棉花种间群体配子重组率差异、偏分离研究与高密度分子标记遗传连锁图谱构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是重要的经济作物,它不仅可以提供天然纤维,而且棉籽也是食用油的重要来源;棉花产业的兴衰对我国农民增收和纺织工业的发展都具有非常重要的意义。新品种在棉花生产中的贡献率达30%以上,长期以来棉花遗传育种研究者主要依靠常规育种技术改良棉花品种性状。由于棉花基因组大且遗传复杂,所以改良的局限性较大;而现代分子生物学的诞生给棉花遗传改良带来了新的空间,分子标记技术与常规育种技术相结合可加快育种进程,缩短育种年限,减少工作量,同时改良较多的不良性状,提高选择效果。
     本论文运用SSR标记技术,主要开展以下研究工作:(1)来源于草棉EST-SSR标记引物的开发、鉴定和评价;(2)棉花种间群体雌、雄配子重组率差异研究以及对棉花种间群体SSR标记遗传图谱的影响;(3)棉花种间BC1群体偏分离的遗传剖析;(4)棉花种间BC1群体高密度SSR标记遗传连锁图谱构建与SSR-EST功能的初步分析。
     1.草棉(G herbaceum) EST-SSR的遗传评价
     根据GenBank中公布的247条草棉EST序列,搜索SSR并进行引物设计其中25条序列含有27个SSR,1-6bp重复类型都存在,2bp和3bp重复的频率较高。为了明确其在A、D和AD基因组中的可转移性,依据25条序列共设计25对EST-SSR引物,其中22对引物对棉属的24份种质资源可扩增出清晰可辨的DNA条带,产生92个多态性片段,平均每对引物产生3.64个多态性片段。引物的多态性信息含量(PIC)在0.49-0.91之间,平均为0.81。6对引物在BC1种间作图群体[(鄂棉22×3-79)×鄂棉22](鄂棉22以下简称Emian22)中表现多态性,产生7个多态性位点,其中5个为共显性,2个为显性。除HAU230b标记在BC1分离群体中表现偏分离外,其余引物符合孟德尔式分离。6个位点被整合到陆地棉和海岛棉种间BC1遗传连锁图谱的6条染色体上;有4个位于A亚基因组的4条染色体上(Chr06、10、11和12),2个位于D亚基因组的2条染色体上(Chr19和20)。来源于草棉EST-SSR标记的开发将有助于四倍体棉花起源、进化、基因组结构和功能的研究。
     2.雌、雄配子重组对棉花种间(G hirsutum and G barbadense)遗传连锁图谱的遗传距离影响
     以本实验室构建的SSR标记BC1遗传连锁图谱为基础,通过不同交配方式构建的回交群体B ([Emian22×(Emian22×3-79)和C ([(Emian22×3-79)×3-79])来研究雌、雄配子的重组率差异。用Mapmaker/exp3.0和MAPInspector作图软件,分别以群体B和C构建了反映雌、雄配子重组率的遗传连锁图2张,图谱含有313个标记、30个连锁群,长度分别为4532.9 cM和4464.4 cM,标记间平均距离分别为14.48 cM和14.26 cM。经检验表明,雌、雄配子的重组率对图谱总距离的影响不显著。通过分析雌、雄配子重组率对单条染色体重组率的影响发现,群体B中染色体(连锁群)的图距长于群体C的有21条,其余9条连锁群短于群体C。t测验表明有6个对应连锁群的图距差异达到显著水平,表明雌、雄配子重组对部分染色体的遗传图距有影响。尽管很多标记间的遗传距离存在差异明显,但通过2x2卡方测验表明只有17个标记区间的差异是由雌、雄配子重组导致的,由雄配子引起有4个,由雌配子引起有13个。进一步:分析发现雄配子重组主要引起标记间遗传距离变长,即重组率增加;雌配子重组主要引起标记间遗传距离变短,即重组率减少。本研究还讨论了雌、雄配子重组差异在作物遗传育种中的应用。
     3.棉花种间回交群体偏分离的遗传剖析
     偏分离现象在作物种间杂交群体中普遍存在。为了研究棉花种间群体分子标记偏分离的原因,我们采用正反交回交群体来研究雌、雄配子选择所引起的偏分离。在BC1群体[(Emian22x3-79)×Emian22](群体A)中产生的1026个SSR多态性标记位点中有114个SSR标记表现偏分离,其中107个偏分离标记被定位到染色体上。将这114个偏分离的SSR标记分别在群体B和C中进行验证,结果表明,群体A中有61个标记在群体B和C中都表现正常分离,即偏分离是由于杂交群体导致的;36个标记在群体B或C中表现偏分离,即偏分离是由于雌、雄配子的竞争能力不同造成的。由配子竞争能力导致的偏分离标记分布于14条染色体上,D亚基因组上分布多于A亚基因组。偏分离标记在第2、16和18染色体上分布最多。由雌配子竞争能力导致的偏分离标记多数分布于A亚基因组的染色体上,但由雌配子竞争劣势导致偏分离的标记在第18染色体分布最多。由雄配子竞争能力导致的偏分离标记多数分布于D亚基因组的染色体上;但由雄配子竞争优势导致的偏分离标记在第16染色体上分布最多。由配子竞争劣势导致的偏分离标记在第2和7染色体上有标记聚集现象。棉花分子标记偏分离的研究对于标记辅助选择中亲本的选配、杂交方式的确定都具有一定指导意义。
     4.棉花种间BC1群体高密度SSR标记遗传连锁图谱的构建与SSR-EST功能初步分析
     本研究以Zhang等(2008)建立的BC1群体和获取的1026个SSR多态性位点数据为基础,利用有关文献公布的SSR和EST-SSR标记引物与本实验室自主设计的3536对EST-SSR引物共12722对SSR引物进行亲本多态性筛选,共有2187对引物可用于本实验设计的BC1群体的多态性研究,在BC1群体中共产生2528个多态性位点。4419对gSSR引物产生1023个多态性位点,8303对EST-SSR引物产生1505个多态性位点,引物的多态性率分别为21.2%和15.6%。
     用作图软件Joinmap3.0进行连锁遗传分析和图谱构建,2318个标记位点进入棉花基因组26条染色体,图谱全长4418.9 cM;另有56个标记建立了13条短连锁群,但目前还不能确定其位于棉花基因组的哪一条染色体上;此外,还有154个标记没有进入任何连锁群。
     在定位到棉花基因组26条染色体中多态性位点数最多的Chr19为135个标记,标记数最少的Chr02、Chr04均为53个,平均每条染色体为89个标记,其中定位于棉花A亚基因组的标记为1044个,定位于棉花D亚基因组的标记为1274个。26条染色体中,标记间平均距离最大的Chr02为2.78 cM,标记间平均距离最小的Chr14为1.12 cM,整个图谱标记间平均距离为1.91 cM。
     所有标记中有425个(占总标记数的16.8%)标记表现偏分离(χ2=3.84,P<0.05);其中358个(占总标记数的14.2%)偏分离标记被定位到本研究建立的连锁群上,定位到棉花已知染色体上的偏分离标记为323个,定位到未知染色体上的偏分离标记的35个,另有67个(占总标记数的2.6%)偏分离标记未定位到连锁群上。
     对定位到棉花26条染色体上的2318个SSR标记通过生物分析软件找到相应EST序列,通过Gene Oniology(GO)注释。这些EST序列在分子功能、生物过程、细胞组分三大类功能中共注释上1812个功能;部分EST可以注释上多个功能,另一部分EST在目前棉花EST数据库中还不能注释上任何功能,相信随着棉花功能基因组研究的不断深入,这些EST终究会被注释上相应的功能。在level3水平上,注释到分子功能的SSR-EST共1236条(最大的一类为nucleic acid binding,占13.37%);注释到生物过程的SSR-EST共2110条(最大的一类为cellular metabolic process,占16.54%);注释到细胞组分的SSR-EST共2273条(最大的一类为intracellular,占20.50%)。
     本研究建立的以EST-SSR为主的SSR标记高密度遗传连锁图谱,对于研究棉属的起源与进化、棉花基因组结构与功能、棉花产量与纤维品质相关性状的精细定位、重要农艺性状基因的图位克隆、分子设计育种以及分子标记辅助选择育种都具有十分重要的意义。
Cotton (Gossypium spp.) is an important cash crop in China and many other countries. It is the second largest source of textile fiber and edible oil throughout the world. The prosperity or decline of cotton yield is very important to the income of farmers and the development of textile industries. The new cultivars of cotton contribute up to 30% to cotton industries. For a long time, researchers have been involved in improving yield traits mainly by employing conventional breeding techniques. Tetraploid cotton has a larger and complicated genome, which is the limiting factor of cotton improvement. Modern molecular biological techniques have brought new ways for cotton improvement. With the combination of marker assisted and conventional breeding, cotton breeding process has been accelerated. It has helped cotton breeders to increase yield and quality by improving the efficiency of selection.
     This study was planned to reveal the following aspects by SSR technology:(1) Genetic evaluation of EST-SSRs derived from Gossypium herbaceum, (2) The difference between male and female gametes recombination rates by interspecific backcross of cotton (3) Analysis of genetic segregation distortion of SSR molecular markers in cotton interspecific population (4) Construction of a high density genetic linkage map from interspecific backcross population of cotton.
     1. Genetic evaluation of EST-SSR derived from Gossypium herbaceum
     EST-SSRs were isolated from 247 EST sequences of G. herbaceum documented in GenBank. Twenty-seven perfect SSRs were identified from twenty-five unique ESTs. These SSRs contained 1-6bp nucleotide motifs with high frequency for 2bp and 3bp nucleotide motifs. In order to clarify the transferability of A, D and AD sub-genomes, SSRs were designed from 25 pairs of EST-SSR primers. Twenty-two of them could amplify 24 cotton accessions and produced 92 polymorphic fragments. The PIC (Polymorphism information content) values ranged from 0.49 to 0.91 with an average of 0.81. Among the 25 pairs EST-SSR primers, six pairs of them revealed polymorphism between Emian22 and 3-79 and yielded seven polymorphic loci (five were co-dominant and two dominant) in the BC1 [(Emian22×3-79)×Emian22] population. Only HAU230b showed distorted segregation in the BC1 population. Six polymorphic loci were integrated into six chromosomes of our interspecific BC1 backbone genetic linkage map among which, four loci were mapped on four chromosomes of A sub-genome (Chr.6,10,11,12), and two loci on two chromosomes of D sub-genome (Chr.19 and 20). The development of EST-SSRs derived from Gossypium herbaceum will contribute to the origin, evolution and the genomic structure of the tetraploid cotton.
     2. Research on the difference between male and female gametes recombination rates by interspecific backcross of cotton
     Two linkage maps covered with 313 markers have been established by populations B and C of BC1 which was formed by male and female gametes recombination, based on the BC1 genetic linkage map created by our laboratory. The lengths of B and C linkage maps were 4532.9 cM and 4464.4 cM respectively and the mean distances of markers in the linkage maps were 14.48 cM and 14.26 cM respectively.
     By analyzing the influence of male and female gametes recombination rates to the whole chromosome, there were no significant effects to the genetic linkage maps caused by the recombination rates of male and female gametes. There 21 genetic linkage groups in population B were much longer than those in population C, and 9 genetic linkage maps were shorter. The T test revealed that there were 6 linkage maps and 2 linkage maps showed significant differences at 0.05 level and high significant differences at 0.01 levels of significance.
     Then analyzing the recombination rates of SSRs derived from male and female gametes recombination rates, we found there were 17 markers comprised of 4 male gametes and 13 female gametes showed significant differences at 0.05 levels using 2×2 contingency Chi-square test. Further study showed that the male gametes mainly lead to a longer distance of markers in the linkage map of cotton, i.e. increase the recombination rates. Meanwhile a shorter distance of markers in the linkage map of cotton was caused by the female recombination rates, i.e. decrease the recombination rates. There will be different effects with different recombination rates, so we can chose many kinds of combination modes according to the breeding objectives in crop genetics and breeding, as well as molecular marker-assisted selection.
     3. Analysis of genetic segregation distortion of SSR markers in the interspecific population of cotton
     Interspecific cross population between Upland cotton and Sea-island cotton is very common in cotton genetic linkage map. Segregation distortion was ubiquitous among interspecific backcross population. In order to study the reasons for segregation distortion, populations of positive and negative crosses were used. A total of 114 SSR markers showed segregation distortion among 1026 marker in BC1 mapping population [(Emian22×3-79)×Emian22] (Pop A), of which 107 segregation distortion markers was located on chromosome. These 97 SSR markers were validated in population B [Emian22×(Emian22×3-79)] (Pop B) and population C [(Emian22×3-79)×3-79] (Pop C). In Pop A, segregation distortion of 61 markers were caused by cross mode and segregation distortion of 36 markers were caused by competitive competence of male or female gametes. Segregation distortion markers caused by competitive competence of male and female gamete were distributed on chromosome 14. These markers were found to be more frequent on "D" sub-genome than "A" sub-genome. Most of segregation distortion markers were distributed on chromosome 2,16 and 18. Segregation distortion markers caused by competitive competence of female gamete were distributed on chromosomes of "A" sub-genome. Most of segregation distortion markers caused by competitive disadvantage of female gamete were distributed on chromosome 18. Most of segregation distortion markers caused by competitive competence of male gamete were distributed on chromosomes of "D" sub-genome. Clusters of segregation distortion markers caused by competitive disadvantage of gamete were found to locate on chromosome 2 and 7. Segregation distortion markers caused by competitive disadvantage of male gametes were distributed on chromosome 16. The research of segregation distortion will be important for parent selection and the hybrid approach in marker-assisted selection.
     4. Construction of high density genetic linkage map by interspecific backcross population of cotton
     With the improvement of molecular marker techniques and the improvement of cotton DNA extraction, researches on the use of molecular markers of genetic linkage maps of cotton have achieved rapid development. Until now, more than one molecular marker genetic linkage map of cotton have been established including inter-specific and intra-specific populations. Advanced hybrid approaches including F2, BC1, DH, natural and RIL populations, et al., more molecular markers, such as RFLP, RAPD, AFLP, SCAR, SSR, SRAP and SNP. And more genetic mapping software: Mapmaker/exp3.0 and Joinmap3.0.
     Based on the BC1 population established by Zhang (2008) and 1026 polymorphic loci of SSRs. 12722 pairs of primers including published SSRs and EST-SSRs as well as designed in our laboratory have been used to scan the polymorphisms between two parents. Among of these markers,2187 primers showed polymorphism between parents while 2528 primers were confirmed to be polymorphic in BC1 population. There were 1023 and 1505 polymorphic loci generated by 4419 SSRs and 8303 EST-SSRs respectively and polymorphic percentages were 21.2% and 15.6%.
     Map analysis and construction were performed in Joinmap3.0 software, with supposed LOD value (>5.0). The maximum distance of markers was calculated to be<40 cM. Overall,2318 marker loci had been anchored onto 26 linkage groups of cotton genome and length of map was 4418.9 cM. There were 13 short linkage groups established by 56 markers, yet we were unable to locate them on the cotton chromosomes. Another 154 markers did not anchor on any linkage groups.
     There were 135 markers on Chr.19, whose polymorphic loci were the most one in 26 linkage groups of cotton genome. Chromosomes with the least markers were found on Chr.02 and Chr04 with an average of 89 markers per chromosome. There were 1044 and 1274 markers located on A and D sub-genomes, respectively. The maximum distance of markers was 2.78 cM on Chr.02, compared to the minimum of 1.12 cM on Chr.14. The mean distance of markers in the map was 1.91 cM.
     There were 425 markers (16.8%) showed segregation distortion (χ2=3.84, P<0.05), of which 358 markers (14.2%) located in the linkage groups.323 markers located in cotton genome,35 markers located in 13 short linkage groups, and 67 markers (2.6%) unallocated in any linkage groups.
     The 2318 markers located in 26 chromosomes were analyzed by correspondening EST sequences marked by 1812 molecular functions, biological process and cellular element. Some EST sequences were noted on multi-function; some were not noted on any functions in cotton EST database for the present; all of these EST sequences will be noted on homologous function with further research on cotton function genome. In level 3,1236 SSR-EST sequences were noted molecular function, nucleic acid binding is the maximum class(13.37%).2110 SSR-EST sequences were noted biological process, cellular metabolic process is the maximum class (16.54%).2273 SSR-EST sequences were noted cellular element, intracellular is the maximum class (20.50%)
     With the high density SSRs linkage maps mainly established by EST-SSR in the research, it will be helpful with the evolutionary studies of Gossypium, and cotton genome structure and function as well as cotton yield and fiber development-related genes. It also has great significance for molecular assisted selection and molecular designed breeding.
引文
1.白建荣,郭季荣,侯变英.分子标记的类型、特点及在育种中的作用.山西农业科学,1999,27(4):33-38
    2.别墅,王坤波,孔繁玲,等.棉花基因组重复序列研究进展.分子植物育种,2003,1(3):373-379
    3.陈海梅,李林志,卫宪云,等.小麦EST-SSR标记的开发、染色体定位和遗传作图.科学通报,2005,50(20):2208-2216
    4.陈建国.与偏分离位点连锁的QTL作图的统计方法.生物数学学报,2005,20(3):273-278
    5.陈志伟,张文龙,杨文鹏,等.玉米双交F1群体中SSR遗传标记位点的遗传分离分析.种子,2008,27(5):20-22
    6.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001
    7.郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆与分子育种.科学通报,2003,48(4):410-417
    8.贺道华,林忠旭,张献龙,等.陆地棉纤维品质遗传基础的分子标记剖析.棉花学报,2004,16(3):131-136
    9.贺道华.四倍体棉花分子标记遗传连锁图谱的构建和重要经济性状的QTL定位.[博士学位论文].武汉:华中农业大学图书馆,2006
    10.孔秋生.基于公共序列数据库的Cucumis属EST-SSR标记的鉴定、开发和利用.[博士学位论文].武汉:华中农业大学图书馆,2006
    11.李宏伟,高丽锋,刘曙东,等.用EST-SSR检测不同年代小麦育成品种基因多样性的变化趋势.西北植物学报,2005a,25(1):27-32
    12.李宏伟,高丽锋,刘曙东,等.用EST-SSRs研究小麦遗传多样性.中国农业科学,2005b,38(1):7-12
    13.李辉.中国新疆棉花产业国际竞争力研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    14.李卫华,刘伟,尤明山,等.利用多种SSR引物构建小麦遗传连锁图谱及其多态性分析.麦类作物学报,2007,27(1):1-6
    15.李武,倪薇,林忠旭,等.海岛棉遗传多样性的SRAP标记分析.作物学报,2008,34(5):893-898
    16.林忠旭,张献龙,聂以春,等.棉花SRAP遗传连锁图构建.科学通报,2003,48(2):1676-1679
    17.林忠旭,张献龙,聂以春,等.新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适应性分析.遗传学报,2004,31(6):622-626
    18.林忠旭.棉花分子标记遗传连锁图构建和产量、纤维品质相关性状定位.[博士学位论文].武汉:华中农业大学图书馆,2005
    19.刘峰,吴晓雷,陈受宜.大豆分子标记在RIL群体中的偏分离分析.遗传学报,2000,27(10):883-887
    20.刘刚,许盛宝,倪中福,等.小麦RIL群体SSR标记偏分离的遗传分析.农业生物技术学报,2007,15(5):828-833
    21.刘三宏.四倍体棉种起源与演化的FISH研究.[硕士学位论文].北京:中国农业科学院研究生院,2004
    22.马淑萍,王戈,龙熹.中国棉花生产与政策60年.中国棉花,2009,36(9):5-11
    23.彭勇,梁永书,王世全,等.水稻SSR标记在RI群体的偏分离分析.分子植物育种,2006,4(6):786-790
    24.秦鸿德,张天真.利用四交群体构建陆地棉栽培品种间的SSR标记遗传图谱.南京农业大学学报,2008,31(4):13-19
    25.沈利爽,何平,徐云碧,等.水稻DH群体的分子连锁图谱及基因组分析.植物学报,1998,40(12):1115-1122
    26.沈希宏,陈深广,曹立勇,等.超级杂交稻协优9308重组自交系的分子遗传图谱构建.分子植物育种,2006,(5):861-866
    27.宋宪亮,孙学振,张天真.偏分离及对植物遗传作图的影响.农业生物技术学报,2006,14(2):286-292
    28.孙新立,才宏伟,王象坤,等.水稻籼粳杂交标记基因偏分离现象初析(简报).中国农业大学学报,1996,1(1):16,22
    29.谭军,薛庆中.偏分离分子标记的作图方法.遗传,2004,26(3):356-358
    30.王长彪,郭旺珍,蔡彩平,等.雷蒙德氏棉EST-SSRs分布特征及开发与利用.科学通报,2006,51(3):316-320
    31.王坤波,崔荣霞,宋国立.棉花DNA主要分析技术及其应用研究.棉花学报,1999,11(6):326-332
    32.王坤波,李懋学.棉属D染色体组的核型变异和进化.作物学报,1990,16(3):200-207
    33.王坤波,张香娣,王春英,等.棉属A染色体组的核型研究.遗传,1995,17(4):32-34
    34.王延琴,杨伟华,许红霞,等.中国棉花生产中存在的主要问题及建议.中国农学通报,2009,25(14):86-90
    35.吴翠翠.棉花黄萎病抗性的分子标记和QTL定位.[硕士学位论文].武汉:华中农业大学图书馆,2007
    36.吴为人,唐定中,李维明.数量性状的遗传剖析和分子剖析.作物学报,2000,26(4):501-507
    37.忻雅,崔海瑞,张明龙,等.白菜EST-SSR标记的通用性.细胞生物学杂志,2006,28(2):248-252
    38.徐云碧,朱立煌.分子数量遗传学.北京:中国农业出版社,1994.22-56
    39.杨新泉,刘鹏,韩宗福,等.普通小麦Genomic-SSR和EST-SSR分子标记遗传差异及其与系谱遗传距离的比较研究.遗传学报,2005,32(4):406-416
    40.曾云超,李俊,杨玉敏,等.利用SSR标记分析川育12×人工合成小麦Syn780重组自交系群体中的偏分离现象.西南农业学报,2007,20(2):230-233
    41.张帆,万雪琴,潘光堂.玉米F2群体分子标记偏分离的遗传分析.作物学报,2006,32(9):1391-1396
    42.张天真,袁有禄,郭旺珍.棉花高强纤维QTLs的微卫星标记筛选.中国农业科学,2001,34(4):363-366
    43.张天真,主编.作物育种学总论.北京:中国农业出版社,2003
    44.张天真.棉花纤维品质分子育种的现状及展望.棉花学报,2000,12(6):321-326
    45.张献龙,唐克轩.植物生物技术.北京:科学出版社,2003
    46.张艳欣.海岛棉EST-SSR引物的遗传评价及海陆棉种间高密度遗传连锁图谱构建与QTL定位.[博士学位论文].武汉:华中农业大学图书馆,2008
    47.张玉山,陈庆全,吴薇,等.水稻SSR标记遗传连锁图谱着丝粒的整合及其偏分离分析.华中农业大学学报,2008,27(4):167-171
    48.赵向前,吴为人.水稻ILP标记遗传图谱的构建.遗传,2008,30(2):225-230
    49.朱成松,王付华,王建飞,等.回交、DH和RIL偏分离群体遗传图谱的重新构建.科学通报,2007,52(8):918-922
    50.朱军.数量性状遗传分析的新方法及其在育种中的应用.浙江大学学报,2000,26(1):1-5
    51.左开井,孙济中,张献龙.利用RFLP、SSR和RAPD标记构建陆地棉分子标记连锁图.华中农业大学学报,2000,19(3):190-193
    52. Abdurakhmonov I Y, Buriev Z T, Saha S, et al. Microsatellite markers associated with lint percentage trait in cotton(Gossypium hirsutum). Euphytica,2007,156(1): 141-156
    53. Adawy S A. An evaluation of the utility of simple sequence repeat loci (SSR), expressed sequence tags (ESTs) and expressed sequence tag microsatellites (EST-SSR) as molecular markers in cotton. Journal of Applied Sciences Research, 2007,3 (11):1581-1588
    54. Ajisaka H, Kuginuld Y, Shiratori M, et al. Mapping of loci affecting the cultural efficiency of microspore culture of Brassica rapa L. syn. Campestris L. using DNA polymorphism. Breeding Science,1999,49(3):187-192
    55. Anhalt U C M, Heslop-Harrison P J S, Byrne S, et al. Segregation distortion in Lolium:evidence for genetic effects. Theoretical and Applied Genetics,117(2): 297-306
    56. Baker B S, Carpenter A T C, Esposito M S, et al. The genetic control of meiosis. Annual Review Genetics,1976,10:53-134
    57. Baker R J, Longmire J L, Van den Bussche R A. Organization of repetitive segments in the upland cotton genome(Gossypium hirsutum). Journal Heredity, 1995,86:178-185
    58. Bentolia S, Hardy T, Guitton C, et al. Similarity of maize and sorghum genomes as revealed by maize RFLP probes. Theoretical and Applied Genetics,1992,84(1): 10-16
    59. Blair M W, Giraldo M C, Buendia H F. Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics,2006,113(1): 100-109
    60. Brown G R, Kadel E E, Bassoni D L, et al. Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics,2001,159:799-809
    61. Brown S M, Hopkins M S, Mitchell S E, et al. Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum (Sorghum bicolor L. Moench). Theoretical and Applied Genetics,1996,93(1):190-198
    62. Brummer E C, Bouton J H, Kochert G. Development of an RFLP map in diploid alfalfa. Theoretical and Applied Genetics,1993,86(2):329-332
    63. Bundock P C, Henry R J. Single nucleotide polymorphism, haplotype diversity and recombination in the Isa gene of barley. Theoretical and Applied Genetics,2004, 109(3):543-551
    64. Busso C S, Liu C J, Hash C T, et al. Analysis of recombination rate in female and male gametogenesis in pearl millet (Pennisetum glaucum) using RFLP markers. Theoretical and Applied Genetics,1995,90(2):242-246
    65. Causse M A, Fulton T M, Choi Y G. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics,1994,138:1251-1274
    66. Cloutier S, Cappadocia M, Landry B S. Study of microspore-culture responsivenessin oilseed rape(Brassica napus L.) by comparative mapping of a F2 population and two microspore-derived populations. Theoretical and Applied Genetics,1995,91(6):841-847
    67. Coe E H, Polacco M. Gene list and working maps. Maize Genetics Cooperation Newsletter,1995,694:157-191
    68. Conesa A, Gotz S, Garcia-Gomez J M. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics,2005, 21(18):3674-3676
    69. Donis-Keller H, Green R, Helms C, et al. A genetic linkage group map of human genome. Cell,1987,51(2):319-337
    70. Faris J D, Laddomada B, Gill B S. Molecular Mapping of Segregation Distortion Loci in Aegilops tauschii. Genetic,149:319-327
    71. Frelichowski J E, Palmer M B, Main D. Cotton genome mapping with new microsatellites from Acala'Maxxa'BAC-ends. Molecular Genetics and Genomics, 2006,275(5):479-491
    72. Fryxell P A. A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea,1992,2:108-165
    73. Gao L F, Jing R L, Huo N X. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theoretical and Applied Genetics,2004, 108(7):1392-1400
    74. Gao M Q, Li G Y, Yang B. High-density Brassica oleracea linkage map: identification of useful new linkages. Theoretical and Applied Genetics,2007, 115(2):277-287
    75. Gonzalo M J, Oliver M, Garcia-Mas J, et al. Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo). Theoretical and Applied Genetics,2005,110 (5):802-811
    76. Gotz S, Garcia-Gomez J M, Terol J. High-throughput functional annotation and data mining with the Blast 2 GO suite. Nucleic Acids Research,2008,36(10):3420-3435
    77. Guo W Z, Cai C P, Wang C B, et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in Gossypium. Genetics,2007, 176:527-541
    78. Guo W Z, Sang Z Q, Zhou B L, et al. Genetic relationships of D-genome species based on two types of EST-SSR markers derived from G. arboreum and G. raimondii in Gossypium. Plant Science,2007,172 (4):808-814
    79. Guo W Z, Wang W, Zhou B L, et al. Cross-species transferability of G. arboreum-derived EST-SSRs in the diploid species of Gossypium. Theoretical and Applied Genetics,2006,112(8):1573-1581
    80. Guo W, Zhang T, Shen X, et al. Development of SCAR marker linked to a major QTL for high fiber strength and its usage in molecular-marker assisted selection in upland cotton. Crop Science,2003,43 (6):2252-2257
    81. Han Z G, Guo W Z, Song X L, et al. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Molecular Genetics and Genomics,2004,272 (3):308-327
    82. Han Z G, Wang C B, Song X L. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theoretical and Applied Genetics,2006,112 (3):430-439
    83. Hans V Os, Sandra A, Erin B. Construction of a 10,000-marker ultradense genetic recombination map of potato:providing a framework for accelerated gene isolation and a genomewide physical map. Genetics,2006,173:1075-1087
    84. He D H, Lin Z X, Zhang X L, et al. Dissection of genetic variance of quality in advanced generations from an interspecific cross of Gossypium hirsutum and G. barbadense. Plant Breeding,2008,127 (3):286-294
    85. He D H, Lin Z X, Zhang X L, et al. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton. Euphytica,2005,144 (1): 141-149
    86. He D H, Lin Z X, Zhang X L, et al. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica,2007,153 (12): 181-197
    87. Hearnden P R, Eckermann P J, McMichael G L, et al. A genetic map of 1000 SSR and DArT markers in a wide barley cross. Theoretical and Applied Genetics,2007, 115(4):383-391
    88. Hoffman S M, Yu J Z, Grum D S, et al. Identiication of 700 New Microsatellite Loci from Cotton (G. hirsutum L.). The Journal of Cotton Science,2007,11 (4):208-241
    89. Hussein E H A, Osman M H A, Hussein M H, et al. Molecular characterization of cotton genotypes using PCR-based markers. Journal of Applied Sciences Research, 2007,3(10):1156-1169
    90. Jiang C X, Chee P W, Draye X, et al. Multilocus interactions restrict gene introgression in interspecific populations of polyploid Gossypium (cotton). Evolution,2000,54 (3):798-814
    91. Kearsey M J, Ramsay L D, Jennings D E, et al. Higher recombination frequencies in female compared to male meisoses in Brassica oleracea. Theoretical and Applied Genetics,1996,92 (3):363-367
    92. Kesseli R V, Paran I, Michelmore R W. Analysis of a detailed genetic linkage map of Lactuca sativa (Lettuce)constructed from RFLP and RAPD markers. Genetics, 1994,136:1435-1446
    93. Kianian S F, Quiros C F. Generation of a Brassica oleracea composite RFLP map: Linkage arrangements among various populations and evolutionary implications. Theoretical and Applied Genetics,1992,84 (5):544-554
    94. Konishi T, Yano Y, Abe K. Geographic distribution of alleles at the Ga2 locus for segregation distortion in barley. Theoretical and Applied Genetics.1992,85 (4): 419-422
    95. Kosambi D D. The estimation of map distances from recombination values. Ann Eugen,1994,12:172-175
    96. Kreike D D, Stiekema W J. Reduced recombination and distorted segregation in a Solanum tuberosum (2x) ×S. spegazzinii (2x) hybrid. Genome,1997,40 (2): 180-187
    97. Kurata N, Nagamura Y, Yamamoto K, et al.A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet,1994,8:365-376
    98. Ky C L, Barre P, Lorieux M, et al. Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.). Theoretical and Applied Genetics,2000,101 (4):669-676
    99. Lacape J M, Jacobs J, Arioli T, et al. A new interspecific, Gossypium hirsutum X G. barbadense, RIL population:towards a unified consensus linkage map of tetraploid cotton. Theoretical and Applied Genetics,2009 119:281-292
    100. Lacape J M, Nguyen T B, Courtois B, et al. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum×Gossypium barbadense backcross generations. Crop Science,2005,45:123-140
    101. Lacape J M, Nguyen T B, Thibivilliers S, et al. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome,2003,46:612-626
    102. Lacape J M, Nguyen T B. Mapping quantitative trait loci associated with leaf and stem pubescence in cotton. Journal of Heredity,2005,96(4):441-444
    103. Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-199
    104. Lander E S, Green P, Abrahamson J. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987,1 (2):174-181
    105. Lashermes P, Combes M C, Prakash N S, et al. Genetic linkage map of Coffea canephora:Effect of segregation distortion and analysis of recombination rate of male and female meiosis. Genome,2001,44(4):589-596
    106. Li G, Quiros C F. Sequence-related amplified polymorphisim (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics,2001,103 (2):455-461
    107. Li W, Lin Z, Zhang X. A novel segregation distortion in intraspecific population of Asian cotton detected by molecular markers. Journal of Genetics and Genomics, 2007,34(7):634-640
    108. Lin Z X, He D H, Zhang X L, et al. Linkage map construction and mapping QTLs for cotton fiber quality using SRAP, SSR and RAPD. Plant Breeding,2005, 124(2):180-187
    109. Lin Z X, Wang J F, Zhang X L. Characteristics of Gossypium thurberi and G. anomalum introgression lines of G. hirsutum revealed by EST-SSR and gSSR. Cotton science,2008,20(4):243-248
    110. Lin Z X, Zhang X L, Nie Y C, et al. Construction of a genetic linkage map for cotton based on SRAP. Chinese Science Bulletin,2003,48(19):2063-2067
    111. Liu D, Guo X, Lin Z, et al. Genetic diversity evaluation of Chinese Asian cotton (Gossypium arboretum) accessions by SSR markers. Genetic resources and crop evolution,2006,53 (6):1145-1152
    112. Liu S, Saha S, Stelly D, et al. Chromosomal assignment of microsatellite loci in cotton. Journal of Heredity,2000,91 (4):326-332
    113. Lorieux M, Goffinet B, Perrier X, et al. Maximum likelihood models for mapping genetic markers showing segregation distortion.1. Backcross populations. Theoretical and Applied Genetics,1995a,90 (1):73-80
    114. Lorieux M, Perrier X, Goffinet B, et al. Maximum likelihood models for mapping genetic markers showing segregation distortion.2. F2 populations. Theoretical and Applied Genetics,1995b,90:81-89
    115. Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize. Theoretical and Applied Genetics,2002,105 (4): 622-628
    116. Maeda T. Chiasma studies in the silk worm, Bombyx mori L. Japanese J Genet,1 939,15:118-127
    117. Mangelsdorf P C, Jones D F. The expression of Mendelian factors in the gametophyte of maize. Genetics,1926,11:423-455
    118. Marais G F, Marais A S, Groenwald J Z. Evaluation and reduction of Lrl 9-149, a recombinant form of the Lrl 9 translocation of wheat. Euphytica,2001,121: 289-295
    119. McCouch S R, Kochert G, Yu Z H, et al. Molecular mapping of rice chromosomes. Theoretical and Applied Genetics,1988,76 (6):815-829
    120. Me Callum J, Leite D, Pither-Joyee M, et al. Expressed sequence markers for genetic analysis of bulb onion(Alliun cepa L.). Theoretical and Applied Genetics, 2001,103:979-991
    121. Mei M, Syed N H, Gao W, et al. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theoretical and Applied Genetics,2004, 108 (2):280-291
    122. Menz M A, Klein R R, Mullet J E, et al. A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Molecular Biology,2002,48(5):483-499
    123. Mian M A, Saha M C, Hopkins A A, et al. Use of tall fescue EST-SSR markers in phylogenetic analysis of cool-season forage grasses. Genome,2005,48:637-647
    124. Murigneux A, Baud S, Beckert M.Molecular and morphological evaluation of doubled-haploid lines in maize.2. Comparison with single seed descent lines. Theoretical and Applied Genetics,1993,87:278-287
    125. Nguyen T B, Giband M, Brottier P, et al. Wide coverage of the genome using newly developed microsatellite markers. Theoretical and Applied Genetics,2004, 109(1):167-175
    126. Nobis W, Ren X, Suchyta S P, et al. Development of a porcine brain cDNA library, EST database, and microarray resource. Physioogicall Genomics,2003,16 (1):153-159
    127. Paillard S, Schnurbusch T, Winzeler M, et al. An integrative genetic linkage map of winter wheat(Tnticmn aestivum L.). Theoretical and Applied Genetics,2003,107: 1235-1242
    128. Park Y H, Alabady M S, Sickler B, et al. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line (RIL) cotton population. Molecular Genetics and Genomics,2005,274(4):428-441
    129. Paterson A H, Brubaker C, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep,1993,11 (2):122-127
    130. Paterson A H, Saranga Y, Menz M, et al. QTL analysis of genotype× environment interactions affecting cotton fiber quality. Theoretical and Applied Genetics,2003,106 (3):384-396
    131. Pawlowshi W P, TorbertK A, Rines H W, et al. Irregular patters of transgene silencing in allohexaploid oat. Plant Molecular Biology,1998,38(4):597-607
    132. Peleg Z, Saranga Y, Suprunova T. High-density genetic map of durum wheat× wild emmer wheat based on SSR and DArT markers. Theoretical and Applied Genetics,2008,117(1):103-115
    133. Peng J H, Lapitan N L V. Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Functional & Integrative Genomics,2005,5 (2):80-96
    134. Pereira M G, Lee M, Bramel-Cox P, et al. Construction of an RFLP map in sorghum and comparative mapping in maize. Genome,1994,37 (2):236-243
    135. Pfeiffer T W. Recombination rates of soybean varieties from different periods of introduction and release. Theoretical and Applied Genetics,1993,86(5):557-561
    136. Picoult N L, Ideker T E, Pohl M G, et al. Mining SNPs from EST databases. Genome Research,1999,9:167-174
    137. Pillen K, Steinru Cken G, Herrmann R G, et al. An extended linkage map of sugar beet(Beta vulgarts L.)including nine putative lethal genes and the restorergene Ⅹ. Plant Breeding,1993,111(4):265-272
    138. Poncet V, Rondeau M, Tranchant C, et al. SSR mining in coffee tree EST databases:potential use of EST-SSRs as markers for the Coffee genus. Molecular Genetics and Genomics,2006,276(5):436-449
    139. Qamaruz Z F, Michael F F, Parker J S. Molecular techniques employed in the assessment of genetic diversity:a review focusing on orchid conservation. Lindleyana,1998,13:259-283
    140. Qin L, Prins P, Jones J T, et al. GenEST, a powerful bidirectional link between cDNA sequence data and gene expression profiles generated by cDNA-AFLP. Nucleic Acids Research,2001,29(7):1616-1622
    141. Quillet M, Madjidian N, Griveau Y, et al. Mapping genetic factors controlling pollen viability in interspecific cross in Helianthus sect. Theoretical and Applied Genetics,1995,91(8):1195-1202
    142. Qureshi S N, Saha S, Kantety R V, et al. EST-SSR:A New Class of Genetic Markers in Cotton. The Journal of Cotton Science,2004,8:112-123
    143. Reddy O U K, Pepper A E, Abdurakhmonov I, et al. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. The Journal of Cotton Science,2001,5 (2):103-113
    144. Reeves R H. Sex, strain, and species differences affect recombination across an e volutionarily conserved segment of mouse chromosome 16. Genomics,1990,8(1):1 41-148
    145. Reinisch A J, Dong J M, Brubaker C L, et al. A detailed RFLP map of cotton Gossypium hirsutum × Gossypium barbadense:chromosome organization and evolution in a disomic polyploid genome. Genetics,1994,138:829-847
    146. Robertson D S. Different frequency in the recovery of crossover products from male and female gametes of plants hypoploid for B-A translocations in maize. Genetics,1984,107:117-130
    147. Rong J, Abbey C, Bowers J E, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton(Gossypium). Genetics,2004,166:389-417
    148. Rong J, Bowers J E, Schulze S R. Comparative genomics of Gossypium and Arabidopsis:unraveling the consequences of both ancient and recent polyploidy. Genome Research,2005,15:1198-1210
    149. Rossetto M, McNally J, Henry R J. Evaluating the potential of SSR flanking regions for examining taxonomic relationships in the Vitaceae. Theoretical and Applied Genetics,2002,104(1):61-66
    150. Rudd S, Sehoof H, Mayer K. PlantMarkers:a database of predicted molecular markers from Plants. Nucleic Acids Research,2005,33:628-632
    151. Saha M C, Mian M A R, Eujayl I, et al. Tall fescue EST-SSR markers with transferability across several grass species. Theoretical and Applied Genetics,2004, 109 (4):783-791
    152. Saha S, Karaca M, Jenkins J N, et al. Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica,2003,130:355-364
    153. Sankar A A, Moore G A. Evaluation of inter-simple sequence repeat analysis for mapping in Citrus and extension of the genetic linkage map. Theoretical and Applied Genetics,2001,102 (2):206-214
    154. Schmid K J, Sorensen T R, Stracke R, et al. Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Research,2003,13(6):1250-1257
    155. Schubert R, Starek G M, Riegel R. Development of EST-PCR markers and monitoring their intra populational genetic variation in Picea abies (L.) Karst. Theoretical and Applied Genetics,2001,103:1223-1231
    156. Shappley Z W, Jenkins J N, Meredith W R, et al. An RFLP linkage map of upland cotton. Theoretical and Applied Genetics,1998,97(5):756-761
    157. Shappley Z W, Jenkins J N, Watson C E Jr, et al. Establishment of molecular markers and linkage groups in two F2 populations of upland cotton. Theoretical and Applied Genetics,1996,92(8):915-919
    158. Shuhei N, Bemd F, Bikram S G. Gametocidal genes induce chromosome breakage in the interphase prior to the first mitotic cell division of the male gametophyte in wheat. Genetics,1998,149:1115-1124
    159. Sibov S T, de Souza Jr C L, Garcia A A F, et al. Molecular mapping in tropical maize (Zea mays L.)using microsatellite markers. I. Map construction and localization of loci showing distorted segregation. Hereditas,2003,139 (2):96-106
    160. Song Q J, Marek L F, Shoemaker R C, et al. A new integrated genetic linkage map of the soybean. Theoretical and Applied Genetics,2004,109(1):122-128
    161. Song X L, Guo W Z, Han Z G, et al. Quantitative trait loci mapping of leaf morphological traits and chlorophyll content in cultivated tetraploid cotton. Journal of Integrative Plant Biology,2005,47(11):1382-1390
    162. Song X L, Zhang T Z. Identification of quantitative trait loci controlling seed physical and nutrient traits in cotton. Seed Science Research,2007,17:243-251
    163. Stephens S G. The cytogenetics of speciation in Gossypium. I. selective elimination of the donor parent genotype in interspecific backcrosses. Genetics, 1949,34:627-637
    164. Sun Z D, Wang Z N, Tu J X. An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theoretical and Applied Genetics,2007,114(8):1305-1317
    165. Taliercio E, Allen R D, Essenberg M. Analysis of ESTs from multiple Gossypium hirsutum tissues and identification of SSRs. Genome,2006,49:306-319
    166. Tani N, Takahashi T, Iwata H, et al. A consensus linkage map for Sugi (Cryptomeria japonica) from two pedigrees, based on microsatellites and expressed sequence tags. Genetics,2003,165:1551-1568
    167. Temesgen B, Brown G R, Harry D E, et al. Genetic mapping of expressed sequence tag polymorphism (EST) markers in loblolly pine (Pinus taeda L.). Theoretical and Applied Genetics,2001,102(5):664-675
    168. Tenaillon M I, Sawkins M C, Long A D. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays L). Proceedings of the National Academy of Sciences of USA,2002,98 (6):9161-9166
    169. Tiffin P, Hahn M W. Coding sequence divergence between two closely related plant species, Arabidopsis thaliana and Brassica rape ssp Pekioensis. Journal of Molecular Evolulion,2002,54:746-753
    170. Tongue M, Earle E D, Griffiths P D. Segregation distortion of Brassica carinata derived black rot resistance in Brassica olexacea. Euphytica,2003,134:269-276
    171. Ulloa M, Cantrell R G, Oercy R, et al. QTL analysis of stomatal conductance and relationship to lint yield in intraspecific cotton. Journal of Cotton Science,2000,4: 10-18
    172. Useche F J, Gao G, Hanafey M, et al. High throughput identification database storage and analysis of SNPs in EST sequence. Genome Informatics,2001,12: 194-203
    173. Varshney R K, Grosse I, Hahnel U, et al. Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theoretical and Applied Genetics,2006,113 (2):239-250
    174. Varshney R K, Sigmund R, Borner A, et al. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Science,2005,168(1):195-202
    175. Vendramin E, Dettori M T, Giovinazzi J, et al. A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across Prunus species. Molecular Ecology Notes,2006,7 (2):307-310
    176. Vicente M C de, Tanksley S D. Genome-wide reduction in recombination of backcross progeny derived from male versus female gametes in an interspecific cross of tomato. Theoretical and Applied Genetics,1991,83 (2):173-178
    177. Waghmare V N, Rong J, Rogers C J, et al. Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum. Theoretical and Applied Genetics,2005,111(4):665-676
    178. Wang C, Ulloa M, Roberts P A. A transgressive segregation factor (RKN2) in Gossypium barbadense for nematode resistance clusters with gene rknl in G. hirsutum. Molecular Genetics and Genomics,2008,279(1):41-52
    179. Wang G, Hyne V, Chao S, et al. A comparison of male and female recombination frequency in wheat using RFLP maps of homoeologous group 6 and 7 chromosomes. Theoretical and Applied Genetics,1995,91(5):744-746
    180. Wang H M, Lin Z X, Zhang X L, et al. Mapping and quantitative trait loci analysis of verticillium wilt resistance genes in cotton. Journal of integrative plant biology,2008,50 (2):174-182
    181. Wang K, Song X, Han Z, et al. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theoretical and Applied Genetics,2006,113 (1):73-80
    182. Wang Y C, Yang C P, Liu G F, et al. Generation and analysis of expressed sequence tags from a cDNA library of Tamarix androssowii. Plant Science,2006, 170:28-36
    183. Williams J G K, Kubelic A R, Livak K J, et al. DNA polyorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acid Research,1990,18: 6531-6535
    184. Xie H, Sui Y, Chang F Q, et al. SSR allelic variation in almond (Prunus dulcis M.). Theoretical and Applied Genetics,2006,112 (2):366-372
    185. Xu Y, Zhu L, Xiao J, et al. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doublehaploid and recombinant inbred populations in rice (Orysativa L.). Molecular and General Genetic,1997,253: 535-545
    186. Xue S L, Zhang Z Z, Lin F. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theoretical and Applied Genetics,2008,117(2):181-189
    187. Yano M, Harushima Y, Nagamura Y, et al. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theoretical and Applied Genetics,1997,95(7):1025-1032
    188. Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Molecular Biology,1997,35:145-153
    189. Yin T M, DiFazio S P, Gunter L E, et al. Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map. Theoretical and Applied Genetics,109(3):451-463
    190. Yu J K, Dake T M, Singh S, et al. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome,2004a,47(5): 805-818
    191. Yu J K, LaRota M, Kantety R V, et al. EST derived SSR markers for comparative mapping in wheat and rice. Molecular Genetics and Genomics,2004b, 271(6):742-751
    192. Yu J, Yu S, Lu C, et al. High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. Journal of Integrative Plant Biology,2007,49(5):716-724
    193. Zabeau M, Vos P. Selective restriction fragment amplification:a general method for DNA fingerprinting. Patent Application World Intellectual Property Organization, WO,1993,93/06239
    194. Zeng F C, Zhang X L, Zhu L F, et al. Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Molecular Biology,2006,60 (2):167-183
    195. Zeng Z B. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proceedings of the National Academy of Science of the USA,1993,90 (23):10972-10976
    196. Zhang J F, Lu Y Z, Yu S X. Cleaved AFLP (cAFLP), a modified amplified fragment length polymorphism analysis for cotton. Theoretical and Applied Genetics 2005,111(7):1385-1395
    197. Zhang J, Guo W Z, Zhang T Z. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L.×Gossypium barbadense L.) with a haploid population. Theoretical and Applied Genetics,2002,105(8):1166-1174
    198. Zhang P, Dreisigacker S, Melchinger A E, et al. Quantifying novel sequence variation and selective advantage in synthetic hexaploid wheat and their backcross-derived lines using SSR markers. Molecular Breeding,2005,15(1):1-10
    199. Zhang Y X, Lin Z X, Li W, et al. Studies of new EST-SSRs derived from Gossypium barbadense. Chinese Science Bulletin,2007,52(18):2522-2531
    200. Zhang Y X, Lin Z X, Xia Q Z, et al. Characteristics and analysis of SSRs in cotton genome based on a linkage map constructed by BC1 population between Gossypium hirsutum and G. barbadense. Genome,2008,51(7):534-546
    201. Zhang Z S, Chun M C Hu, Zhang J, et al.Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Molecular Breeding,2009,24:49-61
    202. Zhang Z S, Xiao Y H, Luo M, et al. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton. Euphytica,2005,144(1):91-99
    203. Zhao X, Wing R A, Paterson A H. Cloning and characterization of the majority of repititive DNA in cotton (Gossypium L.). Genome,1995,38:1177-1188
    204. Zhuchenko A A, Korol A B, Vizir I Y, et al. Sex differences in crossover frequency for tomato and thale cress (Arabidopsis thaliana). Soviet genetics,1989, 24(9):1104-1110
    205. Zou J J, Singh R J, Lee J, et al. SSR markers exhibit trisomic segregation distortion in soybean. Crop Science,2006,46:1456-1461

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700