基于生理生态过程的棉籽品质模拟模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综合国内外棉铃发育和棉籽品质形成的生理生态研究成果,基于2006-2007年在江苏南京进行的不同熟性棉花品种与施氮量试验和2005年在长江流域下游棉区和黄河流域黄淮棉区多个试点同时进行的异地分期播种试验,在统计分析基础上,确定影响棉籽品质的主要生态因子,并建立棉籽品质的生态预测模型。运用作物模型学原理和系统分析法,综合量化棉铃发育和棉籽品质形成过程及其与环境因子间的动态关系,并在此基础上构建基于生理发育时间(PDT)的棉花铃期模拟模型和基于生理生态过程的棉籽干物质积累与品质形成模拟模型。利用不同熟性棉花品种多试点分播期的试验资料对模型的预测精度和广适性进行了检验。1.棉花铃期模拟模型
     基于不同熟性棉花品种和施氮量试验,综合量化品种特性、主要气象条件(温度、太阳辐射)和栽培措施(施氮量)对棉花铃期的影响,在作物生育期模拟研究基础上,改进温度效应的计算方法,增加太阳辐射和氮素效应函数,以生理发育时间(PDT)作为尺度,建立棉花铃期模拟模型。利用田间试验资料对模型进行检验的结果表明:铃期模拟模型对德夏棉1号、科棉1号和美棉33B铃期预测值与实测值的根均方差(RMSE)分别为2.25 d、2.61 d和2.75 d,说明铃期模拟模型预测精度高,机理性强,模型实现了棉铃发育进程的逐日模拟和棉花铃期的准确预测,可为棉籽生长和品质形成的模拟模型提供时间变量。
     2.棉籽干物质积累模拟模型
     基于不同熟性棉花品种的异地分期播种试验,综合量化棉籽干物质积累过程及其对品种特性、主要气象条件(温度、太阳辐射)和栽培措施(施氮量)的响应,基于棉籽干物质积累的“库限制”假设,结合棉花铃期模拟模型,建立基于生理生态过程的棉籽干物质积累与籽指形成的模拟模型。通过量化铃期棉铃对位叶氮浓度的变化,为模型构建氮素效应函数。利用不同生态点分品种、播期和施氮量的田间试验资料对模型进行检验的结果表明:科棉1号和美棉33B的棉籽干重模拟值与实测值的根均方差(RMSE)分别为9.5 mg·seed-1和8.2 mg·seed-1。模型预测精度高,机理性强,实现了棉籽干物质重、棉铃对位叶氮浓度的逐日模拟,为进一步模拟棉籽品质的形成过程奠定了基础。
     3.棉籽蛋白质和油分含量的生态因子效应研究
     基于不同熟性棉花品种的异地分期播种和施氮量试验,综合分析品种特性、主要气象条件和栽培措施对棉籽蛋白质和油分含量的影响,确定了影响棉籽品质的主要因子:基因型、日均温、太阳辐射量和施氮量。除品种因素外,铃期温度对棉籽品质影响最大,棉籽蛋白质和油分形成的最适宜铃期日均温分别为26.1℃和25.7℃;较高的太阳辐射降低了棉籽蛋白质和油分含量;增加施氮量提高棉籽蛋白质含量,降低油分含量。在统计分析基础上,综合棉籽品质的主要影响因子,建立了棉籽蛋白质和油分含量的生态预测模型。利用不同生态点分品种、播期和施氮量的田间试验资料对模型进行检验的结果表明:棉籽蛋白质含量和油分含量预测值与实测值的根均方差(RMSE)分别为2.03%和2.54%,模型具有综合性强、预测精度高、简便易行等特点,较好地描述了品种因素、主要气象条件和栽培措施与棉籽蛋白质和油分含量的关系。
     4.棉籽蛋白质形成的模拟模型
     基于不同熟性棉花品种的异地分期播种和施氮量试验,综合量化棉籽蛋白质形成过程及其对品种特性、主要气象条件(温度、太阳辐射)和栽培措施(施氮量)的响应,在棉花铃期模型、棉籽干物质积累的模拟模型和棉籽品质生态模型基础上,运用农业模型学原理,通过模拟棉籽氮素吸收、结构蛋白和储藏蛋白的合成,建立基于过程的棉籽蛋白质形成模拟模型,实现了不同生态条件下棉籽蛋白质积累及含量变化的模拟预测。利用不同生态点分品种、播期和施氮量的田间试验资料对模型进行检验的结果表明:供试品种科棉1号和美棉33B棉籽蛋白质积累的模拟值与实测值的根均方差(RMSE)分别为2.5mg·seed-1和1.8 mg·seed-1,蛋白质含量预测的RMSE分别为2.05%和2.33%。
     5.棉籽油分形成的模拟模型
     基于不同熟性棉花品种的异地分期播种试验,综合量化品种特性、主要气象条件(温度、太阳辐射)和栽培措施(施氮量)对棉籽油分形成的影响,在棉籽油分形成的生理生态研究基础上,建立基于生理生态过程的棉籽油分形成模拟模型。模型与棉花铃期模型和棉籽干物质积累模型结合,通过模拟棉籽油分合成过程及其对品种和环境因子的响应,实现了棉籽生长过程中棉籽油分积累和油分含量的逐日模拟。利用不同生态点分品种、播期和施氮量的田间试验资料对模型进行检验的结果表明:供试品种科棉1号和美棉33B棉籽的油分积累量模拟值与实测值的根均方差(RMSE)分别为1.9 mg·seed-1和2.0 mg·seed-1,棉籽油分含量模拟值与实测值的RMSE分别为2.45%和2.95%。
     本研究系统模拟了棉铃和棉籽的发育、棉铃对位叶氮浓度变化、棉籽干物质积累、氮素吸收、蛋白质和油分合成等生理过程以及棉籽品质的温度效应、太阳辐射效应、氮素效应等生态过程。模型通过棉铃发育进程(生理发育时间PDT)将各子模块紧密结合,应用面向对象的程序设计与软构建技术在Visual Basic平台上构建棉花铃期模型系统和棉籽生长与品质形成模型系统,系统主要用于气象数据的统计分析、模型参数调试以及模型的运行、应用和检验。本研究是对棉花生长模型的补充完善,填补了国内外在该领域的研究空白,为进一步进行棉籽产量、棉籽蛋白质和油分产量的预测及其形成过程的模拟研究奠定了基础,为棉花生产的辅助调控提供了技术支撑。
Based on the achievements in physiological and ecological mechanisms of cotton boll development and seed quality formation, the experiment conducted in Nanjing (the lower reaches of Yangtze River Valley) in 2006 and 2007, and the experiment conducted in the Yellow River Valley (Xuzhou and Anyang) and the lower reaches of Yangtze River Valley (Huaian and Nanjing) in 2005, we quantify the effects of cultivar characteristics, weather (temperature and solar radiation), and crop management variables (precisely N supply) on cotton boll development and seed quality formation using agricultural model principle and systematic analysis method. And then we developed the cotton boll maturation period model base on physiological development time, cottonseed quality ecological model, and the simulation model of cottonseed biomass accumulation, protein and oil formation based on the eco-physiology processes. These models were tested with the field experimental data collected from different sits with different cotton cultivars.
     1. Cotton boll maturation period model
     By the field experiments with different maturity cotton cultivars, the responses of cotton boll development to cultivar characteristics, weather conditions (temperature and solar radiation), and crop management variable (N nutrients) were quantified. Cotton boll development was simulated using the scale of physiological development time. The model was tested using independent field data in 2005. The simulated values of boll maturation period showed reasonable agreement with the observed values, with root mean square error (RMSE) of 2.25 days for DSC-1, of 2.61 days for KC-1, and of 2.75 days for AC-33B. The results showed that the model was sufficiently robust to simulate boll development and predict boll maturation period under diverse environmental conditions. It is the improvement of boll maturation period model and provides the time variable for simulation model of cottonseed growth and quality formation.
     2. Simulation model of cottonseed biomass accumulation
     By the field experiments with different maturity cotton cultivars and sowing dates conducted at different sites, the responses of cottonseed biomass accumulation to cultivar characteristics, weather conditions (temperature and solar radiation), and crop management variable (N nutrients) were quantified. Based on the hypothesis of sink-determined, the cottonseed biomass accumulation model was then developed. The subtending leaf N concentration of cotton boll was simulated with a semi-empirical equation, which was made as the direct indicator of the N nutrition effect on cottonseed growth and development. The model was tested using independent field data obtained in the Yellow River Valley (Xuzhou and Anyang) and the lower reaches of Yangtze River Valley (Huaian) in 2005. The RMSEs of cottonseed dry weight predictions were 9.5 mg·seed-1 for KC-1 and 8.2 mg·seed-1 for AC-33B. The results showed that the model was sufficiently robust to predict cottonseed biomass accumulation under diverse environmental conditions.
     3. Ecological model of cottonseed protein and oil content
     The prediction of cottonseed (Gossypium hirsutum L.) quality by ecological factors is an area of great uncertainty. Our object is to investigate the relationship between the cottonseed protein and oil content and the multi-ecological conditions and develop an ecological model to predict the cottonseed protein and oil content under different environments. A set of field experiments were conducted in the lower reaches of Yangtze River Valley (Nanjing, Huaian) and the Yellow River Valley (Xuzhou, Anyang) in 2005, where KC-1 and AC-33B were selected, two sowing dates and three N rates were set. According to the data at sowing date of 25 April, the effect of cultivar, weather conditions, and crop management variables on cottonseed protein and oil content was analyzed by step regression analysis and non-liner regression analysis. We determined that cultivar characteristics, temperature, solar radiation, and N fertilizer rate are main impact factors on cottonseed quality. The optimum temperature for cottonseed protein formation is 26.1℃, and which for oil accumulation is 25.7℃. Adequate solar radiation will reduce the protein and oil content. Increasing the N fertilizer rate will raise protein content and reduce the oil content in cottonseed. The present study developed a ecological model to predict cottonseed protein and oil content. The model was tested by the data collected at sowing date of 25 May in Nanjing, Xuzhou, and Anyang. The RMSE of the model was 2.03% in prediction of cottonseed protein content, and 2.54% in prediction cottonseed oil content. The results showed that the model is sufficiently robust to accuracy predict cottonseed protein content and oil content under diverse environmental conditions.
     4. Simulation model of cottonseed protein formation based on eco-physiology process
     The simulation of cottonseed (Gossypium hirsutum L.) growth is an area of great uncertainty, especially in the process of cottonseed quality formation. To simulate the formation of cottonseed protein under different environmental conditions, a simple process-based model was developed driven by the inputs of cultivar parameters, weather, and crop management variable (precisely N supply). A set of field experiments were conducted in the lower reaches of Yangtze River Valley (Nanjing, Huaian) and the Yellow River Valley (Xuzhou, Anyang) in 2005, where KC-1 and AC-33B were selected, two sowing dates and three N rates were set. According to the data collected in Nanjing, the responds functions of cottonseed protein accumulation to weather conditions (temperature, solar radiation), crop management variable (N supply) and boll position were all developed and involved in the model. The model based on the hypothesis that nitrogen accumulation synthesis in cottonseed are mainly sink determined, and was integrated with the cotton boll maturation period model and cottonseed biomass accumulation model. The parameters in the model were calibrated using the field data obtained in Nanjing. The model was tested using the field data obtained in Huaian, Xuzhou and Anyang. The root mean square error (RMSE) of the simulated and measured cottonseed protein content was 2.05% for KC-1 and 2.33% for AC-33B. The results showed that the model is sufficiently robust to accuracy predict cottonseed protein content under diverse environmental conditions. This model is a necessary component of cotton growth model, and provides a good platform for further study in modeling cottonseed protein yield.
     5. Simulation model of cottonseed oil formation based on eco-physiology process
     The simulation of cottonseed (Gossypium hirsutum L.) growth is an area of great uncertainty, especially in the process of cottonseed quality formation. To simulate the formation of cottonseed oil under different environmental conditions, a simple process-based model was developed driven by the inputs of cultivar parameters, weather, and crop management variable (precisely N supply). A set of field experiments were conducted in the lower reaches of Yangtze River Valley (Nanjing, Huaian) and the Yellow River Valley (Xuzhou, Anyang) in 2005, where KC-1 and AC-33B were selected, two sowing dates and three N rates were set. According to the data collected in Nanjing, the responds functions of cottonseed oil accumulation to weather conditions (temperature, solar radiation), crop management variable (N supply) and boll position were all developed and involved in the model. The model based on the hypothesis that fat synthesis in cottonseed are mainly sink determined, and was integrated with the cotton boll maturation period model and cottonseed biomass accumulation model. The parameters in the model were calibrated using the field data obtained in Nanjing. The model was tested using the field data obtained in Huaian, Xuzhou and Anyang. The root mean square error (RMSE) of the simulated and measured cottonseed oil content was 2.45% for KC-1 and 2.95% for AC-33B. The results showed that the model is sufficiently robust to accuracy predict cottonseed oil content under diverse environmental conditions. This model is a necessary component of cotton growth model, and provides a good platform for further study in modeling cottonseed oil yield.
     This research provided a systematic process-based simulation model modeling subtending leaf N concentration of cotton boll, cottonseed development, biomass accumulation, N uptake, protein formation, and oil synthesis. This research is an effective supplement for cotton growth model, which fills the vacuity in the research areas, provides a well platform for further study in modeling the formation of cottonseed yield, protein yield and oil yield, and provides also technical supports for regulation and control in cotton production.
引文
[1]Ahmad S, Anwar F, Hussain A I, et al. Dose soil salinity affect yield and composition of cottonseed oil [J]? Journal of the American Oil Chemists Society,2007,84:845-851.
    [2]De Wit C T. Photosynthesis of leaf canopies [M]. Agricultural Research Report, no 663. Pudoc, Wageningen,1965.
    [3]Duncan W G, Loomis R S, William W A, et al. A model for simulating photosynthesis in plant communities [J]. Hilgardia,1965,38:181-205.
    [4]Duncan W G. Leaf Angles, Leaf Area, and Canopy Photosynthesis [J]. Crop Science,1971,11: 482-485.
    [5]Loomis R S, Williams S W A. Maximum crop productivity:An estimate [J]. Crop Science,1963, 3:67-72.
    [6]Curry R B, Chen L H. Dynamic simulation of plant growth, II. Incorporation of actual daily weather and partitioning of net photosynthate [J]. Transactions of the ASAE,1971,14: 1170-1175.
    [7]Stapleton H N, Meyers R P. Modeling subsystems for cotton:The cotton plant simulation [J]. Transactions of the ASAE,1971,14:950-953.
    [8]Duncan W G, Hesketh J D. Net Photosynthetic Rates, Relative Leaf Growth Rates, and Leaf Numbers of 22 Races of Maize Grown at Eight Temperatures [J]. Crop Science,1968,8:670-674.
    [9]Monteith J L. Light Distribution and Photosynthesis in Field Crops [J]. Annals of Botany,1965,29: 17-37.
    [10]Splinter W E. Modeling of plant growth for yield prediction [J]. Agricultural Meteorology,1974, 14:243-253.
    [11]Childs S W, Gilley F R, Splinter W E. A simplified model of corn growth under moisture stress [J]. Transactions of ASAE,1977,20:858-865.
    [12]De Wit C T. Dynamic concepts in biology [C].In:Productivity Prediction And Management Of Photosynthetic.Proceedings international biological program/plant production technical meeting. Wageningen, Netherlands:PUDOC,1970.
    [13]Penning De Vries F W T, Van Laar H H. Simulation of plant growth and crop production [C].In: van Penning De Vries F W T Laar H. H. Eds.Simulation Monographs. Wageningen, Netherlands: PUDOC,1982.
    [14]Van Keulen H. Simulation of water use and herbage growth in arid regions [C].In:Penning De Vries F W T., Van Laar H H. Simulation Monographs. Wageningen, Netherlands:PUDOC,1982.
    [15]Morse R, Evans L T. Design and development of CERES — an Australian phytotron [J]. Journal of Agricultural Engineering Research,1962,7:128-140.
    [16]Duncan W G. SIMCOT:A simulator of cotton growth and yield [C].In:Murphy C. m., Hesketh J. d.Workshop Modeling Tree Growth Dynamics and Modelling. Oak Ridge, TN:Oak Ridge National Laboratory,1972.
    [17]Carberry P S, Muchow R C, Mccown R L. Testing the CERES-Maize simulation model in a semi-arid tropical environment [J]. Field Crops Research,1989,24:297-315.
    [18]Shaffer M J, Larson W E. NTRM, A soil-crop simulation model for nitrogen, tillage, and crop-residue management Washington, D.C.:U.S.D.A, ARS, National Technical Information Service,1987:34-41.
    [19]Ritchie J T, Alocilja E C, Singh U S, et al. IBSNAT and CERES—rice model [C]. In:Institute International Rice Research.International Workshop on the Impact of Weather Parameters on Growth and Yield of Rice. Weather and rice:Proceedings. Manila, Philippines:1986.
    [20]Simane B, Van Keulen H, Stol W, et al. Application of a crop growth model (SUCROS-87) to assess the effect of moisture stress on yield potential of durum wheat in Ethiopia [J]. Agricultural Systems,1994,44:337-353.
    [21]Bouman B A M, Van Keulen H, Van Laar H H, et al. The'School of de Wit'Crop Growth Simulation Models:A pedigree and Historical Overview [J]. Agricultural Systems,1996,52: 171-198.
    [22]Stapper M. SIMTAG:A Simulation Model of Wheat Genotypes, Model documentation 1984:108.
    [23]Place R E, Brown C M. Modeling corn yields from soil moisture estimates:description, sensitivity analysis and validation [J]. Agricultural and Forest Meteorology,1987,41:31-56.
    [24]Stewart D W, Dwyer I M. A model of spring when for large area yield estimations on the canadian prairies [J]. Canadian Journal of Plant Science,1990,70:19-32.
    [25]Tixier P, Mal E, Dorel M, et al. SIMBA, a model for designing sustainable banana-based cropping systems[J]. Agricultural Systems,2008,97:139-150.
    [26]Willocquet L, Savary S, Fernandez L, et al. Structure and validation of RICEPEST, a production situation-driven, crop growth model simulating rice yield response to multiple pest injuries for tropical Asia[J]. Ecological Modelling,2002,153:247-268.
    [27]Angevin F, Klein E K, Choimet C, et al. Modelling impacts of cropping systems and climate on maize cross-pollination in agricultural landscapes:The MAPOD model[J]. European Journal of Agronomy,2008,28:471-484
    [28]Marletto V, Ventura F, Fontana G, et al. Wheat growth simulation and yield prediction with seasonal forecasts and a numerical model[J]. Agricultural and Forest Meteorology,2007,147: 71-79.
    [29]Bezuidenhout C N, Leary G O, Singels A, Bajic V B. A process-based model to simulate changes in tiller density and light interception of sugarcane crops[J]. Agricultural Systems,2003,76: 589-599.
    [30]Liu D L, Bull T A. Simulation of biomass and sugar accumulation in sugarcane using a process-based model[J]. Ecological Modelling,2001,144:181-211.
    [31]Lizaso J I, Batchelor W D, Westgate M E. A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves[J]. Field Crops Research,2003,80:1-17.
    [32]Robertson M J, Carberry P S, Chauhan Y S, et al. Predicting growth and development of pigeonpea:a simulation model[J]. Field Crops Research,2001,71:195-210.
    [33]Nouna B B, Katerji N, Mastrorilli M. Using the CERES-Maize model in a semi-arid Mediterranean environment. New modelling of leaf area and water stress functions[J]. European Journal of Agronomy,2003,19:115-123.
    [34]Kiniry J R, Bockholt A J. Maize and Sorghum Simulation in Diverse Texas Environments [J]. Agronomy Journal,1998,90:682-687.
    [35]Izaurralde R C, Williams J R, Mcgill W B, et al. Simulating soil C dynamics with EPIC:Model description and testing against long-term data[J]. Ecological Modelling,2006,192:362-384.
    [36]Ko J, Piccinni G, Steglich E. Using EPIC model to manage irrigated cotton and maize[J]. Agricultural Water Management, In Press, doi:10.1016/j.agwat.2009.03.021
    [37]Hartkamp A D, Hoogenboom G, Gilbert R A, et al. Adaptation of the CROPGRO growth model to velvet bean (Mucuna pruriens):Ⅱ. Cultivar evaluation and model testing[J]. Field Crops Research, 2002,78:27-40.
    [38]Ru N B, Boote K J, Sau F. Calibration and use of CROPGRO-soybean model for improving soybean management under rainfed conditions[J]. Agricultural Systems,2001,68:151-173.
    [39]Confalonieri R, Bechini L. A preliminary evaluation of the simulation model CropSyst for alfalfa[J]. European Journal of Agronomy,2004,21:223-237.
    [40]Li Y X, Tullberg J N, Freebairn D M, et al. Effects of tillage and traffic on crop production in dryland farming systems:I. Evaluation of PERFECT soil-crop simulation model[J]. Soil and Tillage Research,2008,100:15-24.
    [41]Corre-hellou G, Faure M, Launay M, et al. Adaptation of the STICS intercrop model to simulate crop growth and N accumulation in pea-barley intercrops[J]. Field Crops Research, In Press, doi: 10.1016/j.fcr.2009.04.007.
    [42]Benli B, Pala M, Stockle C, et al. Assessment of winter wheat production under early sowing with supplemental irrigation in a cold highland environment using CropSyst simulation model[J]. Agricultural Water Management,2007,93:45-53.
    [43]高亮之,hannaway D B.苜蓿生产的农业气候计算机模拟模式—ALFAMOD[J].江苏农业学报,1985,1(2):1-11.
    [44]高亮之,金之庆,黄耀,等.水稻计算机模拟模型及其应用之一水稻钟模型—水稻发育动态的计算机模型[J].中国农业气象,1989,10(3):3-10.
    [45]高亮之,金之庆.作物模拟与栽培优化原理的结合—RCSODS[J].作物杂志,1994(3):4-7.
    [46]郑国清,段韶芬,张瑞玲,等.RCSODS—水稻栽培计算机模拟优化决策系统[J].计算机农业应用,1993(3):14-20.
    [47]黄耀,高亮之,金之庆.水稻计算机模拟模型及其应用之三—水稻群体光合生产的动态模拟模型[J].中国农业气象,1990,11(1):10-15.
    [48]殷新佑.水稻生长日历模拟模型及其应用的研究Ⅰ.“源活性”子模型—水稻干物质生产、消耗、分配与积累的模拟[J].江西农业大学学报,1991,13(2):107-122.
    [49]潘学标.作物模型原理[M].北京:气象出版社,2003.
    [50]冯利平,韩学信.棉花栽培计算机模拟决策系统(COTSYS)[J].棉花学报,1999,11(5):251-254.
    [51]高亮之,金之庆,郑国清,等.小麦栽培模拟优化决策系统(WCSODS)[J].江苏农业学报,2000,16(2):65-72.
    [52]杨启国.小麦栽培模拟优化决策系统(WCSODS)介绍及应用[J].干旱气象,2001,19(1):42-45.
    [53]姚凤梅,许吟隆,冯强,等.CERES-Rice模型在中国主要水稻生态区的模拟及其检验[J].作物学报,2005,31(5):545-550.
    [54]胡亚南,柴绍忠,许吟隆,等.CERES-Maize模型在中国主要玉米种植区域的适用性[J].中国农业气象,2008,29(4):383-386.
    [55]王琳,郑有飞,于强,等.APSIM模型对华北平原小麦-玉米连作系统的适用性[J].应用生态学报,2007,18(11):2480-2486.
    [56]孟亚利,曹卫星,周治国,等.基于生长过程的水稻阶段发育与物候期模拟模型[J].中国农业科学,2003,36(11):1362-1367.
    [57]孟亚利,曹卫星,柳新伟,等.水稻地上部干物质分配动态模拟的初步研究[J].作物学报,2004,30(4):376-381.
    [58]潘洁,朱艳,曹卫星.基于顶端发育的小麦产量结构形成模型[J].作物学报,2005,31:316-322.
    [59]Pan J, Zhu Y, Jiang D, et al. Modeling plant nitrogen uptake and grain nitrogen accumulation in wheat [J]. Field Crops Research,2006,97:322-336.
    [60]罗卫红,汪小品,戴剑峰,等.南方现代化温室黄瓜冬季蒸腾测量与模拟研究[J].植物生态学报,2004,28(1):59-65.
    [61]李娟,郭世荣,罗卫红.温室黄瓜光合生产与干物质积累模拟模型[J].农业工程学报,2003,19(4):241-244.
    [62]倪纪恒,罗卫红,李永秀,等.温室番茄叶面积与干物质生产的模拟[J].中国农业科学,2005,38(8):1629-1635.
    [63]倪纪恒,罗卫红,李永秀,等.温室番茄干物质分配与产量的模拟分析[J].应用生态学报,2006,17(5):811-816.
    [64]袁昌梅,罗卫红,邰翔,等.温室网纹甜瓜干物质分配、产量形成与采收期模拟研究[J].中国农业科学,2006,39(2):353-360.
    [65]曹卫星,潘洁,朱艳,等.基于生长模型与Web应用的小麦管理决策支持系统[J].农业工程学报,2007,23(1):133-138.
    [66]徐刚,郭世荣,张昌伟,等.基于生长模型的温室小型西瓜栽培管理专家系统(ESWCM)的研究和建立[J].农业工程学报,2006,22(4):157-161.
    [67]汤亮,曹卫星,朱艳.基于生长模型的油菜管理决策支持系统[J].农业工程学报,2006,22(11):160-164.
    [68]Mckinion J M, Baker D N, Hesketh J D, et al. SIMCOT II:A simulation of cotton growth and yield. Washington:Unite States Department of Agriculture,1975.
    [69]Baker D N, Lambert J R, Phene C J, et al. GOSSYM:A simulator of cotton crop dynamic [C]. In: Enterprises Computers Applied To The Management Of Large-scale Agricultural.Papers and proceedings of a U.S.-U.S.S.R. Seminar. Moscow, Riga, Kishinev:1976.
    [70]Boone M Y, Porter D O, Mckinion J M. Calibration of GOSSYM:Theory and practice [J]. Computers and Electronics in Agriculture,1993,9:193-203.
    [71]Fye R E, Reddy V R, Baker D N. The validation of GOSSYM:Part 1-Arizona conditions [J]. Agricultural Systems,1984,14:85-105.
    [72]Reddy V R, Baker D N, Jenkins J N. Validation of GOSSYM:Part Ⅱ. Mississippi conditions [J]. Agricultural Systems,1985,17:133-154.
    [73]Reddy V R, Baker D N. Estimation of parameters for the cotton simulation model GOSSYM: Cultivar differences [J]. Agricultural Systems,1988,26:111-122.
    [74]Reddy V R, Baker D N. Application of GOSSYM to analysis of the effects of weather on cotton yields [J]. Agricultural Systems,1990,32:83-95.
    [75]Mckinion J M, Baker D N, Whisler F D, et al. Application of the GOSSYM/COMAX system to cotton crop management [J]. Agricultural Systems,1989,31:55-65.
    [76]Lemmon H, Ning C. Object-oriented design of a cotton crop model [J]. Ecological Modelling, 1997,94:45-51.
    [77]Jackson B S, Arkin G F, Hearn A B. COTTAM:a cotton plant simulation model for an IBM PC microcomputer [G]. Misc. Publ., MP-1685, Texas Agricultural Experiment Station, College Station, Texas,1990.
    [78]Wall G W, Amthor J S, Kimball B A. COTCO2:a cotton growth simulation model for global change [J]. Agricultural and Forest Meteorology,1994,70:289-342.
    [79]Reddy V R. Modeling cotton growth and phenology in response to temperature [J]. Computers and Electronics in Agriculture,1994,10:63-73.
    [80]Mutsaers H J W. KUTUN:A morphogenetic model for cotton (Gossypium Hirsutum L.) [J]. Agricultural Systems,1984,14:229-257.
    [81]Hearn A B, Daroza G D. A simple model for crop management applications for cotton (Gossypium hirsutum L.) [J]. Field Crops Research,1985,12:49-69.
    [82]Wells A T, Hearn A B. OZCOT:A cotton crop simulation model for management [J]. Mathematics and Computers in Simulation,1992,33:433-438.
    [83]Hearn A B. OZCOT:A simulation model for cotton crop management. [J]. Agricultural Systems, 1994,44:257-299.
    [84]Milroy S P, Bange M P, Hearn A B. Row configuration in rainfed cotton systems:modification of the OZCOT simulation model[J]. Agricultural Systems,2004,82:1-16.
    [85]Yang Y, Ouyang Z, Yang Y, et al. Simulation of the effect of pruning and topping on cotton growth using COTTON2K model[J]. Field Crops Research,2008,106:126-137.
    [86]Ko J, Piccinni G, Steglich E. Using EPIC model to manage irrigated cotton and maize[J]. Agricultural Water Management,2009,96:1323-1331.
    [87]吴国伟,翟连荣,李典谟,等.棉花生长发育模拟模型的研究[J].生态学报,1988,8(3):201-210.
    [88]潘学标,龙腾芳,董占山,等.棉花生长发育与产量形成模拟模型(CGSM)研究[J].棉花学报,1992,4(S1):11-20.
    [89]潘学标,韩湘玲,石元春.一个可用于栽培管理的棉花生长发育模拟模型—COTGROW[J].中国农业科学,1996,29(1):94-96.
    [90]潘学标,韩湘玲,董占山,等.棉花生长发育模拟模型COTGROW的建立Ⅰ光合作用和干物质生产与分配[J].棉花学报,1997,9(3):132-141.
    [91]潘学标,韩湘玲,王延琴,等.棉花生长发育模拟模型COTGROW的建立Ⅱ发育与形态发生[J].棉花学报,1999,11(4):174-181.
    [92]高亮之.农业模型学基础[M].香港:天马图书有限公司,2004.
    [93]张立祯,曹卫星,张思平,等.基于生理发育时间的棉花生育期模拟模型[J].棉花学报,2003,15(2):97-103.
    [94]马富裕,曹卫星,张立祯,等.棉花生育时期及蕾铃发生发育模拟模型研究[J].应用生态学报,2005,16(4):626-630.
    [95]张立桢,曹卫星,张思平,等.棉花光合生产与干物质积累过程的模拟[J].棉花学报,2003,15(3):138-145.
    [96]张立桢,曹卫星,张思平.棉花干物质分配和产量形成的动态模拟[J].中国农业科学,2004,
    37(11):1621-1627.
    [97]马新明,李秉柏,金之庆,等.棉花蕾铃发育与产量形成的模拟模型[J].江苏农业学报,1999,15(2):71-76.
    [98]刘姣娣,曹卫彬,马蓉.棉花叶面积指数的遥感估算模型研究[J].中国农业科学,2008,41:4301-4306.
    [99]马勤建,王登伟,黄春燕,等.利用高光谱植被指数估算棉花干物质积累的模型研究[J].遥感信息,200838-41.
    [100]柏军华,李少昆,王克如,等.基于近地高光谱棉花生物量遥感估算模型[J].作物学报,2006,33:311-316.
    [101]马勤建,王登伟,黄春燕,等.棉花叶面积指数和地上干物质积累量的高光谱估算模型研究[J].棉花学报,2008,20(3):217-222.
    [102]柏军华,李少昆,王克如,等.棉花产量遥感预测的L-Y模型构建[J].作物学报,2006,32:840-844.
    [103]Muhidong J. A cotton fiber quality model [D]. Mississippi State University:Mississipi,1996.
    [104]张丽娟,张冬有,薛晓萍,等.纤维比强度气象生态模型的研究[J].中国农学通报,2006,22(6):105-109.
    [105]张丽娟,周治国,熊宗伟,等.麦克隆值的气象生态模型研究[J].中国农学通报,2007,23(3):127-132.
    [106]张丽娟,孟亚利,陈兵林,等.棉纤维综合品质指数模型的指标确定与建模[J].棉花学报,2005,17(4):217-221.
    [107]张丽娟,孟亚利,薛晓萍,等.棉纤维综合品质指数模型构建[J].中国农业科学,2006,39(6):1130-1137.
    [108]马富裕,朱艳,曹卫星,等.棉纤维品质指标形成的动态模拟[J].作物学报,2006,32(3):442-448.
    [109]Wanjura D F, Barker G L. Cotton lint yield accumulation rate and quality development [J]. Field Crops Research,1985,10:205-218.
    [110]Roussopoulos D, Liakatas A, Whittington W J. Controlled-temperature effects on cotton growth and development [J]. Journal of agricultural science,1998,130:451-462.
    [111]Craig W B, Robert L N. Phenological and Morphological Components of Cotton Crop Maturity [J]. Crop Science,2005,45:1497-1503.
    [112]刘静,翟朝勋,张淑琴,等.宁夏地膜棉花花铃期气象条件与生长发育及干物质积累间的关系[J].中国农业气象,1999,20(2):42-45.
    [113]Ryan P V, Russell C N, Keith L E, et al. Predicting Cotton Boll Maturation Period Using Degree Days and Other Climatic Factors [J]. Agronomy Journal,2005,97:494-499.
    [114]Dusserre J, Crozat Y, Warembourg F R, et al. Effects of shading on sink capacity and yield components of cotton in controlled environments [J]. Agronomie,2002,22:307-320.
    [115]陈冠文,余渝.棉铃发育温光效应的初步研究[J].棉花学报,2001,13(1):63-64.
    [116]Grimes D W, Yamada H. Relation of cotton growth and yield to minimum leaf water potential [J]. Crop Science,1982,22:134-139.
    [117]Reddy K R, Davidonis G H, Johnson A S, et al. Temperature Regime and Carbon Dioxide Enrichment Alter Cotton Boll Development and Fiber Properties [J]. Agronomy journal,1999,91: 851-858.
    [118]Reddy K R, Koti S, Davidonis G H, et al. Interactive Effects of Carbon Dioxide and Nitrogen Nutrition on Cotton Growth, Development, Yield, and Fiber Quality [J]. Agronomy Journal,2004, 96:1148-1157.
    [119]Johnson I R, Thornley J H M. Temperature dependence of plant and crop processes [J]. Annals of Botany,1985,55:1-24.
    [120]Cao W, Moss D N. Modeling phasic development in wheat:a conceptual integration of physiological components [J]. Journal of Agricultural Science,1997,129:163-172.
    [121]严美春,曹卫星,罗卫红,等.小麦发育过程及生育期机理模型的研究Ⅰ.建模的基本设想与模型的描述[J].应用生态学报,2000,11(3):355-359.
    [122]陈兵林,曹卫星,周治国.棉花单铃干物质积累分配的分期动态模拟及检验[J].中国农业科学,2006,39(3):487-493.
    [123]张建华,李迎春,余行杰.作物物候规律的模拟研究[J].作物学报,2000,26(5):635-639.
    [124]勾玲,张旺锋,阎洁,等.不同生态类型品种棉籽蛋白质与脂肪累积规律的研究[J].新疆农业大学学报,2001,24(2):1-8.
    [125]周治国,许玉璋,许萱.温度对棉籽发育的影响[J].西北农业大学学报,1992,20(2):73-78.
    [126]王延琴,杨伟华,周大云,等.不同生态区及收获期对棉子营养品质的影响[J].中国棉花,2003,30(2):3-7.
    [127]许玉璋,周治国,许萱.棉株生理年龄对棉籽与纤维品质的影响[J].陕西农业科学,1994(4):1-3.
    [128]周可金,郭卫勇,黄典平,等.不同开花期棉铃主要经济性状变化规律的研究[J].棉花学报,1998,10(5):244-248.
    [129]徐立华,李大庆,刘兴民,等.陆地棉棉铃发育机理及影响因素的研究[J].棉花学报,1994,6(4):253-255.
    [130]Zhao D, Oosterhuis D. Cotton responses to shade at different growth stages:Nonstructural carbohydrate composition [J]. Crop Science,1998,38:1196-1203.
    [131]周治国,孟亚利,施培.苗期遮荫对棉花产量与品质形成的影响[J].应用生态学报,2002,13(8):997-1000.
    [132]马富裕,曹卫星,周治国,等.田间条件下遮光对棉花棉铃发育及纤维品质的影响[J].棉花学报,2004,16(5):270-274.
    [133]许玉璋,许萱,赵都利,等.土壤水分对棉籽发育的影剧响[J].干旱地区农业研究,1993,11(4):48-53.
    [134]赵都利,许玉璋,许萱.花铃期缺水对棉花产量和品质的影响[J].西北农业大学学报,1990,18:42-47.
    [135]赵都利,许玉璋,黄有郛,等.花铃期缺水对棉花种子发育的影响[J].作物学报,1993,19(6):546-552.
    [136]Leffler H R, Hunter J H. Reproductive development and seed quality of cotton cultivars as affected by nitrogen fertilization [J]. Field Crops Research,1985,10:219-228.
    [137]Malavolta E, Nogueira N G, Heinrichs R, et al. Evaluation of nutritional status of the cotton plant with respect to nitrogen. [J]. Communications in Soil Science & Plant Analysis,2004,35: 1007-1019.
    [138]海江波,王方成,范术丽,等.氮磷钾对棉铃干物质累积及纤维品质的影响[J].西北农业学报,1998,7(4):49-52.
    [139]Sawan Z M, Saeb A. Hafez A E B, Alkassas A R. Cottonseed, protein, oil yields and oil properties as affected by nitrogen fertilization and foliar application of potassium and a plant growth retardant [J]. World Journal of Agricultural Sciences,2006,2:56-65.
    [140]范术丽,许玉璋,张朝军.氮磷钾对棉花伏桃发育的影响[J].棉花学报,1999,11:24-30.
    [141]Egelkraut T M, Kissel D E, Cabrera M L, et al. Nitrogen concentration in cottonseed as an indicator of N availability [J]. Nutrient Cycling in Agroecosystemst,2004,68:235-242.
    [142]章永松,林咸永,何念祖.钾对棉籽成分与品质的影响[J].浙江大学学报,1998,24:35-38.
    [143]King E E, Leffler H R. Nature and patterns of proteins during cotton seed development [J]. Plant Physiology,1979,63:260-263.
    [144]Rabadia V S, Thaker V S, Singh Y D. Relationship between water content and growth of seed and fibre of three cotton genotypes [J]. Journal of Agronomy and Crop Science,1999,183:255-261.
    [1]Roussopoulos D, Liakatas A, Whittington W J. Controlled-temperature effects on cotton growth and development [J]. Journal of agricultural science,1998,130:451-462.
    [2]Ryan P V, Russell C N, Keith L E, et al. Predicting Cotton Boll Maturation Period Using Degree Days and Other Climatic Factors [J]. Agronomy Journal,2005,97:494-499.
    [3]潘学标,韩湘玲,石元春.一个可用于栽培管理的棉花生长发育模拟模型—COTGROW[J].中国农业科学,1996,29(1):94-96.
    [4]马新明,李秉柏,金之庆,等.棉花蕾铃发育与产量形成的模拟模型[J].江苏农业学报,1999,15(2):71-76.
    [5]Wall G W, Amthor J S, Kimball B A. COTCO2:a cotton growth simulation model for global change [J]. Agricultural and Forest Meteorology,1994,70:289-342.
    [6]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:华文出版社,2000
    [7]孟亚利,曹卫星,周治国,等.基于生长过程的水稻阶段发育与物候期模拟模型[J].中国农业科学,2003,36(11):1362-1367.
    [8]刘铁梅,曹卫星,罗卫红.小麦抽穗后生理发育时间的计算与生育期的预测[J].麦类作物学报,2000,20(3):29-34.
    [9]严美春,曹卫星,罗卫红,等.小麦发育过程及生育期机理模型的研究Ⅰ.建模的基本设想与模型的描述[J].应用生态学报,2000,11(3):355-359.
    [10]张立祯,曹卫星,张思平,等.基于生理发育时间的棉花生育期模拟模型[J].棉花学报,2003,15(2):97-103.
    [11]张培新,贺超兴,张志斌,等.基于生理发育时间的日光温室番茄发育模拟模型[J].中国农业气象,2006,27:314-317.
    [12]王冀川,马富裕,冯胜利,等.基于生理发育时间的加工番茄生育期模拟模型[J].应用生态学报,2008,19(7):1544-1550.
    [13]陈兵林,曹卫星,周治国.棉花单铃干物质积累分配的分期动态模拟及检验[J].中国农业科学,2006,39(3):487-493.
    [14]薛晓萍,周治国,张丽娟,等.棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用[J].生态学报,2006,26(6):1781-1791.
    [15]Luque De Castro M D, Garcia-ayuso L E. Soxhlet extraction of solid materials:an outdated technique with a promising innovative future [J]. Analytica Chimica Acta,1998,369:1-10.
    [16]Feil B, Moser S B, Jampatong S, et al. Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization [J]. Crop Science,2005,45: 516-523.
    [1]Duncan W G. SIMCOT:A simulator of cotton growth and yield [C]. In:Murphy C. m., Hesketh J. d. Workshop Modeling Tree Growth Dynamics and Modelling. Oak Ridge, TN:Oak Ridge National Laboratory,1972.
    [2]Boone M Y, Porter D O, Mckinion J M. Calibration of GOSSYM:Theory and practice [J]. Computers and Electronics in Agriculture,1993,9:193-203.
    [3]Jackson B S, Arkin G F, Hearn A B. COTTAM:a cotton plant simulation model for an IBM PC microcomputer [G]. Misc. Publ., MP-1685, Texas Agricultural Experiment Station, College Station, Texas,1990.
    [4]Hearn A B. OZCOT:A simulation model for cotton crop management. [J]. Agricultural Systems, 1994,44:257-299.
    [5]潘学标,韩湘玲,石元春.一个可用于栽培管理的棉花生长发育模拟模型—COTGROW[J].中国农业科学,1996,29(1):94-96.
    [6]Wall G W, Amthor J S, Kimball B A. COTCO2:a cotton growth simulation model for global change [J]. Agricultural and Forest Meteorology,11994,70:289-342.
    [7]Zhang L, Cao W, Zhang S, et al. Simulation model for cotton development stage based on physiological development time [J]. Cotton Science,2003,15:97-103.
    [8]陈冠文,余渝.棉铃发育温光效应的初步研究[J].棉花学报,2001,13(1):63-64.
    [9]马富裕,曹卫星,张立祯,等.棉花生育时期及蕾铃发生发育模拟模型研究[J].应用生态学报,2005,16(4):626-630.
    [10]唐湘玲,田长彦,吕昭智.不同氮肥水平与棉花生育期所需日度的关系[J].干旱区研究,2003,20(3):226-229.
    [11]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:华文出版社,2000.
    [12]王冀川,马富裕,冯胜利,等.基于生理发育时间的加工番茄生育期模拟模型[J].应用生态学报,2008,19(7):1544-1550.
    [13]陈兵林,曹卫星,周治国.棉花单铃干物质积累分配的分期动态模拟及检验[J].中国农业科学,2006,39(3):487-493.
    [14]孟亚利,曹卫星,周治国,等.基于生长过程的水稻阶段发育与物候期模拟模型[J].中国农业科学,2003,36(11):1362-1367.
    [15]刘铁梅,曹卫星,罗卫红.小麦抽穗后生理发育时间的计算与生育期的预测[J].麦类作物学报,2000,20(3):29-34.
    [16]严美春,曹卫星,罗卫红,等.小麦发育过程及生育期机理模型的研究Ⅰ.建模的基本设想与模型的描述[J].应用生态学报,2000,11(3):355-359.
    [17]张立祯,曹卫星,张思平,等.基于生理发育时间的棉花生育期模拟模型[J].棉花学报,2003,15(2):97-103.
    [18]张培新,贺超兴,张志斌,等.基于生理发育时间的日光温室番茄发育模拟模型[J].中国农业气象,2006,27:314-317.
    [19]Wanjura D F, Barker G L. Cotton lint yield accumulation rate and quality development [J]. Field Crops Research,1985,10:205-218.
    [20]Roussopoulos D, Liakatas A, Whittington W J. Controlled-temperature effects on cotton growth and development [J]. Journal of agricultural science,1998,130:451-462.
    [21]Ryan P V, Russell C N, Keith L E, et al. Predicting Cotton Boll Maturation Period Using Degree Days and Other Climatic Factors [J]. Agronomy Journal,2005,97:494-499.
    [22]Craig W B, Robert L N. Phenological and Morphological Components of Cotton Crop Maturity [J]. Crop Science,2005,45:1497-1503.
    [23]Shaffer M J, Larson W E. NTRM, A soil-crop simulation model for nitrogen, tillage, and crop-residue management [M]. Washington, D.C.:U.S.D.A, ARS, National Technical Information Service,1987.
    [24]高亮之,金之庆,黄耀,等.水稻计算机模拟模型及其应用之一水稻钟模型—水稻发育动态的计算机模型[J].中国农业气象,1989,10(3):3-10.
    [25]刘静,翟朝勋,张淑琴,等.宁夏地膜棉花花铃期气象条件与生长发育及干物质积累间的关系[J].中国农业气象,1999,20(2):42-45.
    [26]Dusserre J, Crozat Y, Warembourg F R, et al. Effects of shading on sink capacity and yield components of cotton in controlled environments [J]. Agronomie,2002,22:307-320.
    [27]Hofs J L, Hau B, Marais D. Boll distribution patterns in Bt and non-Bt cotton cultivars:I. Study on commercial irrigated farming systems in South Africa [J]. Field Crops Research,2006,98: 203-209.
    [1]Ahmad S, Anwar F, Hussain A I, et al. Dose soil salinity affect yield and composition of cottonseed oil [J]? Journal of the American Oil Chemists Society,2007,84:845-851.
    [2]Duncan W G. SIMCOT:A simulator of cotton growth and yield [C]. In:Murphy C. m., Hesketh J. d.Workshop Modeling Tree Growth Dynamics and Modelling. Oak Ridge, TN:Oak Ridge National Laboratory,1972.
    [3]Boone M Y, Porter D O, Mckinion J M. Calibration of GOSSYM:Theory and practice [J]. Computers and Electronics in Agriculture,1993,9:193-203.
    [4]Jackson B S, Arkin G F, Hearn A B. COTTAM:a cotton plant simulation model for an IBM PC microcomputer [G]. Misc. Publ., MP-1685, Texas Agricultural Experiment Station, College Station, Texas,1990.
    [5]Hearn A B. OZCOT:A simulation model for cotton crop management [J]. Agricultural Systems, 1994,44:257-299.
    [6]潘学标,韩湘玲,石元春.一个可用于栽培管理的棉花生长发育模拟模型—COTGROW[J].中国农业科学,1996,29(1):94-96.
    [7]Thaker V S, Saroop S, Vaishnav P P, et al. Genotyopic variations and influence of diurnal temperature on cotton fibre development [J]. Field Crops Research,1989,22:129-141.
    [8]Rabadia V S, Thaker V S, Singh Y D. Relationship between water content and growth of seed and fibre of three cotton genotypes [J]. Journal of Agronomy and Crop Science,1999,183:255-261.
    [9]周治国,许玉璋,许萱.棉子品质与纤维品质及铃期温度的相关性研究[J].陕西农业科学,1992(3):3-5.
    [10]周治国,许玉璋,许萱.温度对棉籽发育的影响[J].西北农业大学学报,1992,20(2):73-78.
    [11]周治国,孟亚利,施培.苗期遮荫对棉花产量与品质形成的影响[J].应用生态学报,2002,13(8):997-1000.
    [12]马富裕,曹卫星,周治国,等.田间条件下遮光对棉花棉铃发育及纤维品质的影响[J].棉花 学报,2004,16(5):270-274.
    [13]许玉璋,许萱,赵都利,等.土壤水分对棉籽发育的影剧响[J].干旱地区农业研究,1993,11(4):48-53.
    [14]赵都利,许玉璋,许萱.花铃期缺水对棉花产量和品质的影响[J].西北农业大学学报,1990,18:42-47.
    [15]Leffler H R, Hunter J H. Reproductive development and seed quality of cotton cultivars as affected by nitrogen fertilization [J]. Field Crops Research,1985,10:219-228.
    [16]Malavolta E, Nogueira N G, Heinrichs R, et al. Evaluation of nutritional status of the cotton plant with respect to nitrogen. [J]. Communications in Soil Science & Plant Analysis,2004,35: 1007-1019.
    [17]Sawan Z M, Hafez S A, Basyone A E, et al. Cottonseed, protein, oil yields and oil properties as affected by nitrogen fertilization and foliar application of potassium and a plant growth retardant [J]. World Journal of Agricultural Sciences,2006,2:56-65.
    [18]章永松,林咸永,何念祖.钾对棉籽成分与品质的影响[J].浙江大学学报,1998,24:35-38.
    [19]王冀川,马富裕,冯胜利,等.基于生理发育时间的加工番茄生育期模拟模型[J].应用生态学报,2008,19(7):1544-1550.
    [20]陈兵林,曹卫星,周治国.棉花单铃干物质积累分配的分期动态模拟及检验[J].中国农业科学,2006,39(3):487-493.
    [21]汤亮,朱艳,鞠昌华,等.油菜地上部干物质分配与产量形成模拟模型[J].应用生态学报,2007,18(3):526-530.
    [22]Heuvelink E. Dry matter partitioning in Tomato:Validation of a dynamic simulation Model [J]. Annals of Botany,1996,77:71-80.
    [23]Horrocks R D, Kerby T A, Buxton D R. Carbon source for developing bolls in normal and superokra leaf cotton [J]. New Phytologist,1978,80:335-340.
    [24]Martre P, Jamieson P D, Semenov M A, et al. Modelling protein content and composition in relation to crop nitrogen dynamics for wheat [J]. European Journal of Agronomy,2006,25: 138-154.
    [25]Jamieson P D, Semenov M A. Modelling nitrogen uptake and redistribution in wheat [J]. Field Crops Research,2000,68:21-29.
    [26]Turner J H, Ramey J H H, Smith Worley J. Influence of environment on seed quality of four cotton cultivars [J]. Crop science,1976,16:407-409.
    [27]Gotmare V, Singh P, Mayee C D, et al. Genetic variability for seed oil content and seed index in some wild species and perennial races of cotton [J]. Plant Breeding,2004,123:207-208.
    [28]Sawan Z M, Hafez S A, Basyony A E. Effect of Nitrogen Fertilization and Foliar Application of Plant Growth Retardants and Zinc on Cottonseed, Protein and Oil Yields and Oil Properties of Cotton [J]. Journal of Agronomy and Crop Science,2001,186:183-191.
    [29]Demotes-mainard S, Jeuffroy M H. Effects of nitrogen and radiation on dry matter and nitrogen accumulation in the spike of winter wheat [J]. Field Crops Research,2004,87:221-233.
    [30]Demotes-mainard S, Jeuffroy M. Partitioning of dry matter and nitrogen to the spike throughout the spike growth period in wheat crops subjected to nitrogen deficiency [J]. Field Crops Research,2001, 70:153-165.
    [31]薛晓萍,王建国,郭文琦,等.棉花花后果枝叶生物量和氮累积特征及临界氮浓度稀释模型的研究[J].作物学报,2007,33(4):669-676.
    [32]薛晓萍,陈兵林,郭文琦,等.棉花临界需氮量动态定量模型[J].应用生态学报,2006,17(12):2363-2370.
    [1]Boone M Y, Porter D O, Mckinion J M. Calibration of GOSSYM:Theory and practice [J]. Computers and Electronics in Agriculture,1993:,9:193-203.
    [2]Jackson B S, Arkin G F, Hearn A B. The cotton simulation model "COTTAM":Fruiting Model Calibration and Testing [J]. Transactions of the American Society of Agricultural Engineers,1988, 31:846-854.
    [3]Wells A T, Hearn A B. OZCOT:A cotton crop simulation model for management [J]. Mathematics and Computers in Simulation,1992,33:433-438.
    [4]Larson J A, Mapp H P, Verhalen L M, et al. Adapting a cotton model for decision analyses:a yield response evaluation [J]. Agricultural Systems,1996,50:145-167.
    [5]Pan X, Han X, Shi Y. A cotton growth and development simulation model for culture management-COTGROW [J]. Scientia Agricultura Sinica,1996,29:94-96.
    [6]张丽娟,孟亚利,薛晓萍,等.棉纤维综合品质指数模型构建[J].中国农业科学,2006,39(06):1130-1137.
    [7]张丽娟,孟亚利,陈兵林,等.棉纤维综合品质指数模型的指标确定与建模[J].棉花学报,2005,17(4):217-221.
    [8]Sawan Z M, El-farra A A, El-latif S A. Cottonseed, Protein and Oil Yields, and Oil Properties as Affected by Nitrogen and Phosphorus Fertilization and Growth Regulators [J]. Journal of Agronomy and Crop Science,1988,161:50-56.
    [9]Ahmad S, Anwar F, Hussain A I, et al. Dose soil salinity affect yield and composition of cottonseed oil? [J]. Journal of the American Oil Chemists Society,2007,84:845-851.
    [10]Gotmare V, Singh P, Mayee C D, et al. Genetic variability for seed oil content and seed index in some wild species and perennial races of cotton [J]. Plant Breeding,2004,123:207-208.
    [11]Mert M, Aki Y, Gen O. Genotypic and phenotypic relationships of lint yield, fibre properties and seed content in a cross of two cotton genotypes [J]. Acta Agriculturae Scandinavica:Section B, Soil and Plant Science,2005,55:76-80.
    [12]King E E, Leffler H R. Nature and patterns of proteins during cotton seed development [J]. Plant Physiology,1979,63:260-263.
    [13]Egelkraut T M, Kissel D E, Cabrera M L, et al. Nitrogen concentration in cottonseed as an indicator of N availability [J]. Nutrient Cycling in Agroecosystemst,2004,68:235-242.
    [14]Sawan Z M, Saeb A. Hafez A E B, Alkassas A R. Cottonseed, protein, oil yields and oil properties as affected by nitrogen fertilization and foliar application of potassium and a plant growth retardant [J]. World Journal of Agricultural Sciences,2006,2:56-65.
    [15]Sawan Z M, Hafez S A, Basyony A E, et al. Nitrogen, potassium and plant growth retardant effects on oil content and quality of cotton seed [J]. Grasas Y Aceites,2007,58:243-251.
    [16]Malavolta E, Nogueira N G, Heinrichs R, et al. Evaluation of nutritional status of the cotton plant with respect to nitrogen [J]. Communications in Soil Science & Plant Analysis,2004,35: 1007-1019.
    [17]李文峰,孟亚利,陈兵林,等.气象因子对棉籽脂肪和蛋白质含量的影响[J].生态学报,2009, 29(4):1832-1839.
    [18]马富裕,曹卫星,周治国,等.田间条件下遮光对棉花棉铃发育及纤维品质的影响[J].棉花学报,2004,16(5):270-274.
    [19]Sawan Z M, El-farra A A, El-sakr A S. Cottonseed and Oil Yields, and Oil Properties as Affected by Nitrogen Fertilization and Indole-3-Butyric Acid Application [J]. Zeitschrift fur Acker-und Pflanzenbau,1982,151:360.
    [20]Sawan Z M, Hafez S A, Basyony A E. Effect of Nitrogen Fertilization and Foliar Application of Plant Growth Retardants and Zinc on Cottonseed, Protein and Oil Yields and Oil Properties of Cotton. [J]. Journal of Agronomy and Crop Science,2001,186:183-191.
    [21]Sawan Z M, El-kasaby A T, Sallouma B M. Effect of plant density, nitrogen fertilization and growth regulators on cottonseed yield and seedling vigour [J]. Zeitschrift fur Acker-und Pflanzenbau,1985,154:120-128.
    [1]Duncan W G. SIMCOT:A simulator of cotton growth and yield [C]. In:Murphy C. m., Hesketh J. d. Workshop Modeling Tree Growth Dynamics and Modelling. Oak Ridge, TN:Oak Ridge National Laboratory,1972.
    [2]Boone M Y, Porter D O, Mckinion J M. Calibration of GOSSYM:Theory and practice [J]. Computers and Electronics in Agriculture,1993,9:193-203.
    [3]Jackson B S, Arkin G F, Hearn A B. COTTAM:a cotton plant simulation model for an IBM PC microcomputer [G]. Misc. Publ., MP-1685, Texas Agricultural Experiment Station, College Station,Texas,1990.
    [4]Hearn A B. OZCOT:A simulation model for cotton crop management. [J]. Agricultural Systems, 1994,44:257-299.
    [5]潘学标,韩湘玲,石元春.一个可用于栽培管理的棉花生长发育模拟模型—COTGROW[J].中国农业科学,1996,29(1):94-96.
    [6]Sawan Z M, El-farra A A, El-latif S A. Cottonseed, Protein and Oil Yields, and Oil Properties as Affected by Nitrogen and Phosphorus Fertilization and Growth Regulators [J]. Journal of Agronomy and Crop Science,1988,161:50-56.
    [7]Ahmad S, Anwar F, Hussain A I, et al. Dose soil salinity affect yield and composition of cottonseed oil [J]? Journal of the American Oil Chemists Society,2007,84:845-851.
    [8]Gotmare V, Singh P, Mayee C D, et al. Genetic variability for seed oil content and seed index in some wild species and perennial races of cotton [J]. Plant Breeding,2004,123:207-208.
    [9]Mert M, Aki Y, Gen O. Genotypic and phenotypic relationships of lint yield, fibre properties and seed content in a cross of two cotton genotypes [J]. Acta Agriculturae Scandinavica:Section B, Soil and Plant Science,2005,55:76-80.
    [10]King E E, Leffler H R. Nature and patterns of proteins during cotton seed development [J]. Plant Physiology,1979,63:260-263.
    [11]Egelkraut T M, Kissel D E, Cabrera M L, et al. Nitrogen concentration in cottonseed as an indicator of N availability [J]. Nutrient Cycling in Agroecosystemst,2004,68:235-242.
    [12]Sawan Z M, Hafez S A, Basyony A E, et al. Cottonseed, protein, oil yields and oil properties as
    affected by nitrogen fertilization and foliar application of potassium and a plant growth retardant [J]. World Journal of Agricultural Sciences,2006,2:56-65.
    [13]Sawan Z M, Hafez S A, Basyony A E, et al. Nitrogen, potassium and plant growth retardant effects on oil content and quality of cotton seed [J]. Grasas Y Aceites,2007,58:243-251.
    [14]Malavolta E, Nogueira N G, Heinrichs R, et al. Evaluation of nutritional status of the cotton plant with respect to nitrogen [J]. Communications in Soil Science & Plant Analysis,2004,35: 1007-1019.
    [15]潘学标,韩湘玲,石元春.COTGROW:棉花生长发育模拟模型[J].棉花学报,1996,8(4):180-188.
    [16]Wells A T, Hearn A B. OZCOT:A cotton crop simulation model for management [J]. Mathematics and Computers in Simulation,1992,33:433-438.
    [17]薛晓萍,陈兵林,郭文琦,等.棉花临界需氮量动态定量模型[J].应用生态学报,2006,17(12):2363-2370.
    [18]薛晓萍,王建国,郭文琦,等.棉花花后果枝叶生物量和氮累积特征及临界氮浓度稀释模型的研究[J].作物学报,2007,33(4):669-676.
    [19]李文峰,孟亚利,赵新华,等.棉花(Gossypium hirsutum L.)铃期与棉籽干物质积累模拟模型研究[J].应用生态学报,2009,20(4):879-886
    [20]高荣岐,张春庆.种子生物学[M].北京:中国科学技术出版社,2002.
    [21]陈兵林,曹卫星,周治国.棉花单铃干物质积累分配的分期动态模拟及检验[J].中国农业科学,2006,39(3):487-493.
    [22]李卫国,王纪华,赵春江,等.基于NDVI和氮素积累的冬小麦籽粒蛋白质含量预测模型[J].遥感学报,2008,12(3):506-514.
    [23]李卫国,朱艳,荆奇,等.水稻籽粒蛋白质积累的模拟模型研究[J].中国农业科学,2006,39(3):544-551.
    [24]Pan J, Zhu Y, Jiang D, et al. Modeling plant nitrogen uptake and grain nitrogen accumulation in wheat [J]. Field Crops Research,2006,97:322-336.
    [25]Horrocks R D, Kerby T A, Buxton D R. Carbon source for developing bolls in normal and superokra leaf cotton [J]. New Phytologist,1978,80:335-340.
    [26]Heuvelink E. Dry matter partitioning in Tomato:Validation of a dynamic simulation Model [J]. Annals of Botany,1996,77:71-80.
    [27]Martre P, Jamieson P D, Semenov M A, et al. Modelling protein content and composition in relation to crop nitrogen dynamics for wheat [J]. European Journal of Agronomy,2006,25: 138-154.
    [28]Jamieson P D, Semenov M A. Modelling nitrogen uptake and redistribution in wheat [J]. Field Crops Research,2000,68:21-29.
    [29]Sawan Z M, El-farra A A, El-sakr A S. Cottonseed and Oil Yields, and Oil Properties as Affected by Nitrogen Fertilization and Indole-3-Butyric Acid Application [J]. Zeitschrift fur Acker-und Pflanzenbau,1982,151:360.
    [30]Sawan Z M, Hafez S A, Basyony A E. Effect of Nitrogen Fertilization and Foliar Application of Plant Growth Retardants and Zinc on Cottonseed, Protein and Oil Yields and Oil Properties of Cotton [J]. Journal of Agronomy and Crop Science,2001,186:183-191.
    [31]Sawan Z M, El-kasaby A T, Sallouma B M. Effect of plant density, nitrogen fertilization and growth regulators on cottonseed yield and seedling vigour [J]. Zeitschrift fur Acker-und Pflanzenbau,1985,154:120-128.
    [32]张祥,张丽,王书红,等.棉花源库调节对铃叶光合产物运输分配的影响[J].作物学报,2007,33(5):843-848
    [1]Duncan W G. SIMCOT:A simulator of cotton growth and yield [C]. In:Murphy C. m., Hesketh J. d. Workshop Modeling Tree Growth Dynamics and Modelling. Oak Ridge, TN:Oak Ridge National Laboratory,1972.
    [2]Boone M Y, Porter D O, Mckinion J M. Calibration of GOSSYM:Theory and practice [J]. Computers and Electronics in Agriculture,1993,9:193-203.
    [3]Jackson B S, Arkin G F, Hearn A B. The cotton simulation model "COTTAM":Fruiting Model Calibration and Testing [J]. Transactions of the American Society of Agricultural Engineers,1988, 31:846-854.
    [4]Wells A T, Hearn A B. OZCOT:A cotton crop simulation model for management [J]. Mathematics and Computers in Simulation,1992,33:433-438.
    [5]Larson J A, Mapp H P, Verhalen L M, et al. Adapting a cotton model for decision analyses:a yield response evaluation [J]. Agricultural Systems,1996,50:145-167.
    [6]Pan X, Han X, Shi Y. A cotton growth and development simulation model for culture management-COTGROW [J]. Scientia Agricultura Sinica,1996,29:94-96.
    [7]张丽娟,孟亚利,薛晓萍,等.棉纤维综合品质指数模型构建[J].中国农业科学,2006,39(06):1130-1137.
    [8]张丽娟,孟亚利,陈兵林,等.棉纤维综合品质指数模型的指标确定与建模[J].棉花学报,2005,17(4):217-221.
    [9]Sawan Z M, El-farra A A, El-latif S A. Cottonseed, Protein and Oil Yields, and Oil Properties as Affected by Nitrogen and Phosphorus Fertilization and Growth Regulators. [J]. Journal of Agronomy and Crop Science,1988,161:50-56.
    [10]Ahmad S, Anwar F, Hussain A I, et al. Dose soil salinity affect yield and composition of cottonseed oil? [J]. Journal of the American Oil Chemists Society,2007,84:845-851.
    [11]Gotmare V, Singh P, Mayee C D, et al. Genetic variability for seed oil content and seed index in
    some wild species and perennial races of cotton [J]. Plant Breeding,2004,123:207-208.
    [12]Mert M, Aki Y, Gen O. Genotypic and phenotypic relationships of lint yield, fibre properties and seed content in a cross of two cotton genotypes [J]. Acta Agriculturae Scandinavica:Section B, Soil and Plant Science,2005,55:76-80.
    [13]King E E, Leffler H R. Nature and patterns of proteins during cotton seed development [J]. Plant Physiology,1979,63:260-263.
    [14]Egelkraut T M, Kissel D E, Cabrera M L, et al. Nitrogen concentration in cottonseed as an indicator of N availability [J]. Nutrient Cycling in Agroecosystemst,2004,68:235-242.
    [15]Sawan Z M, Hafez S A, Basyony A E, et al. Cottonseed, protein, oil yields and oil properties as affected by nitrogen fertilization and foliar application of potassium and a plant growth retardant [J]. World Journal of Agricultural Sciences,2006,2:56-65.
    [16]Sawan Z M, Hafez S A, Basyony A E, et al. Nitrogen, potassium and plant growth retardant effects on oil content and quality of cotton seed [J]. Grasas Y Aceites,2007,58:243-251.
    [17]Malavolta E, Nogueira N G, Heinrichs R, et al. Evaluation of nutritional status of the cotton plant with respect to nitrogen [J]. Communications in Soil Science & Plant Analysis,2004,35: 1007-1019.
    [18]李文峰,孟亚利,赵新华,等.棉花(Gossypium hirsutum L.)铃期与棉籽干物质积累模拟模型研究[J].应用生态学报,2009,20(4):879-886
    [19]Horrocks R D, Kerby T A, Buxton D R. Carbon source for developing bolls in normal and superokra leaf cotton [J]. New Phytologist,1978,80:335-340.
    [20]Heuvelink E. Dry matter partitioning in Tomato:Validation of a dynamic simulation Model [J]. Annals of Botany,1996,77:71-80.
    [21]Martre P, Jamieson P D, Semenov M A, et al. Modelling protein content and composition in relation to crop nitrogen dynamics for wheat [J]. European Journal of Agronomy,2006,25: 138-154.
    [22]Jamieson P D, Semenov M A. Modelling nitrogen uptake and redistribution in wheat [J]. Field Crops Research,2000,68:21-29.
    [23]Turner J H, Ramey Jr H H, Smith Worley Jr. Influence of environment on seed quality of four cotton cultivars [J]. Crop science,1976,16:407-409.
    [24]周治国,许玉璋,许萱.棉子品质与纤维品质及铃期温度的相关性研究[J].陕西农业科学,1992(3):3-5.
    [25]周治国,许玉璋,许萱.温度对棉籽发育的影响[J].西北农业大学学报,1992,20(2):73-78.
    [26]徐立华,李大庆,刘兴民,等.陆地棉棉铃发育机理及影响因素的研究[J].棉花学报,1994, 6(4):253-255.
    [27]Zhao D, Oosterhuis D. Cotton responses to shade at different growth stages:Nonstructural carbohydrate composition [J]. Crop Science,1998,38:1196-1203.
    [28]周治国,孟亚利,施培.苗期遮荫对棉花产量与品质形成的影响[J].应用生态学报,2002,13(8):997-1000.
    [29]Sawan Z M, El-farra A A, El-sakr A S. Cottonseed and Oil Yields, and Oil Properties as Affected by Nitrogen Fertilization and Indole-3-Butyric Acid Application [J]. Zeitschrift fur Acker-und Pflanzenbau,1982,151:360-367.
    [30]Leffler H R, Hunter J H. Reproductive development and seed quality of cotton cultivars as affected by nitrogen fertilization [J]. Field Crops Research,1985,10:219-228.
    [31]Sawan Z M, Hafez S A, Basyony A E. Effect of Nitrogen Fertilization and Foliar Application of Plant Growth Retardants and Zinc on Cottonseed, Protein and Oil Yields and Oil Properties of Cotton [J]. Journal of Agronomy and Crop Science,2001,186:183-191.
    [32]Sawan Z M, El-kasaby A T, Sallouma B M. Effect of plant density, nitrogen fertilization and growth regulators on cottonseed yield and seedling vigour [J]. Zeitschrift fur Acker-und Pflanzenbau,1985,154:120-128.
    [1]Wanjura D F, Barker G L. Cotton lint yield accumulation rate and quality development [J]. Field Crops Research,1985,10:205-218.
    [2]Roussopoulos D, Liakatas A, Whittington W J. Controlled-temperature effects on cotton growth and development [J]. Journal of agricultural science,1998,130:451-462.
    [3]Jackson B S, Arkin G F, Hearn A B. COTTAM:a cotton plant simulation model for an IBM PC microcomputer [G]. Misc. Publ., MP-1685, Texas Agricultural Experiment Station, College Station, Texas,1990.
    [4]潘学标,韩湘玲,石元春.一个可用于栽培管理的棉花生长发育模拟模型—COTGROW[J].中国农业科学,1996,29(1):94-96.
    [5]刘静,翟朝勋,张淑琴,等.宁夏地膜棉花花铃期气象条件与生长发育及干物质积累间的关系[J].中国农业气象,1999,20(2):42-45.
    [6]Craig W B, Robert L N. Phenological and Morphological Components of Cotton Crop Maturity [J]. Crop Science,2005,45:1497-1503.
    [7]Ryan P V, Russell C N, Keith L E, et al. Predicting Cotton Boll Maturation Period Using Degree Days and Other Climatic Factors [J]. Agronomy Journal,2005,97:494-499.
    [8]Dusserre J, Crozat Y, Warembourg F R, et al. Effects of shading on sink capacity and yield components of cotton in controlled environments [J]. Agronomie,2002,22:307-320.
    [9]陈冠文,余渝.棉铃发育温光效应的初步研究[J].棉花学报,2001,13(1):63-64.
    [10]Wall G W, Amthor J S, Kimball B A. COTCO2:a cotton growth simulation model for global change [J]. Agricultural and Forest Meteorology,1994,70:289-342.
    [11]Shaffer M J, Larson W E. NTRM, A soil-crop simulation model for nitrogen, tillage, and crop-residue management [M]. Washington, D.C.:U.S.D.A, ARS, National Technical Information Service,1987:34-41.
    [12]高亮之,金之庆,黄耀,等.水稻计算机模拟模型及其应用之一水稻钟模型—水稻发育动态的计算机模型[J].中国农业气象,1989,10(3):3-10.
    [13]Zhang L, Cao W, Zhang S, et al. Simulation model for cotton development stage based on physiological development time [J]. Cotton Science,2003,15:97-103.
    [14]马富裕,曹卫星,张立祯,等.棉花生育时期及蕾铃发生发育模拟模型研究[J].应用生态学报,2005,16(4):626-630.
    [15]唐湘玲,田长彦,吕昭智.不同氮肥水平与棉花生育期所需日度的关系[J].干旱区研究,2003,20(3):226-229.
    [16]Hofs J L, Hau B, Marais D. Boll distribution patterns in Bt and non-Bt cotton cultivars:I. Study on commercial irrigated farming systems in South Africa [J]. Field Crops Research,2006,98: 203-209.
    [17]Duncan W G. SIMCOT:A simulator of cotton growth and yield [C]. In:Murphy C. m., Hesketh J. d.Workshop Modeling Tree Growth Dynamics and Modelling. Oak Ridge, TN:Oak Ridge National Laboratory,1972.
    [18]Boone M Y, Porter D O, Mckinion J M. Calibration of GOSSYM:Theory and practice [J]. Computers and Electronics in Agriculture,1993,9:193-203.
    [19]Hearn A B. OZCOT:A simulation model for cotton crop management. [J]. Agricultural Systems, 1994,44:257-299.
    [20]Mutsaers H J W. KUTUN:A morphogenetic model for cotton (Gossypium Hirsutum L.) [J]. Agricultural Systems,1984,14:229-257.
    [21]H L, N C. Object-oriented design of a cotton crop model [J]. Ecological Modelling,1997,94: 45-51.
    [22]Thaker V S, Saroop S, Vaishnav P P, et al. Genotyopic variations and influence of diurnal temperature on cotton fibre development [J]. Field Crops Research,1989,22:129-141.
    [23]Rabadia V S, Thaker V S, Singh Y D. Relationship between water content and growth of seed and fibre of three cotton genotypes [J]. Journal of Agronomy and Crop Science,1999,183:255-261.
    [24]汤亮,朱艳,鞠昌华,等.油菜地上部干物质分配与产量形成模拟模型[J].应用生态学报,2007,18(3):526-530.
    [25]Heuvelink E. Dry matter partitioning in Tomato:Validation of a dynamic simulation Model [J].
    Annals of Botany,1996,77:71-80.
    [26]Horrocks R D, Kerby T A, Buxton D R. Carbon source for developing bolls in normal and superokra leaf cotton [J]. New Phytologist,1978,80:335-340.
    [27]Martre P, Jamieson P D, Semenov M A, et al. Modelling protein content and composition in relation to crop nitrogen dynamics for wheat [J]. European Journal of Agronomy,2006,25: 138-154.
    [28]Jamieson P D, Semenov M A. Modelling nitrogen uptake and redistribution in wheat [J]. Field Crops Research,2000,68:21-29.
    [29]Turner J H, Ramey J H H, Smith Worley J. Influence of environment on seed quality of four cotton cultivars [J]. Crop science,1976,16:407-409.
    [30]Gotmare V, Singh P, Mayee C D, et al. Genetic variability for seed oil content and seed index in some wild species and perennial races of cotton [J]. Plant Breeding,2004,123:207-208.
    [31]Sawan Z M, Hafez S A, Basyony A E. Effect of Nitrogen Fertilization and Foliar Application of Plant Growth Retardants and Zinc on Cottonseed, Protein and Oil Yields and Oil Properties of Cotton. [J]. Journal of Agronomy and Crop Science,2001,186:183-191.
    [32]Sawan Z M, Hafez S A, Ahmed E B, et al. Cottonseed, protein, oil yields and oil properties as affected by nitrogen fertilization and foliar application of potassium and a plant growth retardant [J]. World Journal of Agricultural Sciences,2006,2:56-65.
    [33]Demotes-mainard S, Jeuffroy M H. Effects of nitrogen and radiation on dry matter and nitrogen accumulation in the spike of winter wheat [J]. Field Crops Research,2004,87:221-233.
    [34]Demotes-mainard S, Jeuffroy M. Partitioning of dry matter and nitrogen to the spike throughout the spike growth period in wheat crops subjected to nitrogen deficiency [J]. Field Crops Research,2001, 70:153-165.
    [35]薛晓萍,王建国,郭文琦,等.棉花花后果枝叶生物量和氮累积特征及临界氮浓度稀释模型的研究[J].作物学报,2007,33(4):669-676.
    [36]薛晓萍,陈兵林,郭文琦,等.棉花临界需氮量动态定量模型[J].应用生态学报,2006,17(12):2363-2370.
    [37]Mert M, Aki Y, Gen O. Genotypic and phenotypic relationships of lint yield, fibre properties and seed content in a cross of two cotton genotypes [J]. Acta Agriculturae Scandinavica:Section B, Soil and Plant Science,2005,55:76-80.
    [38]李文峰,孟亚利,陈兵林,等.气象因子对棉籽脂肪和蛋白质含量的影响[J].生态学报,2009,29(4):1832-1839.
    [39]马富裕,曹卫星,周治国,等.田间条件下遮光对棉花棉铃发育及纤维品质的影响[J].棉花 学报,2004,16(5):270-274.
    [40]Sawan Z M, El-farra A A, El-sakr A S. Cottonseed and Oil Yields, and Oil Properties as Affected by Nitrogen Fertilization and Indole-3-Butyric Acid Application [J]. Zeitschrift fur Acker-und Pflanzenbau,1982,151:360-367.
    [41]Sawan Z M, El-farra A A, El-latif S A. Cottonseed, Protein and Oil Yields, and Oil Properties as Affected by Nitrogen and Phosphorus Fertilization and Growth Regulators [J]. Journal of Agronomy and Crop Science,1988,161:50-56.
    [42]Sawan Z M, El-kasaby A T, Sallouma B M. Effect of plant density, nitrogen fertilization and growth regulators on cottonseed yield and seedling vigour [J]. Zeitschrift fur Acker-und Pflanzenbau,1985,154:120-128.
    [43]李卫国,王纪华,赵春江,等.基于NDVI和氮素积累的冬小麦籽粒蛋白质含量预测模型[J].遥感学报,2008,12(3):506-514.
    [44]李卫国,朱艳,荆奇,等.水稻籽粒蛋白质积累的模拟模型研究[J].中国农业科学,2006,39(3):544-551.
    [45]Pan J, Zhu Y, Jiang D, et al. Modeling plant nitrogen uptake and grain nitrogen accumulation in wheat [J]. Field Crops Research,2006,97:322-336.
    [46]Egelkraut T M, Kissel D E, Cabrera M L, et al. Nitrogen concentration in cottonseed as an indicator of N availability [J]. Nutrient Cycling in Agroecosystems,2004,68:235-242.
    [47]张祥,张丽,王书红,等.棉花源库调节对铃叶光合产物运输分配的影响[J].作物学报,2007,33(5):843-848.
    [48]周治国,许玉璋,许萱.温度对棉籽发育的影响[J].西北农业大学学报,1992,20(2):73-78.
    [49]周治国,许玉璋,许萱.棉子品质与纤维品质及铃期温度的相关性研究[J].陕西农业科学,1992(3):3-5.
    [50]Sawan Z M, El-farra A A, El-latif S A. Cottonseed, Protein and Oil Yields, and Oil Properties as Affected by Nitrogen and Phosphorus Fertilization and Growth Regulators [J]. Journal of Agronomy and Crop Science,1988,161:50-56.
    [51]Leffler H R, Hunter J H. Reproductive development and seed quality of cotton cultivars as affected by nitrogen fertilization [J]. Field Crops Research,1985,10:219-228.
    [52]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:华文出版社,2000.
    [53]张丽娟,张冬有,薛晓萍,等.纤维比强度气象生态模型的研究[J].中国农学通报,2006,22(6):105-109.
    [54]张丽娟,周治国,熊宗伟,等.麦克隆值的气象生态模型研究[J].中国农学通报,2007,23(3):127-132.
    [55]张丽娟,孟亚利,陈兵林,等.棉纤维综合品质指数模型的指标确定与建模[J].棉花学报,2005,17(4):217-221.
    [56]张丽娟,孟亚利,薛晓萍,等.棉纤维综合品质指数模型构建[J].中国农业科学,2006,39(06):1130-1137.
    [57]马富裕,朱艳,曹卫星,等.棉纤维品质指标形成的动态模拟[J].作物学报,2006,32(3):442-448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700