human proteins in milk[J]. Biotechnology & genetic engineering reviews,1998, Vol.15:33-49.
    75 Chen H X, Chen X, Yang X, Deng J, Su G, Huang P. The expression of tPA directed by the bovine BLG regulatory elements in the mammary gland of transgenic mice] [J]. Sheng wu gong cheng xue bao= Chinese journal of biotechnology,2001, Vol.17(2):135-139.
    76 Hyttinen J M, Korhonen V P, Janne J:Method for the production of biologically active polypeptides in a mammal's. In.:Google Patents; 1999.
    77杨国庆, 戴蕴平, 朱宝利.牛BLG基因5'调控成分的克隆和制备乳腺生物反应器研究[J].中国科学(C辑),1996,Vol.26(5):463-469.
    78 Houdebine L M. Production of pharmaceutical proteins by transgenic animals[J]. Comparative immunology, microbiology and infectious diseases,2009, Vol.32(2):107-121.
    79 臧莹安, 王喜军.转基因产品的潜在风险及预防对策[J].家畜生态,2002,Vol.23(002):5-6.
    80袁建民, 胡建宏, 李青旺, 贾永红, 王立强.动物乳腺生物反应器研究进展[J].中国农学通报,2006, Vol.22(3):20-24.
    81 Krimpenfort P, Rademakers A, Eyestone W, van der Schans A, van den Broek S, Kooiman P et al. Generation of transgenic dairy cattle using 'in vitro' embryo production [J]. Nature Biotechnology,1991, Vol.9 (9):844-847.
    82 Van Berkel P H C, Welling M M, Geerts M, van Veen H A, Ravensbergen B, Salaheddine M et al. Large, scale production of recombinant human lactoferrin in the milk of transgenic cows[J]. Nature Biotechnology,2002, Vol.20(5):484-487.
    83 Stinnakre M, Vilotte J, Soulier S, Mercier J. Creation and phenotypic analysis of alpha-lactalbumin-deficient mice[J]. Proceedings of the National Academy of Sciences,1994, Vol.91 (14):6544-6548.
    84 Jost B, Vilotte J L, Duluc I, Rodeau J L, Freund J N. Production of low-lactose milk by ectopic expression of intestinal lactase in the mouse mammary gland[J]. Nature Biotechnology,1999, Vol.17(2):160-164.
    85 Bleck G T, White B R, Miller D J, Wheeler M B. Production of bovine alpha-lactalbumin in the milk of transgenic pigs[J]. Journal of Animal Science, 1998, Vol.76(12):3072-3078.
    86 Brophy B, Smolenski G, Wheeler T, Wells D, L'Huillier P, Laible G. Cloned transgenic cattle produce milk with higher levels of bold beta-casein and kappa-casein[J]. Nature Biotechnology,2003, Vol.21:157-162.
    87 Reh W, Maga E, Collette N, Moyer A, Conrad-Brink J, Taylor S et al. Using a Stearoyl-CoA Desaturase Transgene to Alter Milk Fatty Acid Composition [J]. Journal of Dairy Science,2004, Vol.87(10):3510-3514.
    88 Maga E, Shoemaker C, Rowe J, BonDurant R, Anderson G, Murray J. Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland [J]. Journal of Dairy Science,2006, Vol.89 (2):518-524.
    89 Baranyi M, Hiripi L, Szabo L, Catunda A P, Harsanyi I, Komaromy P et al. Isolation and some effects of functional, low-phenylalanine [kappa]-casein expressed in the milk of transgenic rabbits [J]. J Biotechnol,2007, Vol.128(2):383-392.
    90 Yuskevich V, Khodarovich Y, Kagarliskiy G, Stremovskiy O, Maksimenko O, Lukash S et al. Expression of humanized anti-Her2/neu single-chain IgGl-like antibody in mammary glands of transgenic mice[J]. Biochimie,2011, Vol.93(3):628-630.
    91 He Z, Zhao Y, Mei G, Li N, Chen Y. Could protein tertiary structure influence mammary transgene expression more than tissue specific codon usage? [J]. Transgenic Research,2010, Vol.19 (4):519-533.
    92孙怀昌, 陈刚, 张磊, 宋红芹, 施伟庆.动物乳腺特异表达载体的构建及其表达特性研究[J].江苏农学院学报,2004, Vol.24(4):1-4.
    93 刘振江, 王跃嗣.乳腺生物反应器表达载体和转基因方法的研究概况[J].上海畜牧兽医通讯,2004, (1):16-18.
    94蒋小玲, 张红梅, 徐六妹, 王火生, 乐晓华, 李丽雄et al.乳腺生物反应器特异调控序列的构建[J].中国生物制品学杂志,2006, Vol.19(003):275-277.
    95 管晓斌, 李春笑, 赖松家.用牛αS1-酪蛋白基因构建乳腺生物反应器表达载体的研究[J].安徽农业科学,2006,Vol.34(23):6140-6141.
    96 Huang Z, Yan J B, Huang Y, Sun Q, Xiao Y P, Zeng Y. High expression of human FIX (hFIX) in transgenic mice directed by goat beta-casein gene promoter][J]. Yi chuan xue bao= Acta genetica Sinica,2002, Vol.29(3):206-211.
    97 Maga E A, Murray J D. Mammary gland expression of transgenes and the potential for altering the properties of milk[J]. Nature Biotechnology,1995 Vol.13(12):1452-1457.
    98 严华, 李国才, 孙怀昌.转人溶菌酶基因小鼠乳腺生物反应器的建立[J].中华医学遗传学杂志,2005,Vol.22(005):541-544.
    99 Maga E A, Walker R L, Anderson C B, Murray J D. Consumption of milk from transgenic goats expressing human lysozyme in the mammary gland results in the modulation of intestinal microflora[J]. Transgenic Research,2006, Vol.15(4):515-519.
    100 Maga E, Shoemaker C, Rowe J, BonDurant R, Anderson G, Murray J. Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland[J]. Journal of Dairy Science,2006, Vol.89 (2):518-524.
    101 Robert FW. Molecular Biology[M].2nd ed. Beijing, China:Science Press,2002, 747-761.
    102 McClintock B. The origin and behavior of mutable loci in maize [J]. Proceedings Of The National Academy Of Sciences Of The United States Of America,1950, Vol.36(6):344-355.
    103黄春, 张万江.转座子及其相关技术的研究[J].世界华人消化杂志,2006,Vol.14(17):1714-1720.
    104 Miskey C, Izsvak Z, Plasterk R H, Ivics Z. The Frog Prince:a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells[J]. Nucleic Acids Research,2003, Vol.31 (23):6873-6881.
    105 Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T. Efficient Transposition of the piggyBac (PB) Transposon in Mammalian Cells and Mice[J]. Cell,2005, Vol.122 (3):473-483.
    106 Mather C, Sherman A, Dawson A, Gilhooley H, Li Y, Mitchell R et al. The mariner transposable element:a potential vector for improved integration of transgenes into the chicken genome[J]. British Poultry Science,2000, Vol.41 (S1):27-28.
    107 Fadool J M, Hart1 D L, Dowling J E. Transposition of the mariner element from Drosophila mauritiana in zebrafish[J]. Proceedings of the National Academy of Sciences,1998, Vol.95(9):5182-5187.
    108 Carr M. Multiple subfamilies of mariner transposable elements are present in stalk-eyed flies (Diptera:Diopsidae) [J]. Genetica,2008, Vol.132(2):113-122.
    109 Yephremov A, Saedler H. Display and isolation of transposon flanking sequences starting from genomic DNA or RNA[J]. The Plant Journal,2000, Vol.21 (5):495-505.
    110唐益苗, 马有志.植物反转录转座子及其在功能基因组学中的应用[J].植物遗传资源学报,2005, Vol.6(2):221-225.
    111 Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A. IRAP and REMAP:two new retrotransposon-based DNA,fingerprint ing techniques [J]. TAG Theoretical and Applied Genetics,1999, Vol.98(5):704-711.
    112 Va A, Houwelingen N, Souer E, Spelt K, Kloos D, Mol J et al. Analys is of flower pigmentation mutants generated by random transposon mutagenesis inPetunia hybrida[J]. The Plant Journal,1998, Vol.13(1):39-50.
    113 Edwards D, Coghill J, Batley J, Holdsworth M, Edwards K. Amplification and detection of transposon insertion flanking sequences using fluorescent MuAFLP[J]. Biotechniques,2002, Vol.32 (5):1090-1097.
    114 Lauf U, Muller C, Herrmann H. The transposable elements resident on the plasmids of Pseudomonas putida strain H, Tn 5501 and Tn 5502, are cryptic transposons of the Tn 3 family[J]. Molecular and General Genetics MGG,1998 Vol.259 (6):674-678.
    115 Dupuy A J, Clark K, Carlson C M, Fritz S, Davidson A E, Markley K M et al. Mammalian germ-line transgenesis by transposition[J]. Proceedings of the National Academy of Sciences,2002, Vol.99(7):4495-4499.
    116 Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking[J]. Genomics,1995, Vol.25 (3):674-681.
    117 Sarkar A, Sim C, Hong Y, Hogan J, Fraser M, Robertson H et al. Molecular evolutionary analysis of the widespread piggyBac transposon family and related" domesticated" sequences[J]. Molecular Genetics and Genomics,2003 Vol.270(2):173-180.
    118 Handler* A M, McCombs S D, Fraser M J, Saul S H. The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly[J]. Proceedings of the National Academy of Sciences,1998 Vol.95(13):7520-7225.
    119 Thibault S T, Singer M A, Miyazaki W Y, Milash B, Dompe N A, Singh C M et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac[J]. Nature genetics,2004, Vol.36(3):283-287.
    120 She Q, Singh RK, et al[J]. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci,2001,98 (14):7835-7840.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700