新疆陆地棉抗病、高产等育种目标性状QTL标记及定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆具有适宜棉花种植得天独厚的自然生态条件。新疆“矮密早”栽培技术,促进了新疆棉花生产的迅速发展。近十年来,新疆棉花种植面积、单产、总产已位居全国各产棉省之首,目前已成为国家重要的棉花产区。棉花枯萎病(Fusarium oxysporum)和黄萎病(Verticillium dahliae kleb)是世界性的主要棉花病害。新疆棉花枯黄萎病发生已久,严重威胁了新疆棉花生产,而其自育的大部分品种又不抗枯黄萎病,如何提高新疆棉花抗病性乃当务之急。传统育种多依赖于形态学标记(如株高、穗形、粒色、芽黄和花色素等),随着科学的发展,育种家开始在细胞学、生理生化和DNA等水平上寻找与育种目标性状紧密连锁的遗传标记,以便对目标性状进行追踪选择。
     本研究选用目前由新疆广泛种植的陆地棉品种构建的F_2群体进行QTL定位研究,以期在新疆“矮密早”栽培技术条件下筛选出一些与棉花抗病、产量构成及株型相关QTL,有助于今后新疆棉花分子标记辅助育种效率的提高。
     一、基于EST-SSR标记的新疆陆地棉遗传多样性研究
     利用EST-SSR标记对新疆近30年来种植的陆地棉品种进行了遗传多样性研究。42个EST-SSRs对50个陆地棉的进行了基因型鉴定,共产生了91个多态性位点;50个陆地棉间的相关系数在0.11-0.83之间,研究表明50个陆地棉间有较高的遗传多样性,但新疆本地自育陆地棉品种的遗传多样性比较窄。聚类分析发现新疆自育品种大都包含前苏联棉花种质血统,并且与其系谱基本一致。结果证明来由EST开发的SSR标记可以用来估计陆地棉间的遗传多样性。
     二、新疆陆地棉黄萎病抗性QTL筛选及其定位
     高抗非落叶型黄萎病陆地棉品种“新陆中10”与高感非落叶型黄萎病陆地棉品种“军棉1号”、“新陆早7号”分别配制两个F_2作图群体;新陆中10号×军棉1号群体图谱含62个标记位点,覆盖棉花基因组593.6CM;新陆中10号×新陆早7号群体图谱,含有78个标记位点,连锁群总的长度830.2cM。两个作图群体F_(2:3)家系在黄萎病发病高峰期铃期和吐絮期共检测到8个黄萎病抗性QTLs,LOD均大于3。其中4个QTLs的抗性基因位点来自抗性母本,分别位于4个不同的染色体(Chr.5、Chr.15、Chr.20、Chr.25),另外4个QTLs的抗性基因位点来自感病亲本,位于Chr.9、Chr.13上。由此认为陆地棉对非落叶性黄萎病的抗性是多基因控制的。其中染色体13上共检测到3个QTLs,由于这3个QTLs均在标记NAU1211附近,它们可能为同一QTL。我们与已有报道均在Chr.5、Chr.15、Chr.9、Chr.13、Chr.20或同源区域定位到抗性相关QTLs。
     三、新疆主栽陆地棉枯萎病抗性QTL筛选与定位
     以高抗枯萎病品种与高感枯萎病品种构建了2个F_2陆地棉种内作图群体。利用新疆棉花枯萎病菌进行群体抗病鉴定,以F_(2:3)家系对枯萎病抗性来估计F_2单株抗病性。鉴定结果表明中棉所35号和军棉一号群体的F_(2:3)家系对枯萎病抗性鉴定表明抗感符合3:1分离,把棉株对枯萎病抗性做为显性标记进行连锁作图分析发现,枯萎病抗性基因与标记JESPR304的紧密连锁,距离为5.3 cM,利用本实验室饱和作图群体,将标记JESPR304(特征条带140bp)定位到D3(Chr.17)上。该群体F_(2:3)家系枯萎病抗性病指经转化成正态分布后,复合区间作图共测到与枯萎病抗性相关5个QTLs,分别位于4个不同的连锁群上(Chr.7、Chr.15、Chr.23、Chr.17)。其中两年均在Chr.17检测到枯萎病主效抗性QTL,与单侧标记JESPR304的距离为0.06-0.2cM,解释表型变异均大于50.0%。苏棉10号和长绒棉作图群体的84个SSR标记位点的单标记分析筛选到1个标记(JESPR304)和枯萎病抗性基因相关,该标记距离枯萎病抗性基因8.00 cM,解释表性变异19.9%。选用内地抗病品种和新疆本地感病品种进行验证JESPR304标记与抗性的相关性,96.6%内地抗病品种扩增出标记JESPR304抗性位点,而27%的新疆感病品种扩增出标记JESPR304抗性位点,表明标记JESPR304与品种抗性的相关性密切。初步确定JESPR304标记与抗枯萎病抗性基因紧密连锁。
     四、新疆陆地棉主栽品种产量性状QTL的标记与定位
     在新疆“矮密早”栽培技术体系下,上述3个作图群体的F_(2:3)家系共鉴定、筛选出皮棉产量以及单铃重、衣分、籽指、结铃数等5个产量构成因子QTLs 16个:其中与籽指有关的QTL共5个,分别位于Chr.1、Chr.5和Chr.7上;与衣分有关的QTL5个,分别位于Chr.7、Chr.13和连锁群6上;与铃重有关的QTL5个,在Chr.7上有4个、Chr.17上1个;与皮棉产量有关的QTL1个,位与Chr.17上。在Chr.7上共定位了9个包括单铃重、衣分和籽指在内的QTLs,由于单铃重、衣分和籽指等性状有明显的相关性,可以看出,它们的QTL在同一区域分布的现象很明显,这些同一区域分布的QTL可能会在今后新疆陆地棉标记辅助育种中起到一定作用。同时对没有分配到连锁群上的标记位点进行单标记分析,共检测出8个与产量性状相关的标记,解释的表型变异在5%-11%之间。我们在Chr.1、Chr.5染色体水平上的产量相关QTLs定位与前人研究相同,其余QTLs是在“矮密早”栽培条件下检测出的新QTLs。
     五、新疆陆地棉主栽品种形态性状QTL的标记与定位
     前述3个作图群体共鉴定、筛选出果枝始节、株高、叶主脉、叶次脉等15个稳定的QTLs:其中2个果枝始节QTL位于Chr.5和Chr.7上;3个株高QTL分别位于Chr.13、Chr.25和Chr.17上;筛选出叶主脉及叶次脉的QTL共10个,位于Chr.7、Chr.15、Chr.17、Chr.19、Chr.21、Chr.23和连锁群17、6上,解释表型变异在6.8%-24.4%之间。对没有分配到连锁群上的标记位点的单标记分析,在LOD值大于2的水平下,检测出9个与棉株形态性状相关的标记,其中与株高相关标记3个,另外6个标记与叶主脉及叶次脉相关。本研究定位在Chr.15、Chr.21、Chr.23、Chr.25上的棉株形态性状QTLs,在染色体水平上的定位与前人报道相同,其它QTL在染色体水平上(Chr.7、Chr.17、Chr.19)定位与前人研究不同,可能是新检测出的QTL。
As a major source of fibers,cotton is an important economic crop and plays an important role in the global economy.The technology of "short,dense and early"(short plant height,dense populations and earlier maturity) accelerated the development of Xinjiang cotton production.The cotton in Xinjiang covered about 20%of the total cotton area in China and contributes nearly about 33%to the national cotton yeild.Fusarium wilts and Verticillium wilts are the main diseases of cotton in the world.The incidence area of Fusarium wilt reached to 46 thousand hectare in 1995 according to the survey of the plant protection station in Xinjiang.At present,the majority of the varieties from nurtures in Xinjiang were not resistance to Fusarium wilt and Verticillium wilts.How to enhance the resistance of variety to disease has become the important factor for breeder.Selection breeding and planting cultivars of resistance to the disease were the most economical effective solution to the problem.As breeding a new cultivar through the traditional ways needed a long period,which didn't meet the stringent demand of production.Traditional selection breeding is more dependent on the phenotypic of crop.Phenotypic traits marker --plant height,grain color,shoot yellow,ears--have been taken important action in tradition breeding.
     In this study,the objective of this research is to screen the stable QTL related resistance and agronomic traits basing on different populations under the technology with "short,dense and early" and these QTLs will be used effectively for MAS during the process of breeding in the future.
     1、Genetic Diversity among Xinjiang Upland Cotton Cultivars Based on EST-SSR Markers
     The genetic diversity among Xinjiang 50 upland cotton cultivars was investigated based on EST-SSR.A total of 91 bands with polymorphism had been detected in these cultivars by screening the 42 EST-SSRs loci.Based on EST-SSR data,the coefficient of similarity among 50 upland cotton cultivars was calculated varying from 0.11 to 0.83.It was indicated that the more genetic diversity among those cultivars was presented,while genetic diversity in same origin in Xinjiang had been narrowed.The 50 cultivars can be divided into two subgroups based on the coefficient of similarity,and most of the tested cultivars were consistent with their pedigree.It was testified that EST-SSR markers derived directly in transcribed:regions of the genome,provide a more-direct estimate of genetic diversity of cotton cultivars.
     2、QTL Mapping of Genes Resistant to Verticillium Wilt In Xinjiang Upland Cotton
     Two molecular mapping F_2 populations were derived from the intraspecific cross of the highly tolerant G.hirsutum cv.(Xinluzhong10) and the susceptible G.hirsutum cv. (Junmianland Xinluzhao7).A total of 5400 simple sequence repeat(SSR) primer pairs were screened over resistant and susceptible parents.The first map comprises 62 loci mapped to 15 linkage groups covering 593.6 cM of the genome.The second genetic map comprises 78 loci mapped to 20 linkage groups covering 830.2 cM of the cotton genome. The two mapping F_2 population were used to analyze quantitative disease-related trait loci (QTLs).The two mapping F_(2:3) families were phenotyped with a non-defoliating V.dahliae. A total of 8 QTLs across two populations and two disease development periods were detected by Composite Interval Mapping(CIM).Four QTLs of resistance to V.wilt were detected on four linkage groups and explained 59.1%,63.5%,13.6%and 26.9%of the phenotypic variance with LOD>3 respectively.The other four QTLs were detected on two linkage groups,with LOD peaks ranging from 2.6 to 21 and explained 7.3%,56.9%,32.7%, and 7.18%of the phenotypic variance.This might mean that the resistance of V.wilts was controlled by polygene.Three QTLs located on the position of chromosomes 13,which is nearer the marker NAU1211,had large effect,it might be the same QTLs.In comparison with previously published data,some QTLs related to V.wilt localized on the five chromosomes(Chr.5,Chr.9,Chr.13,Chr.15 and Chr.20) were localized in similar regions or homeologous regions as previously reported QTLs.Those QTLs can be used effectively for MAS during the process of breeding in the future.
     3、Mapping of Genes Resistant to Fusarium Wilt of Upland Cotton in Xinjiang
     Fusarium wilt is a serious disease in most cotton growing areas of the world.The identification of resistance genes is critical for developing sound breeding strategies.In this study a genetic linkage map was constructed using 173 F_2 individuals developed by acrossing two elite lines of Upland cotton(Zhongmiansuo35 and Junmian1) as parents.The maps with 75 loci were covered 743.1cM length of the cotton genome.Phenotype of F_2 population to disease-related trait was evaluated by Phenotype of F_(2:3) families.In the assessment of individual phenotype of disease resistance as dominant marker,the gene of resistance to Fusarium wilt were located on Chr.17 groups by linkage map analysis using bridge markers.In 2004 a new genetic linkage map was constructed by acrossing the same two elite lines of Upland cotton.The result still suggested that one major QTL with the resistance to Fusarium wilt were tightly linked to JESPR304.Another genetic linkage map was constructed using 160 F_2 individuals developed by acrossing two elite cultivars of Upland cotton,"Changrong",highly sensitive to wilt and "Sumian10",highly resistant to wilt.One major gene detected with resistance to Fusarium wilt was tightly linked to JESPR304 with 0.80cM genetic interval distance and explained the phenotypic variance of 19.9%.In order to detect the degree of linkage between the resistance gene and JESPR304, 40 susceptible Upland cotton cultivars and 86 resistant Upland cotton cultivars were screened using JESPR304.The results showed there is intensely linkage between the resistance gene and JESPR304.Using composite Interval Mapping method a total of five QTLs resistant to Fusarium wilt were detected on four linkage groups(Chr.7、Chr.15、Chr.23、Chr.17) in Zhongmiansuo35 and Junmian1 population.One major QTL with resistance to Fusarium wilt showed to be tightly linked to JESPR304 with 0.06 to 0.2cM genetic interval distance,and it explained over 50%of the phenotypic variance.The gene /QTL will be of great significance in breeding and molecular marker-assisted selection.
     4、QTL Mapping of Yield Components for Main Cultivars Planted of Upland Cotton in XinJiang
     We used three above-mentioned molecular linkage maps for characterizing quantitative trait loci(QTLs) determining yields related traits of cotton which can provide DNA molecular markers to be used in cotton improvement.The three molecular linkage maps shared same 22 pairs of SSR primers,covered all of the cotton genome except chromosome 2 and chromosome 26.Under Xinjiang "short,dense and early" planted condition,16 possible QTLs of yield related traits(Lint yield,Lint percentage,Boll size, Seed index) were suggested with LOD>2.0.Five seed index QTLs were located on chromosome1,5 and 7;Five lint percentage QTLs were located on chromosome7,13 and LG6;Five boll size QTLs were located on chromosome7,17;One lint yield QTL were located on chromosome17.As nine correlated QTLs of boll size,seed index and lint percentage were located on chromosome7,it was clearly that these QTLs were distributed on same or neighbor position and would play important significances on breeding.All of unlinkaged markers of the three maps were surveyed using single marker analysis method and 8 marker related to yield traits were suggested with LOD>2.0.In comparison with previously published data,the seed index QTL were assigned to the chromosomes Chr.1 andCh r.5in this paper were the same as previously published reports.The rest QTL on the level chromosomes(Chr.7,Chr.13) were different from previously published reports.
     5、QTL Mapping of some Plant Morphological Traits for Main Cultivars of Upland Cotton Planted in XinJiang
     We used the above-mentioned molecular linkage maps for characterizing quantitative trait loci(QTLs) determining cotton morphological traits.Under Xinjiang "short,dense and early" experiment condition,four morphological traits—plant height,the first Fruit nodes, main-lobe length(L1),second-lobe length(L2)—were studied,15 possible QTLs/loci which had LOD>2.5 were suggested.Two first Fruit nodes QTLs were identified on Chr.5 and Chr.7.Three plato height QTLs were located on Chr.13、Chr.25 and Chr.17,and two of its alleles were originated from the male parent.Ten QTLs of main-lobe length(L1) and second-lobe length(L2) were located on Chr.7,Chr.15,Chr.19,Chr.21,Chr.23,LG6, LG17 and Chr.17.All of unlinked markers of the three maping population were surveyed using single marker analysis method and 9 markers related to morphological traits were detected with LOD>2.0.Three markers were related to yield traits and 6 markers to main-lobe length(L1) and second-lobe length(L2) explained about 5.2-8.0%of the phenotypic variance.In comparison with previously published data,the QTLs assigned to specific chromosomes(Chr.15、Chr.21、Chr.23、Chr.25) in this paper were the same as previously published reports.In addition,we also found the rest QTLs were different from previously published reports on the chromosomes level(Chr.7、Chr.17、Chr.19).
引文
1.别墅,孔繁玲,周有耀,张光梅,张群远,王孝纲.中国3大主产棉区棉花品种遗传多样性的RAPID及其农艺性状关系的研究[J].中国农业科学,2001,34(6):597-603.
    2.楚鹰,纤维发育相关基因的SNP研究与棉花蔗糖合酶基因片段的克隆及表达分析[D].南京农业大学硕士学位论文.2004.
    3.陈爱民,胡保民,王沛政.新疆特定生态条件下陆地棉数量性状遗传参数的研究[J].新疆农业大学学报,2001,24(1):21-27
    4.包劲松,何平,夏英武,陈英,朱立煌.不同发育阶段水稻苗高的QTL分析[J].遗传,1999,21(5):38-40.
    5.戴君惕.作物分子数量遗传学研究现状与应用前景[J].作物研究,1996,10(1):39-42.
    6.陈其瑛,孙文姬.我国棉花枯萎镰刀菌种的研究[J].中国农业科学,1992,25(3):1-9.
    7.杜威世,杜雄明,马峙英.棉花黄萎病抗性基因SSR标记研究[J].西北农林科技大学学报,2004,32(3):20-24.
    8.杜威世,杜雄明,马峙英.棉花黄萎病抗性遗传和分子生物学研究进展[J].棉花学报,2002,14(5):311-317.
    9.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].科学出版社,2002,2-21.
    10.房卫平,许守明,孙玉堂,唐中杰,王家典.棉花抗黄萎病的RAPD标记[J].河南农业科学,2001,(9):11-13.
    11.房卫平,王家典,孙玉堂,马惠平.我国棉花抗黄萎病研究进展与高抗黄萎病新种质[J].河南农业科学,1998,(1):7-9.
    12.范术丽,喻树迅,宋美珍,原日红.短季棉早熟性的分子标记及QTL定位[J].棉花学报,2006,18(3):135-139.
    13.冯纯大,张金发,刘金兰,郭介华,吴征彬,孙济中.陆地棉枯萎病抗性基因的等位性测定及连锁分析[J].遗传,1998,20(1):33-36.
    14.冯纯大,张金发,刘金兰等.我国几个陆地棉品种枯萎病抗性的遗传分析[J].作物学报,1996,22(5):550-554.
    15.韩祥铭,刘英欣.陆地棉枯萎病抗性的遗传研究[J].棉花学报,2001,13(3):170-173.
    16.薄天岳,叶华智,李晓兵,朱立煌.亚麻抗枯萎病基因FuJ7(t)的分子标记[J].中国农业科学,2003,36(3):287-291.
    17.丁之锉,孙文姬.我国棉枯萎镰刀菌小种间营养亲和性[J].棉花学报,1992,4(2):85-91.
    18.冯纯大,张金发,刘金兰等.我国抗枯萎病棉花品种(系)的系谱分析[J].棉花学报,1996,8(2):65-70.
    19.高玉千,聂以春,张献龙.棉花抗黄萎病基因的QTL定位[J].棉花学报,2003,15(2):73-78.
    20.郭旺珍,张天真,潘家驹,王心宇.我国陆地棉品种的遗传多样性研究初报[J].棉花学报,1997,9(5):242-247.
    21.顾本康,马存.中国棉花抗病育种.江苏科学出版社,1996.
    22.胡保民.新疆棉花资源优势分析[J].新疆农业大学学报,2002,25(3):87-90.
    23.何慈信,朱军,严菊强,Gbenmou SSA M,吴平.水稻穗干物质重发育动态的QTL定位[J].中国水稻科学,2000,14:193-198.
    24.何小红,徐辰武,蒯建敏,顾世梁.水韬数量性状基因作图精度的主要影响因子[J].作物学报,2001,27(4):469-475.
    25.何风华.水稻QTL分析的研究进展[J].西北植物学报.2004,24(11):2163-2169,
    26.惠大丰,姜长鉴,莫惠栋.数性状基因图谱构建方法的比较[J].作物学报,1997.23(2):129-136
    27.校百才,景忆莲,刘耀斌,范万发.陆地棉抗黄萎病性状遗传的初步研究[J].西北农业学报,1998,7(2):55-58.
    28.校百才.陆地棉枯萎病抗性的遗传研究.西北农业学报,1992.1(1):41-46
    29.李延军.中国棉花黄萎病菌营养体亲和性的研究[C].棉花病虫害综合防治及研究进展.北京:中国农业科技出版社,1990:235-241.
    30.李永山,唐秉海,张凯,王晓璐,李江辉,谢光兰.不同年代棉花品种产量构成、纤维品质及其系谱分析[J].棉花学报,2001,13(1):16-19
    31.李蒙春.新疆棉花高产生理机理研究[J].新疆农业大学学报,1999,22(1):1-8.
    32.李保成,余渝.北疆棉区棉花生产现状[J].新疆农业大学学报.2004,27(增刊)6-9.
    33.陆家云,佘长夫,鞠理红,方中达.江苏省棉花黄萎病菌致病力分化[J].南京农学院学报,1983,(1):36-43.
    34.陆朝福,朱立煌.植物育种中的分子标记辅助选择[J].生物工程进展,1995,15(4):11-15.
    35.林忠旭,张献龙,聂以春,贺道华,吴茂清.棉花SRAP遗传连锁图构建[J].科学通报,2003,48(15):1676-1679.
    36.柳李旺,朱协飞,郭旺珍,张天真.分子标记辅助选择聚合棉花Rf1育性恢复基因和抗虫Bt 基因[J].分子植物育种,2003,1(1):48-52.
    37.马峙英.河北棉花黄萎病菌分化和棉花抗性遗传研究[D].华中农业大学博士学位论文,1997.
    38.马存,陈其焕.我国棉花抗枯黄萎病育种研究进展[J].中国农业科学,1992,25(1):30-37.
    39.马存,孙文姬,石磊岩.三大棉种对棉花主要病害抗性研究[J].植物保护学报,1992,19(1):81-85.
    40.毛传澡,程式华.水稻农艺性状QTL定位精确性及其影响因素的分析(综述)[J].农业生物技术学报,1999,7(4):386-390.
    41.莫惠栋.数量性状遗传基础研究的回顾与思考——后基因组时代数量遗传领域的挑战[J].扬州大学学报,2003,24(2):24-31.
    42.倪西源.棉花DNA分子标记图谱的构建及重要性状基因的定位[D].浙江大学硕士论文,200411-24.
    43.潘家驹,张天真,蒯本科,郭小平,王谥.棉花黄萎病抗性遗传[J].南京农业大学学报,1994,17(3):8-18.
    44.任爱霞,胡家恕,祝水金,季道藩.棉花黄萎病抗性与过氧化物酶同工酶分析[J].棉花学报,2002,14(5):273-276.
    45.任立华,郭旺珍,张天真.利用置换系检测棉花第16染色体的产量、纤维品质QTLs[J].植物学报,2002,44(7):815-820.
    46.齐俊生,马存,赵良忠,刘素恩.海岛棉品种抗黄萎病遗传规律初步研究[J].棉花学报,2000,12(4):169-171.
    47.沈金雄,易斌,傅廷栋,杨光圣.植物数量性状基因定位研究概述[J].植物学通报,2003,20(3):257-263.
    48.孙文姬,陈其煐,王立阳,陈剑波.棉枯萎镰刀菌血清学初步研究[J].植物保护,1990,16(增刊):2-6.
    49.史大刚,田逢秀,宋天风,徐孝华.棉花枯萎镰刀菌生理Ⅰ型菌系异核现象研究[J].植物病理学报,1991,21(2):145-150.
    50.沈其益.棉花病害—基础研究与防治.科学出版社,1992,128-151.
    51.石磊岩,冯洁,王莉梅,简桂良.北方棉区棉花黄萎病菌生理分化类型研究[J].棉花学报,1997,9(5):273-280.
    52.石磊岩.中国棉花枯、黄萎病病原菌研究[J].棉花学报,1996,8(6):292-294.
    53.谭永久,蔡应繁,邓李果.陆地棉黄萎病抗性遗传及利用[J].中国棉花,1991,(1):10-12.
    54.谭彩霞,纪雪梅,杨勇.水稻回交世代中两个抗纹枯病主效数量基因的鉴定与标记辅助选择[J].遗传学报,2005,32(4):399-405
    55.王振山.棉花抗枯、黄萎病的基因效应分析[J].河北农业大学学报,1989,12(2):21-25.
    56.王心宇,郭旺珍,张天真,潘家驹.我国短季棉品种的RAPD指纹图谱分析[J].作物学报,1997,23(6):668-676.
    57.王林生,宋忠利,李毓珍,马晓玉.植物数量性状的QTL定位分析[J].安徽农业科学,2006,34(18):4527-4529
    58.王省芬,马峙英,张桂寅,李喜焕,李瑞奇,李爱丽.我国棉花抗枯、黄萎病骨干品种(系)基于AFLP的遗传多样性[J].棉花学报,2005,17(1):23-28.
    59.王远.对棉花抗枯、黄萎病品种选育的几点认识[J].作物学报,1980,6(1):27-34.
    60.王红梅,张献龙,贺道华,林忠旭,聂以春,李运海,陈伟.陆地棉对黄萎病抗性的分子标记研究[J].植物病理学报,2005,35(4):333-339.
    61.汪业春.分子标记对棉花多目标性状的选择效果及黄萎病抗性QTLs的筛选[D].2003,南京农业大学硕士论文.
    62.江树业.水稻突变群体的构建及功能基因组学[J].分子植物育种,2003,1(2):137-150
    63.武耀廷,殷剑美,张天真.利用分子标记和形态学性状检测的陆地棉栽培品种遗传多样性[J].遗传学报,2001,28(11):1040-1050.
    64.吴征彬,贺青,陈鹏.棉花枯、黄萎病的抗性筛选[J].作物学报,2002,28(5):713-717.
    65.吴为人,李维明,卢浩然.数量性状基因座的动态定位策略[J].生物数学学报,1997,12(5):494-495.
    66.吴金红,蒋江松,陈惠兰,王石平.水稻稻瘟病抗性基因Pi-2(t)的精细定位[J].作物学报,2002,28(4):505-509.
    67.吴茂清,张献龙,聂以春,贺道华.四倍体栽培棉种产量和纤维品质性状的QTL定位[J].遗传学报,2003,30(5):443-452.
    68.席章营,朱芬菊,台国琴,李志教.作物OTL分析的原理与方法[J].中国农业科学通报,2005,21(1):88-92.
    69.徐秋华,张献龙,聂以春,冯纯大.我国棉花抗枯萎病品种的遗传多样性分析[J].中国农业科学,2002,35(3):272-276.
    70.夏军红,郑用琏.玉米Rf-3近等基因系的分子标记辅助回交选育与效益分析[J].作物学报,2002,28(3):339-344.
    71.殷剑美,武耀廷,张军,张天真,郭旺珍,朱协飞.陆地棉产量性状QTLs的分子标记及定位[J].生物工程学报,2002,18(2):162-166.
    72.余四斌,李建雄,许才国.上位性效应是水稻杂种优势的重要遗传基础[J].中国科学,1998,28(4):333-341.
    73.余四斌,穆俊祥,赵胜杰,周红菊,谭友斌,徐才国,罗利军,张启发,Yu SB,Mu JX,Zhao SJ,Zhou HJ,Tan YB,Xu CG,Luo LJ,Zhang QF.以珍汕97和9311为背景的导入系构建及其筛选鉴定[J].分子植物育种,2005,3(5):629-636.
    74.易成新,张天真,郭旺珍.陆地棉衣分QTLs的形态和RAPD分子标记筛选[J].作物学报,2001,27(6):781-786.
    75.杨小红,严建兵,郑艳萍,余建明,李建生.植物数量性状关联分析研究进展[J].作物学报,2007,33(4):523-530
    76.杨昶,高玉龙,胡重怡,周兆华,郭旺珍,张天真.棉花RGAP、DGAP和DDRT标记的定位研究[J].棉花学报,2007(已录用)
    77.袁有禄,张天真,郭旺珍,沈新莲,John Yu,Russell J,kohel.棉花品质纤维性状QTLs 的分子标记筛选及其定位[J].遗传学报,2001,28(12):1151-1161.
    78.张桂寅,王省芬,马峙英.抗黄萎病低酚棉品种资源RAPD分析[J].棉花学报,2002,14(2):80-84.
    79.张金发,吕复兵,郭介华,刘金兰,孙济中.陆地棉枯萎病抗性的双列杂交分析[J].棉花学报,1994,6(3):189-1923.
    80.朱军.运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报,1999,33 (3):327-335.
    81.朱军.数量性状遗传分析的新方法及其在育种中的应用[J].浙江大学学报,2000,26(1):1-6.
    82.张培通,朱协飞,郭旺珍,张天真.陆地棉衣分及相关性状的遗传和QTL分子标记[J].江苏农业学报,2005,21(4):264-271
    83.张培通,郭旺珍,朱协飞,俞敬忠,张天真.高产棉花品种泗棉3号产量及其构成因素的Q TL标记和定位[J].棉花学报,2006,8:1197-1203.
    84.张祖新,张方东,郑用琏.功能基因组学及其研究方法[J].作物学报,2003,29(3):194-201。
    85.张丽霞,刘小庆,刘学义.染色体单片段代换系的构建及应用于QTL精细定位[J].分子植物育种,2004,2(3):743-746
    86.张保才.AB-QTL法定位海岛棉优异纤维品质[D].中国农业科学院.2006,硕士学位论文
    87.张帆,万雪琴,袁亮,潘光堂.作物数量性状(QTL)基因研究进展[J].生物技术,2004,14(6):67-69
    88.赵俊兴,姚焕章.陆地棉抗枯黄萎病相关性分析[J].江西棉花,1991,(2):18-21.
    89.阮成江,何祯祥,钦佩.我国农作物QTL定位研究的现状和进展[J].植物学通报,2003,20(1):10-22.
    90.左开井,孙济中,张献龙等.利用RFLP、SSR和RAPD标记构建陆地棉分子标记连锁图(英)[J].华中农业大学学报,2000,19:190-193.
    91.庄杰云,郑康乐.水稻产量性状遗传机理及分子标记辅助高产育种[J].生物技术通报,1998,(1):1-9.
    92.中国棉花遗传育种学(全)(C).中国农业科学院棉花研究所主编,山东科学技术出版社.2003
    93.曾燕如,黄敏仁,王明庥.一种新的分子标记-SNP[J].南京林业大学学报,2003,27(3):84-88;
    94.Abdalla AM,Reddyo UK,Elzik KM,Pepper AE.Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP[J].Theor.Appl Genet,2001,102:222-229.
    95.Abraham BK,Yefim IR,Alexander M.Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative Traits[J].Genetics,2001,157:1789-1803.
    96.Agrowal PK,Sing ND,Dadia NM.Identification of cotton hybrid seed susing PAGE.[J]Seed Science and Technology.1988,16(3):563-569.
    97.Alan SN,bollich C,Nmcclung HM,Tanksley SD.RFLP analysis of genomic regions associated with cooked kerned elongation in rice[J].Theor.Appl.Genet.1993,87:27-32.
    98.Allard RW.Genetic basis of the evolution of adaptedness in plants[J].Euphytica,1996,92:1-11.
    99.Alrawik M.A quantitative genetic analysis resistance to Verticillium wilt of upland and cotton[J].Iraril of Agri Sci,1984,2(2):13-23.
    100.Altaf MK,Zhang JF,.Steward.JM,Cantrell RG.Integrated molecular map based on a trispecific F_2population of cotton[J].Proceedings of the Belt wide Cotton Production Research Conferences.,1998,491-492.
    101.Asins MJ.Present and future of quantitative trait locus analysis in plant breeding[J].Plant Breeding,2002,121:281-291.
    102.Atchl,Eyw KZ,Hu J.Developmental quantitative genetics conditional epigenetic variability and growth in mice[J].Genetics,1997,147:765-776.
    103.Barrow JR.Heterozygosity in inheritance of Verticillium wilt tolerance in cotton.Phytopathology,1970,60:301-303.
    104.Beavis WD,Grant D,Albertsen M,Fincher R.Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci[J].Theor.Appl.Genet..1991,83:141-145.
    105. Becelaerea GV, Lubbersa EL, Patersonb AH, Cheea PW. DNA Marker-Based Genetic Similarity Estimates in Cotton [J]. Crop Sci. 2005,45: 2281 ~2287
    106. Bell AA. Temperature effects upon resistance and phytolex in synthesis in cotton inoculated with Verticillium alboatrum [J]. Phytopathology, 1969,59:1141 —1146.
    107. Bowman, DT. May OL, Calhoun DS. Genetic base of upland cotton cultivars released between 1970 and 1990[J]. Crop Sci. 1996, 36: 577 —581
    108. Bolek Y, El-Zik KM, Pepper AE, Bell AA, Magill CW, Thaxton PM, Reddy OU. Mapping of verticillium wilt resistance genes in cotton [J]. Plant Science. 2005. 168:1581 —1590.
    109. Brenda AL, Melissa MW, Jennifer MK, Jyoti Rout, Dave Warner, Richard Johnson, Charles LA, Michael TS, Paul SC. Marker assisted breeding for transformability in maize [J]. Molelular Breeding, 2006,18:229-239.
    110. Brubaker CL, Wendel JE. Revaluting the origin of domesticated cotton (Gossypium hirsumm, Malvaceae) using nuclear restriction fragment length polymoiphisrns (RFLPs) [J]. American Jonrnal of Botany, 1994,81(10) :1309—1326.
    111. Cao GQ, Zhu J, He CX, Gao YM, Wu P. QTL analysis for epistatic effects and QTL environment interaction effects on final height of rice (Oryza sativa L.) [J]. Acta Genetica Sinica, 2001,28 (2):135~143.
    112. Candida HC, Magalhaes B, Ivan S, Tocio S, Everaldo GB, Maurilio AM. Characterization and genetic diversity analysis of cotton cultivars using microsatellites [J]. Genetics and Molecular Biology, 2006,29,2
    113. Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A .Genetic architecture of flowering time in maize as inferred from QTL meta-analysis and synteny conservation with the rice genome. [ J]. Genetics, 2004,168: 2169 —2185.
    114. Chen G, DU XM. Genetic Diversity of Source Germplasm of Upland Cotton in China as Determined by SSR Marker Analysis [J]. Acta Genetica Sinica, 2006,33 (8): 733 —745.
    115. Clifford R, Edmonson M, Hu Y, Nguyen C, Scherpbier T. and Buetow KH. Expression based genetic/physical maps of single nucleotide polymorphisms identified by the cancer genome anatomy project [J]. Genome Research, 2000,10(8): 1259 —1265.
    116. Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable toerianthus and sorghum [J]. Plant Sci., 2001, 160:1115-1123.
    117. Davis RD, Moore NY, Kochman JK. Characterisation of a population of Fusarium Oxysporum f sp vasinfectum causing wilt of cotton in Australia [ J]. Aust J Agr Res 1996,47:1143-1156
    118. Devey ME. Genetic analysis of Verticillium wilt tolerance in cotton using pedigree data from three crosses. Theor. Appl. Genet., 1987, 74(1):162—167.
    119. Dorweiler J, Stec A, Kermicle J, Doebley J. Teosinte glume architecture 1: A genetic locus controlling a key step in maize evolution [J]. Science, 1993, 262:233—235.
    120. Doebley J, Stec A, Gustus C. Teosinte branchedl and the origin of maize: Evidence for epistasis and the evolution of dominance [ J]. Genetics, 1995,141: 333 —346
    121. Doebley J. A tomato gene weighs in. Science, 2000, 289:71 —72
    122. Draye X, Chee P, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH. Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach: II. Fiber fineness [J]. Theor. Appl. Genet., 2005,111:764 — 771
    123. Edward MD, Stuber GW and Wendel JF. Molecular marker-facilitate investigation of QTL in maize.I. Numbers genomic Distribution and types of gene action [J]. Genetics, 1987,116,113 — 125.
    124. Eshed Y. kzam IR D. Less than additive epistatic interactions of quantitative trait loci in tomato. [ J] Genetics, 1996,143:1807-1817.
    125. Esbroeck VG, Bowman DT, Calhound S, Mayo L. Changes in the genetic diversity of cotton in the USA from 1970 to 1995 [J]. Crop Sci., 1998, 38:33-37.
    126. Eujay I, Sorrells M, Baum M, Wolters P, Powell W. Assessment of genotypic variation among cultivated durum wheat based on EST SSR and genomic SSRs [ J]. Euphytica, 2001;119:39 ~43.
    
    127. Eujayl M.E. Sorrells M. Baum P. Wolters W. Powell. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat [J]. Theor. Appl. Genet., 2002:104:399~ 407.
    
    128. Ferriol M, Pic B, Nuez F. Genetic diversity of agermplasm collection of Cucurbita pepo using SRAP and AFLP markers[J]. Theor. Appl. Genet., 2003,107:271 ~282.
    
    129. Frary A, Nesbitt TC, Grandillo S. Vanderknaap E, Cong B, Liu T, Meller J, Elber R, Alpert KB and Tanksley SD. Fw2: QTL to the evolution of tomato fruit size [J]. Science. 2000, 289: 85 ~88.
    
    130. Fridman E, Pleban T, Zamir D. A recombination hotspot delimits a wild species QTL for tomato sugar content to 484-bp within an invertase gene [J]. Proc Natl Acad Sci USA, 2000, 97: 4718 ~ 4723.
    
    131. Frelichowski JE, Palmer MB, Main D. Cotton genome mapping with new microsatellites from Acala 'Maxxa' BAC-ends[J]. Mol. Gen. Genomics, 2006, 275:479—491
    
    132. Fulker DW, Cardon LR. A sib-pair approach to interval mapping of quantitative trait loci [J]. Am J. Hum Genet, 1994,54:1092-1103.
    
    133. Gimelfarb A, Lande R. Simulation of marker assisted selection in hybrid populations [J]. Genet. Res. 1994,(63):39-47.
    
    134. Guo WZ, Cai CP, Wang CB, Han ZG, Song XL, Wang K, Niu XW, Wang C, Lu KY, Shi B, Zhang TZ. A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in Gossypium[J]. Genetics, 2007, 4
    
    135. Gutierrez OA, Basu S, Saha S, Jenkns JN. Genetic distance among selected cotton genotypes and its relationship with F_2 performance [J]. Crop Sci., 2002,42(6): 1841 —1 847.
    
    136. Han ZG, Guo WZ, Song XL, Zhang TZ.. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Gen Genomics, 2004, 272: 308 —327.
    
    137. Haley SS, Knott S A. A mulple regression method for mapping quantitative trait loci in line crosses using flanking markers [J]. Heredity, 1992,69:315 —324.
    
    138. He DH, Lin ZX, Zhang XL, Nie YC, Guo XP, Feng CD, Stewart J MD. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton [J]. Euphytica, 2005, 144(1-2): 141 —149.
    
    139. Hillocks RJ. Fusarium wilt. In Cotton Diseases (Ed R.J. Hillocks), CAB International, Wallingford, UK. (1992): 127-160.
    
    140. Howell PM, Matshall DF, Lydiate DJ. Towards developing intervariety substitution lines in Brassi canapus using marker-assisted selection [J]. Genome, 1996,39: 348 —358.
    
    141. Hospital F, Goldringer, I, and Openshaw SJ. Efficient marker-based recurrent selection for multiple quantitative trait loci[J]. Genetical research, 2000, 75: 357—368.
    
    142. Hospital F, Cosset AC. Marker assisted introgression of quantitative trait loci [ J]. Genetics, 1997, 147:1469—1485.
    
    143. Hyne V, Kearsey MJ, Pike DJ and Snape JW. QTL analysis unreliability and bias in estimation procedure [J]. Molecular breeding, 1995,1:273—282.
    
    144. Jiang CJ, Zeng ZB. Multiple traits analysis of genetic mapping for quantitative trait loci[J]. Genetics, 1995,140:1111-1127.
    
    145. Jiang CX, Wright RJ, El-zik KM, Paterson AH. Polyploid formation created unique avenues for response to selection in Gossypium (cotton) [J]. Proc. Natl. Acad. Sci. USA, 1998, 95: 4419 — 4424.
    
    146. Jiang C, Wright RJ, Woo SS, Delmonte TA, Paterson AH. QTL analysis of leaf morphology in tetraploid Gossypium(cotton) [J]. Theor. Appl. Genet., 2000,100:409 —418.
    
    147. Kearseym J, Farquhar AGL. QTL analysis in plants where are we now[J]. Heredity, 1998, 80: 137-142.
    
    148. Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for qutatitve trait loci [J]. Genetics, 1999,152:203-216.
    
    149. Khan MA, Myers GO, Steward JM, Zhang JF, Cantrell RG 1. Addition of new markers to the trispecific cotton map [C]. Proc. Belt.Cotton.Pro.Res.Conf., 1999,439.
    150. Kim Y, Hutmacher RB, Davis RM. Characterization of Californiaisolates of Fusarium oxysporum f. sp. vasinfectum[J].. Plant Dis, 2005,89:366-372
    151. Kochman JK. Disease notes or new records Fusarium wilt in cotton - a new record in Australia Australasian [J]. Plant Pathology, 1995, 24: 742.
    152. Kohel RJ, John Y, Yong HP, Lazo GR Molecular mapping and characterization of traits controlling fiber quality in cotton [J]. Euphytica, 2001,121:163 —172
    153. Kojima S, Takahash IY, Kobayashi Y, Monna L,Sasaki T, Araki T.Yano M. Hd3a a rice ortholog of the A rabid opsis FT gene promotes transition to flowering downstream of Hd1 under short- day condition [J]. Plant Cell Physiol. 2002, 43:1096—1105.
    154. Kota R, Varshney RK, Thiel T, Dehmer KJ Graner A. Generation and comparison of EST derived SSRs and SNPs in barley (Hordeumvul gare L) [J]. Hereditas, 2001,135:145 —151.
    155. Lacape JM, Nguyen TB, Courtois B, Belot JL,Giband M,Gourlot JP,Gawryziak G, Roques S, Hau B. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross population [J] .Crop Sci., 2005,45:123 —140.
    156. Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B,Courtois B, Cant rell RG, Burr B, Hau BA. Combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum x Gossypium barbadense backcross population [J]. Genome, 2003,46:612—626.
    157. Lacape JM, Dessauw D, Rajab M, Noyer JL, Hau B. Microsatellite diversity in tetraploid Gossypium germplasm: assembling a highly informative genotyping set of cotton SSRs[J]. Molecular Breeding, 2007,14,1:45 —58
    158. Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics, 1989 ,121 :185~199.
    159. Lander ES, Green JP, Abrahamsonm BA, Daly MJ, Lincoln SE, Newberg L. Map Maker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations[J]. Genomics. 1987,174—181.
    160. Lee M. DNA markers in plant breeding programs [J]. Adv. Agron. 1995,55:265 —344.
    161. Lebreton CM, Visscher PM, Haley CS, Semikhodskii A, and Quarrie, SA. A nonparametric bootstrap method for testing close linkages pleiotropy of coincident QTL[J]. Genetics, 1998, 150,931-943.
    162. Lin ZX, He DH, Zhang XL, Nie YC, Guo XP, Feng CD and Stewart J.McD. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD [J]. Plant Breeding, 2005,124:180-187.
    163. Liu S, Saha S, Stelly D. Chromosomal assignment of microsatellite loci in cotton [ J]. Amer Genet Asso, 2000,91:326-332.
    164. Li HW,Liu SD, Gao LF, Jia JZ. Study on the transferability of wheat EST SSRs[J]. Journal of Plant Genetic Resources, 2003,4(3): 252 —255.
    165. Li G, Quiros CF. Sequence-related amplified polymorphisim (SRAP)-a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica[J]. Theor. Appl. Genet., 2001,12,103:455-461.
    166. Li G, Gao M, Yang B, Quiros CF. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping [J]. Theor. Appl. Genet., 2003,107:271 —282.
    167. Li Z, Luo LJ, Mei HW, Shu QY, Wang DL. Over dominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice: I. biomass and grain yield [J]. Genetics, 2001, 158:1737—1753.
    168. Luc F, Shen LS, Tan ZB. Xu Y, He P, Chen Y, Zhu L. Comparative mapping of QTLs for agronomic traits of rice across environments by using a doubled- haploid population [ J]. Theor. Appl. Genet. 1997,94:145-150.
    169. Luo LJ, LI Z, Mei HW,. Shu QY, Tabien R. Over dominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice.II. grain yield components [J]. Genetics, 2001, 158,1755-1771.
    
    170. Lyon. DNA markers and the molecular breeding of cotton. The Australian Cotton grower. 1999,20(5):80~83.
    
    171. Martin GB, Brmmonschenke SH, Chunwongse J, Fray A, Gana MW, Spivey R, Wu T, Earle ED, Tanksely SD. Map based cloning of a protein kinase gene conferring disease resistance in tomato [J]. Science, 1993, 262 :1432-1436.
    
    172. Martienssen RA. Functional genomics: Probing plant gene function and expression with transponsons [J]. Proc Natl Acad Sci, USA, 1998, 95: 2021 —2026.
    
    173. Mauricio U, Robert B. Hutmacher, R. Michael D, Steven D. Wright, Richard P, Marsh B. Breeding for Fusarium Wilt Race 4 Resistance in Cotton under Field and Greenhouse Conditions [J]. The Journal of Cotton Science 2006,10:114—127.
    
    174. Maestri E, Malcevschi A, Massari A, Marmiroli N. Genome analysis of cultivated barley (Hordeum vulgare) using sequence tagged molecular markers Estimates divergence based on RFLP and PCR markers derived from stress-responsive genes and simple sequence repeats (SSRs) [J]. Mol Genet Genomics, 2002; 267:186-201.
    175. Mei M, Syed NH, Gao W, Thaxton PM., Smith CW, Stelly DM, Chen ZJ. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium) [J]. Theor. Appl. Genet., 2004, 108:280-291.
    176. McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD. Molecular mapping of rice chromosome [ J]. Theor. Appl. Genet., 1988, 76:148 —149.
    177. Melchinger AE, Utz: HF, Schon CC. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects [J]. Genetics, 1998(5), 149: 383 —403.
    178. Moreau L, Charcosset A, Hospital F, Gallais A. Marker-assisted selection efficiency in populations of finite size [ J]. Genetic, 1998,148: 1353 -1365.
    179. Monforte A, Tanksley SD. Development of a set of near isogenic and backcross recombinant containing most of the lycopersicon hirsutum genome in a Lesculentum genetic a tool for gene maping and gene discovery [J]. Genome, 2000, 43: 803 —813
    180. Multanids DS, Lyon BR. Genetic finger printing of Australian cotton cultivars with RAPD markers[J]. Genane, 1995,38:1005-1009.
    181. Nguyen TB, Giband M, Brottier P, Risterucci AM, Lacape JM. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers [J]. Theor. Appl. Genet., 2004, 109:167-175.
    182. Ola T, Westengen, Zosimo Huaman, Manfred Heun. Genetic diversity and geographic pattern in early South American cotton domestication [ J]. Theor. Appl. Genet. 2005,110: 392 —402
    183. Park YH, Alabady MS, Sickder B, Wilkins TA, Yu J, Stelly DM, Kohel RJ, El-Shthy OM, Cantrell RG, and Ulloa M. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred (RIL) cotton population [J]. Mol Gen Genomics, 2005,274:428 — 441.
    184. Paterson AH, Saranga Y, Menz M, Jiang CX, Wright RJ. QTL analysis of genotype x environment interactions affecting cotton fiber quality [J]. Theor. Appl. Genet., 2003,106: 384-396.
    185. Paterson AH, Curt LB. Wendel JF. A rapid method for extraction of cotton (Gossypium- spp) genomic DNA suitable for RFLP and PCR analysis [J]. Plant Mol Bio Rep, 1993,11(2): 122 —127.
    186. Paterson AH, Lander ES, Hewitt JD. Resolution of quantitative traits into Mendelan factors by using complete linkage map of restriction fragment length polymorphisms [J]. Nature, 1998,335: 721 -726.
    187. Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments [J]. Genetics,1991,127:181 —197.
    188. Pettigrew WT, Heitholt JJ, Vaughn KC. Gas exchange differences and comparative anatomy among cotton leaf-type isolines[J]. Crop Sci., 1993, 33:1295 —1299
    189. Pillay M,Myers GO. Genetic diversity in cotton assessed by variation in ribosomal RNA genes and AFLP markers [J]. Crop Sci., 1999, 39:1881 -1886.
    190. Ranal MK, Singh VP and Bhat KV. Assessment of Genetic Diversity in Upland Cotton (Gossypium hirsutum L.) [ J]. Genetic Resources and Crop Evolution. 2005,52, 8:989 —997.
    191. Rahman M, Hussain D, Zafar Y. Estimation of genetic divergence among elite cotton cultivars-genotypes by DNA fingerprinting technology [J]. Crop Sci, 2002,42(6) :2137—2144.
    192. Rao SQ, Xu S. Mapping quantitative trait loci for ordered categorical traits in four-way crosses [J]. Heredity, 1998,81:214-224
    193. Reddy AS, Haisler RM, Weller JW. Development of amplified fragment length polymorphic markers in cotton [ J]. Plant Genome, 1996, 74.
    194. Reddy OUK,Pepper AE, Saha S, Jenkins JN, Brooks T, Bolek Y, El-Zik KM. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research [J]. Cotton Sci., 2001, 5:103-113.
    195. Renish AJ, Dong JM, Brubaker C, Dstelly, Wendel J, Paterson AH. A detailed RFLP map of cotton (Gossypium hirsutum X Gossypium barbadense): Chromosome organization and evolution in a disomic polypoid genome[J]. Agenetics, 1994,138: 29 —847.
    196. Ribaut JM, Hoisington D. Marker-assisted selection: new tools and strategies [J]. Trend Plant Sci., 1998, 3(6):236-239.
    197. Roberts CL. Heritability of Verticillium wilt tolerance in crosses of America Upland cotton [ J]. Crop Science, 1972,12: 63 -66.
    198. Rong JK, Abbey C, Bowers JE, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium) [J] . Genetics, 2004,166:389-417.
    199. Saranga Y, Jiang CX, Wright RJ, Yakir D., Paterson AH. Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity [J]. Plant Cell and environment, 2004, 27:263 —277.
    200. Shen XL, Guo WZ, Zhu XF, Yuan YL, Yu JZ, Kohel RJ, Zhang TZ. Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers [J]. Mol. Breed., 2005, 15:169-181.
    201. Shen XL, Zhang TZ, Guo WZ, Zhu XF., and Zhang X. Mapping fiber and yield QTLs with main, epistatic, and QTLxEnvironment interaction effects in recombinant inbred lines of Upland cotton [J]. Crop Sci., 2006,46: 61 -66.
    202. Shen Xl, Becelaere GV, Pawan K, Richard FD, Lloyd OM, Chee P. QTL mapping for resistance to root-knot nematodes in the M-120 RNR Upland cotton line (Gossypium hirsutum L.) of the Auburn 623 RNR source [J].Theor Appl Genet,2006,113:1539-1549.
    203. Schnathorst WC. Host rang and differentiation of a severe from of V. alboatrum in cotton. Phytopathology, 1966,56:1155-1161.
    204. Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ. Analysis of SSRs derived from grape ESTs[J]. Theor. Appl. Genet., 2000,100:723 —726.
    205. Shappley ZW, Jenkins JN. Cotton improvement: qualitative trait loci associated with agronomic and fiber traits of upland cotton [ J]. The Journal of Cotton Science, 1998, 2:153 —163.
    206. Shappley ZW, Jenkins JN, Meredith WR, McCarty Jr JC. An RFLP linkage map of Upland cotton, Gossypium hirsutum L[J]. Theor. Appl. Genet., 1998, 97:756—761.
    207. Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers [J], Genetics. 1992, (132):823~839.
    208. Stuber CW. Mapping and manipulating quantitative traits in maize [J]. Trends Genet., 1995, 11: 477-481
    209. Smith SN, Ebbels DL, garger RH, and Kappelman AJ. Fusariums wilt of cotton. State University Press, 1981. 29-38..
    210. Song XL, Guo WZ, Han ZG, Zhang TZ. Quantitative trait loci mapping of leaf morphological traits and chlorophyll content in cultivated tetraploid cotton [J]. Journal of Integrative Plant Biology, 2005,47(11): 1382-1390.
    211. Spiel MW, Green AG, Bittisnich D. Identification of quantitative trait loci contributing to Fusarium wilt resistance on an AFLP linkage map of flax (Linum usitatissimum) [J]. Theor.Appl.Genet. 1998, 97:633-641.
    212. Stanton MA, Stewart JM cD, Percival AE, Wendel JF. Morphological diversity and relationships in the A-genome cottons, Gossypiu marboreum and G. herbaceum [J]. Crop Sci., 1994,34: 519 —527.
    213. Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpine llifolium [J]. Theor. Appl. Genet., 1996, 92:213 —224.
    214. Tanksley SD. Molecular markers in plant breeding [J]. Plant Mol. Biol Rep. 1993, (1):3 —8.
    215. Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST database for the development and characterization of gene derived SSR-markers in barley [J]. Theor. Appl. Genet., 2003, 106:411 — 422.
    216. Ulloa M, Cantrell RG, Percy RG, Ezeiger, ZM Lu. QTL analysis of stomatal conductance and relationship to lint yield in an interspecific cotton [J]. Cotton Sci, 2000, 4:10—18.
    217. Ulloa M, Meredith WR. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population [J]. Cotton Sci., 2000,4:161 —170.
    218. Ulloa M, Saha S, Jenkins JN, Meredith Jr WR, McCarty Jr JC, Stelly DM. Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) joinmap. J Hered, 2005, 96(2): 132—144.
    219. Verhalen LM. A quantitative genetic study of Verticillium wilt resistance among selected lines of Upland cotton [ J]. Crop Science, 1971,11: 407 —412.
    220. Visscher PM, Haley CS. Thompson R. Marker assisted introgression in backcross breeding programs [J]. Genetics , 1996 ,144 :1923—1932.
    221. Wang K, Song XL, Han ZG, Guo WZ, Yu JZ, Sun J, Pan JJ, Kohel RJ, Zhang TZ. Complete assignment of the chromosomes of Gossypium hirsutum L.by translocation and fluorescence in situ hybridization mapping [J]. Theor. Appl. Genet., 2006,113: 73 —80.
    222. Wang DL, Zhu J, Li ZK, Paterson AH. Mapping QTLs with epistatic effects and QTL x environment interactions by mixed model approaches [J]. Theor. Appl. Genet., 1999, 99:1255 — 1264.
    223. Wang BH, Wu YT, Huang NT, Zhu XF, Guo WZ, Zhang TZ. QTL Mapping for Plant Architecture Traits in Upland Cotton Using RILs and SSR Markers [J]. Acta Genetica Sinica, 2006,33(2):161 — 170.
    224. Wang C, Ulloa M, Roberts P. Identification and mapping of microsatellite markers linked to a root-knot nematode resistance gene (rknl) in Acala NemX cotton [J] .Theor Appl Genet, 2006,112:770-777
    225. Wang PZ, Han ZG, Zhang TZ. EST-SSR Based Genetic diversity assessment of xinjiang cultivars in upland cotton [J]. Journal of Genetics and Molecular Biology, 2004, 15(3):171 —181.
    226. Walsh B and Lynch M. Mapping and characterizing QTL, In: Fundament of Quantitative Genetics, Chap. 14. Sinauer Associates. Inc. 1996.
    227. Wendel JF, Olson PD, Stewart J Mc D. Genetic diversity, introgression, and independent domestication of old world cultivated cottons [J]. American Journal of Botany, 1989, 76(12) : 1795-1806.
    228. Wilhelm S. Seabrook (Gossypium barbadense) X Rex (Gossypium hirsutum) crosses give Verticillium wilt resistance upland-type all fertile off spring [J]. Proc Beltwide Cotton Conf, 1970,70-72.
    229. Wilhelm S, Sagen JE, Tietz H. Resistance to Vereicillium wilt in cotton, sources, techniques of identification, inheritance trends, and the resistance potential of multiline cultivars[J]. Phytopathology. 1974, 64: 924-931.
    
    230. Wright RJ, Thaxton PM, El-Zik KM, Paterson AH. D-Subgenome bias of Xcm resistance genes in tetraploid Gossypium (Cotton) suggests that polyploid formation has created novel avenues for evolution [J]. Genetics, 1998,149:1987—1996.
    231. Wu WR, Li WM, Tang DZ, Lu HR, Worland AJ. Time related mapping of quantitative trait loci underlying tiller number in rice[J]. Genetics , 1999,151:297 ~303.
    232. Wu R, Zeng ZB. Linkage and linkage disequilibrium mapping in natural populations [J]. Genetics, 2001,157:899-909.
    233. Wu RL, Yin TM, Huang MR, Wang MX. The application of marker assisted selection to treebreeding[J]. Scientia Silva Sinicae, 2000, 36(1):103 —113
    234. Xu SZ. Mapping quantitative trait loci using multiple families of line crosses [J]. Genetics, 1998, 148:517-524.
    235. Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki K. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map [ J]. Theor. Appl. Genet. 1997,95:1025-1032.
    236. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T., Baba T, Yamamoto K, Umehara Y, Nagamura ., and Sasaki T. A major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidosis flowering time gene CONSTANS[J]. The Plant Cell, 2000, (12): 2473-2483
    237. Yu ZH, Mackill DJ, Bonmam JM, Tanksley SD. Tagging genes for blast resistance in rice via linkage to RFLP marker loci in maize seedings[J]. Genome, 1993,36:555 —564.
    238. Yu JM, Buckler ES. Genetic association mapping and genome organization of maize [J]. Curr. pin. Bio. technol., 2006,17—16.
    239. Yu IH, Park YH, Lazo GH. Mapping cotton genome with molecular markers [ J]. Proc Belt wide Conf, 1997,1:447-453.
    240. Yu ZH, Park YH, Lazo GR, et al. Molecular mapping of cotton genome and its application to cotton improvement[J]. Proc. Belt. Cotton. Pro. Res. Conf., 1996, 636—637.
    241. Yu JB, Bai GH, Cai SB, Ban T. Marker-assisted characterization of Asian wheat lines for resistance to Fusarium head blight. Theor. Appl. Genet.. 2006,113: 308 —320
    242. Yuval E, Dani Z. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield associated QTL[J]. Genetics, 1995, 141: 1147-1162.
    243. Yan JQ , Zhu J, He CX, Mebrouk B, Wu P. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.) [J]. Genetics, 1998,150 :1257—1265.
    244. Yan JQ, Zhu J, HE CX, Benmoussa M and Wu P. Quantitative trait loci analysis for developmental behavior of tiller number in rice (Oryz a sativa LG) [J]. Theor. Appl. Genet., 1998, 97:267 ~274.
    245. Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice[J]. Plant Molecular Biology, 1997,35:145—153.
    246. Yamamoto, Tktaguchi S, Fkukai Y. Mapping quantitative trait loci for days to heading and culmpanicle inter node lengths in a BC1F3 population using an elite rice variety (Koshih ikari) as the recurrent parent [J]. Breeding Science, 2001,51:63 —71.
    247. Yamamoto T, Kuboki Y, Lin SY, Sasaki T, and Yano M. Fine mapping of quantitative trait loci Hd 1, Hd 2 and Hd 3, controlling heading date of rice, as a single Mendelian factors [J]. Theor. Appl. Genet., 1998,97:37-44.
    248. Ye XD, Salim AB, Andreas K, Zhang J, Paola L, Peter B, Ingo P. Engineering the provitamin A (B-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm [J]. Science, 2000, 287: 303-305.
    249. Zachary W, Shappley JN, Jenkins, William R, Meredith, Jack C, McCarty JR. An RFLP linkage map of Upland cotton Gossypium hirsutum L. [J]. Theor. Appl. Genet., 1998, 97: 756 —761.
    250. Zhang TZ, Yuan YL, John Y, Guo W Z. Molecular tagging of a major QTL for fiber strength in upland cotton and its marker-assisted selection[J]. Theor. Appl. Genet., 2003,106: 262~268.
    251. Zhang J, Guo WZ, Zhang TZ. Molecular linkage map of allotetraploid cotton (Gossypium hirsutium L.X Gossypium barbadense L.) with a haploid population [J]. Theor. Appl. Genet., 2002, 105: 1166-1174.
    252. Zhang ZS, Xiao YH, Luo M, Li XB, Luo XY, Hou L, Li DM, Pei Y. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L. ) [ J] . Euphytica, 2005,144:91 -99.
    253. Zeng ZB. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci[J]. Proc Natl Acad Sci (USA), 1993, 90:10972-10976.
    254. Zeng ZB. Precision mapping of quantitative trait loci [J]. Genetics, 1994,136:1457 ~1468.
    255. Zheng XY, Wolff DW, Baudracco-Arnas S, Pitrat M. Development and utility of cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphism (RFLPs) linked to the Fom-2 Fusarium wilt resistance gene in melon (Cucumis melo) [ J]. Theor. Appl. Genet., 1999, 99:453 -463.
    256. Zhu S, Rossnagel BG, Kaeppler HF. Genetic analysis of quantitative trait loci for grain protein and oil content in oat[J]. Crop Sci., 2004,44:254 —260

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700