基于45S rDNA-FISH与GISH分析的草莓属(Fragaria)野生种亲缘关系与系统分类研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草莓属植物在世界自然分布有20个种,其中19个种均为野生种,存在倍性主要有2x、4x、6x和8x以及少量的3x、5x、9x、10x甚至12x,因此关于草莓属植物的系统分类、亲缘关系与起源尤其是多倍体种的起源研究一直是草莓研究的重要方面,对其野生资源的开发利用具有重要的意义。目前,国内外虽有利用形态学、染色体核型、孢粉学、同工酶、DNA分子标记技术等进行相关研究,但仍未有准确和完整的结论,而且利用FISH与GISH技术开展相关研究属国内外首次。
     本研究收集了原产我国的6个二倍体种(2n=2x=14)、3个四倍体种(2n=4x=28)和1个五倍体种(2n=5x=35),来自日本的2个二倍体种(2n=2x=14)、1个四倍体种(2n=4x=28)和1个八倍体种(2n=8x=56)以及来自欧洲的1个六倍体种(2n=6x=42),包括来自不同地区的品种或类型共48份材料,利用45S rDNA-FISH和GISH技术,对其系统分类、亲缘关系和多倍体形成等方面进行了分析和探讨,取得了一定的进展。
     1、利用45S rDNA-FISH技术对包括2x、4x、5x、6x和8x的48份材料共15个种进行了研究,观察分析了45S rDNA在所有供试材料中期染色体与间期细胞核中分布位点的数目、区域与拷贝数,并探讨了种间亲缘关系和多倍体起源,结果如下:
     (1)中期染色体与间期细胞核中45S rDNA杂交位点数目与分布相对一致;种内不同品种或类型45S rDNA-FISH结果一致,而种间存在一定的差异;
     (2)二倍体种(2n=2x=14)中期染色体与间期细胞核存在2个45S rDNA杂交位点,信号强弱和分布区域在同一个细胞中有三种情况,一是2个杂交信号强弱相同且分布区域相同,二是2个信号强弱不同且分布区域相同,三是2个信号强弱不同且分布区域不相同;45S rDNA杂交信号位置存在两类情况,一类是位于染色体端部,另一类是位于染色体中部区域;森林草莓的2个杂交信号均较强,且位于染色体端部,东北草莓2个杂交信号为1强1弱,分别位于染色体中部和端部,绿色草莓、五叶草莓和西藏草莓相同,2个杂交信号为1强1弱,均位于染色体端部,纤细草莓2个杂交信号为1强1弱,分别位于染色体端部和中部区域,饭沼草莓与蝦夷草莓相似,有2个位于染色体端部且亮度较弱的杂交信号;
     (3)四倍体种(2n=4x=28)中期染色体与间期细胞核存在4个45S rDNA杂交位点;蝦夷草莓和东方草莓4个信号分布区域相同,均是3个位于染色体端部,另1个位于染色体中部区域,但蝦夷草莓信号均较弱,而东方草莓则均强;伞房草莓与西南草莓4个信号均分布在染色体端部,然而伞房草莓为3强1弱,而西南草莓为2强2弱;
     (4)五倍体东方草莓(2n=5x=35)中期染色体与间期细胞核存在5个45S rDNA杂交位点,4个较强,另1个较弱,其中3个位于染色体端部,另1个较强和1个较弱的位于染色体中部;
     (5)六倍体麝香草莓(2n=6x=42)中期染色体与间期细胞核存在6个45S rDNA杂交位点,5个亮度较强,1个亮度较弱,均位于染色体端部区域;
     (6)3个八倍体种(2n=8x=56)中期染色体与间期细胞核均存在8个45S rDNA杂交位点,且均为4个亮度较强,4个亮度较弱,但弗吉尼亚草莓和择捉草莓杂交信号均位于染色体端部,而智利草莓8个杂交信号中除了2个较弱的位于染色体中部外,其余均位于染色体端部。
     (7)认为森林草莓较为原始,与饭沼草莓和蝦夷草莓亲缘关系较远,与其它二倍体种亲缘关系较近;四倍体东方草莓可能是森林草莓与东北草莓杂交后再加倍形成的异源四倍体,五倍体东方草莓可能起源于四倍体东方草莓形成未减数配子与东北草莓杂交形成;伞房草莓可能是森林草莓与绿色草莓形成未减数配子杂交形成;西南草莓可能起源于西藏草莓,而不是黄毛草莓;证明弗吉尼亚草莓可能是森林草莓与饭沼草莓杂交后加倍形成。
     2、以森林草莓、西藏草莓、东北草莓、绿色草莓和饭沼草莓等野生种基因组DNA为探针,对包括自身在内的48份供试材料中期染色体进行GISH分析,以四倍体东方草莓基因组DNA为探针与五倍体东方草莓中期染色体进行GISH分析,结果如下:
     (1)探针与自身进行GISH分析时,所有中期染色体的全部区域均呈现出较强的杂交信号,而种间的原位杂交信号却呈现出一定的差异,表明各个种的基因组同源性不同。另外,种内不同品种或类型之间GISH结果没有明显差异,表明种内基因组同源性较高;
     (2)以西藏草莓、东北草莓、绿色草莓和自身作为探针与二倍体种(饭沼草莓和蝦夷草莓除外)进行GISH分析,其14条中期染色体上均分布有较强杂交信号,而且几乎覆盖全部染色体区域,表明这些种之间基因组同源性较高;而以饭沼草莓为探针时,饭沼草莓与蝦夷草莓结果与前者类似,但其它二倍体种只有3—7条不等数目染色体存在较弱的杂交信号,而且染色体上只有部分区域有信号分布,表明饭沼草莓与这些二倍体种亲缘关系较远,而与蝦夷草莓较近。
     (3)蝦夷草莓,四倍体种(2n=4x=28),饭沼草莓作探针时,有20条染色体的全部区域出现了较强的杂交信号,而其余8条染色体没有出现杂交信号;而其它二倍体种作探针时,仅有10—15条染色体出现了杂交信号,且信号较弱,其余染色体上没有信号出现。
     (4)伞房草莓,四倍体种(2n=4x=28),饭沼草莓作探针时,信号较弱,且仅分布在8-10条染色体上,其余染色体上没有杂交信号出现;森林草莓作探针时,杂交信号最多,有20—24条染色体全部区域均出现了较强的杂交信号;其次为绿色草莓、西藏草莓、东北草莓,分别有18—22条、15—18条、14—17条染色体上分布有杂交信号。
     (5)西南草莓,四倍体种(2n=4x=28),饭沼草莓作探针时,信号较弱,且仅分布在8—10条染色体上,其余染色体上没有杂交信号出现;西藏草莓和东北草莓作探针时,其所有染色体全部区域均覆盖有较强的杂交信号,其次为绿色草莓和森林草莓,分别有26—28条和25—28条染色体全部区域出现杂交信号。
     (6)东方草莓,四倍体种(2n=4x=28),以饭沼草莓作探针时,只有12—15条染色体的部分区域出现了较弱的杂交信号,其余染色体均没有杂交信号出现;而森林草莓和东北草莓作探针时,其28条染色体全部覆盖有较强的杂交信号,西藏草莓和绿色草莓作探针,也分别有24—26条和26—28条染色体全部区域出现杂交信号。
     (7)东方草莓,五倍体种(2n=5x=35),它是本文中唯一的奇数倍性野生种,与东方草莓四倍体种类似,饭沼草莓基因组DNA仅在其10—12条中期染色体的部分区域出现较弱的杂交信号;与四倍体东方草莓一样,森林草莓和东北草莓基因组DNA在五倍体所有染色体全部区域上均出现了较强的杂交信号,西藏草莓和绿色草莓作探针时,分别有32—35条和30—33条染色体出现了较强杂交信号。
     (8)麝香草莓,六倍体种(2n=6x=42),以饭沼草莓作为探针时,仅有12—15条染色体部分区域出现较弱杂交信号,其余染色体没有信号出现;森林草莓和绿色草莓作探针时,均可能出现所有染色体全部区域均出现杂交信号的情况,分别为40—42条和38—42条染色体出现;而西藏草莓作探针时也有35—38条染色体出现杂交信号,东北草莓作探针时,有30—32条染色体出现杂交信号。
     (9)弗吉尼亚草莓,八倍体种(2n=8x=56),与供试其它草莓野生种不同,它是较特殊的一个种,因为以饭沼草莓作探针时,在弗州草莓中期染色体出现了较强的杂交信号,位于16—18条染色体部分区域上,少数覆盖全部染色体区域,推测它的起源可能与饭沼草莓有关;而森林草莓作探针时,有40—45条染色体呈现较强杂交信号,分布于染色体整个区域,其次分别为绿色草莓(33—35条)、东北草莓(32—35条)和西藏草莓(30—32条)。
     (10)择捉草莓,八倍体种(2n=8x=56),起源和分布于日本,以饭沼草莓为探针时,有22—25条染色体出现了杂交信号,较弱,分布于部分染色体区域;森林草莓作探针时杂交信号最多,有40—42条染色体呈现杂交信号,较强,分布于染色体整个区域,绿色草莓、东北草莓和西藏草莓作探针时结果相似,有30—35条染色体出现了较强的分布于染色体整个区域的杂交信号。
     (11)智利草莓,八倍体种(2n=8x=56),饭沼草莓作探针时,有12—15条染色体部分区域出现了较弱的杂交信号;森林草莓、东北草莓、西藏草莓和绿色草莓作探针时,出现杂交信号的染色体数目为42—44条、32—35条、32—34条和30—32条,且信号较强,分布于染色体整个区域。
     (12)综合分析可以认为:
     ①森林草莓、西藏草莓、东北草莓、绿色草莓、五叶草莓、纤细草莓等二倍体种亲缘关系较近;
     ②饭沼草莓与蝦夷草莓亲缘关系较近,它们与其它草莓种亲缘关系较远;
     ③伞房草莓与森林草莓亲缘关系较其它二倍体草莓更近,其次为绿色草莓,结合前人研究和本文45S rDNA-FISH结果,推测伞房草莓可能是森林草莓和绿色草莓的杂交后代;
     ④西南草莓与西藏草莓和东北草莓亲缘关系最近,其次为绿色草莓和森林草莓,推测其可能起源于西藏草莓或东北草莓,而前面的45S rDNA-FISH结果表明它与西藏草莓有关,二者有较一致的结果;
     ⑤东方草莓四倍体和五倍体种的所有染色体整个区域均能检测出森林草莓和东北草莓的基因组DNA,而其它二倍体种作探针时仅有部分染色体上有信号分布,推测东方草莓可能起源于森林草莓和东北草莓,这与45S rDNA-FISH结果一致;东方草莓五倍体体细胞中全部35条染色体均呈现出东方草莓四倍体基因组DNA杂交信号,推测五倍体可能来源于四倍体未减数配子参与杂交形成,这与45SrDNA-FISH分析结果一致;
     ⑥麝香草莓是供试材料中唯一的六倍体材料,它的起源也相对较为复杂,GISH结果表明,森林草莓、绿色草莓均与麝香草莓基因组同源性最高,推测其亲缘关系最近;
     ⑦弗吉尼亚草莓最可能包含森林草莓和饭沼草莓基因组组成;
     ⑧择捉草莓和智利草莓均与森林草莓、西藏草莓、东北草莓和绿色草莓亲缘关系较饭沼草莓更近;
     综上所述,本文首次对收集到的涉及国内外15个草莓属野生种资源48份进行了45S rDNA-FISH和GISH研究,取得了一定的进展,对于草莓属植物系统分类与进化以及多倍体来源提供了有力的依据和参考,具有重要意义。
There are about 20 species in Fragagia and 19 of them are wild species, including 2x、4x、6x and 8x and a few 3x、5x、9x、10x, even 12x. Therefore, genetic relationship, systematic taxonomy and origination of Fragaria are always very important, which is significant for improve their characteristic. However, many techniques, such as morphology, chromosome karyotype, palynology, isoenzyme, DNA molecular etc. were used to study on these ways, but there is no clear conclusion. And FISH and GISH have not used in this research field yet.
     In this paper,48 materials of 15 species from different regions, including 6 diploids (2n=2x=14)、3 tetraploids (2n=4x=28) and 1 pentaploid (2n=5x=35) originated in China, 2 diploids (2n=2x=14)、1 tetraploids (2n=4x=28) and 1 Octoploid (2n=8x=56) from Japan, and 1 hexaploid (2n=6x=42) from Europe are the experiment accesses. The 45S rDNA-FISH and GISH are carried out to investigate and analysis their systematic classification, genetic relationship and formation of polyploidy.
     1.48 materials belong to 15 species including 2x、4x、5x、6x and 8x were analysed by 45S rDAN-FISH technique. The number region and intensity of 45S rDNA loci on the metaphase chromosome and interphase nucleus of all materials were observed. Genetic relationship and origination of polyploidy were discussed. The main results are as follows:
     (1) In metaphase chromosome and interphase nucleus, the number and region of 45S rDNA sites were relatively consistent. The results of 45S rDNA-FISH were consistent in intraspecies, but different in interspecies.
     (2) There were 2 45S rDNA hybridization sites located in diploid metaphase chromosome and interphase nucleus. According to the intensity and region, there were three situations:first, the intensity and region of 2 hybridization signal were the same; second, the intensity were different but region were the same; last, the intensity and region were different. There were 2 regions of 45S rDNA hybridization signal. One was located in the end of the chromosome, another is located in the middle of the chromosome. It was noticeable that F. vesca L. had 2 strong hybridization signals located in the end of the chromosome. F.mandschurica Staudt had 1 strong and 1 weak hybridization signals located in the middle and the end of the chromosome respectively. F. viridis Duch、F. pentaphylla Losinsk. and F. nubicola (Hook. f.) Lindl. ex Lacaita had 1 strong and 1 weak hybridization signal both located in the end of the chromosome. F. gracilis Losinsk. had 1 strong and 1 weak hybridization signals located in the end and the middle of the chromosome respectively. F. iinumae and F. yezoensis had 2 weak hybridization signals located in the end of the chromosome.
     (3) There were 4 45S rDNA hybridization sites located in tetraploid metaphase chromosome and interphase nucleus. The located sites were complex. The signal region in F. yezoensis and F. orientalis Lozinsk. were the same,3 located in the end of the chromosome and 1 in the middle of the chromosome. But the hybridization signals were weak in F. yezoensis and strong in F. orientalis.4 signals of F. corym bosa Lozinsk and F. moupinensis (Franch.) Card. were located in the end of the chromosome, but 3 strong and 1 weak in F. corym bosa Lozinsk,2 strong and 2 weak in F. moupinensis (Franch.) Card.
     (4) There were 5 45S rDNA hybridization sites located in pentaploid metaphase chromosome and interphase nucleus.4 signals were strong and 1 was weak.3 located in the end of the chromosome and 1 strong and 1 weak in the middle of the chromosome.
     (5) There were 6 45S rDNA hybridization sites located in hexaploid metaphase chromosome and interphase nucleus.5 signals were strong and 1 was weak, all located in the end of the chromosome.
     (6) There were 8 45S rDNA hybridization sites located in 3 Octoploids metaphase chromosome and interphase nucleus.4 signals were strong and the other 4 were weak. The hybridization signals of F. virginiana and F. iturupensis Staudt were located in the end of the chromosome. While,2 hybridization signals of F. chiloensis were weak and located in the middle of the chromosome, and 6 were in the end of the chromosome.
     (7) The results showed that F. vesca Linn. was original and heterologous to some extent between it and F. iinumae and F. yezoensis, and homology to other diploids. F. orientalis Lozinsk (4x) was allotetraploid and originated from chromosome doubling in F. vesca Linn. X F. mandschurica Staudt.. F. orientalis Lozinsk.(5x) was obtained by hybridization of 2n gametes of F. orientalis Lozinsk. X F. mandschurica Staudt.. F. corym bosa Lozinsk was possibly formed by the 2n gametes of F. vesca Linn. X F. viridis Duch. F. moupinensis (Franch.) Card. May originated from F. nubicola (Hook. f.) Lindl. ex Lacaita not F. mandschurica. F. virginiana was obtained by chromosome doubling in F. vesca Linn. X F. iinumae.
     2. Genomic in situ hybridization (GISH) using genomic DNA probes from F. vesca L., F. nubicola (Hook. f.) Lindl. ex Lacaita, Northeast strawberries, green strawberries and wild strawberries, was used to examine the genomic constitution of 48 tested materials, including their own. Genomic in situ hybridization (GISH) using genomic DNA probes from tetraploid Eastern Strawberry, was used to examine the metaphase chromosome of pentaploid East Strawberry. The results were as follows:
     (1)GISH analysis of the probe with itself, bright hybridization signals were observed on all the chromosomal regions, while hybridization signals of between species preached some differences. This suggests that the genome of each species homology different. In addition,no significant difference between different varieties within species or types by GISH, indicating that intra-genomic homologous.
     (2)Using genomic DNA of F. nubicola (Hook. f.) Lindl. ex Lacaita, F. mandschurica Staudt, F. viridis Duch and F. vesca L. as probe, diploid species was analyzed with genome in situ hybridization (GISH).The results showed that bright and even hybridization signals were observed on 14 metaphase chromosomes which covering almost all the chromosomal regions in these diploid species but F. iinumae and F. yezoensis were exepted. This implies these kinds are high homology between the genome. But using genomic DNA of F. iinumae as probe, only 3-7 chromosomes with weak hybridization signals existed, and only in part of the region on chromosome signal distributed, indicating that F. iinumae distantly related.
     (3) Tetraploid F. yezoensis (2n=4x=28). Using F. iinumae as a probe, strong hybridization signals appeared in all the regions of 20 chromosomes, while no hybridization signal in the remaining eight chromosomes; and using other diploid species as probes, only 10-15 chromosomes appeared in weak hybridization signal, no signal appears on the other chromosome.
     (4) Tetraploid F. corym bosa Lozinsk (2n=4x=28).Using F. iinumae as a probe, the signal is weak, and only distributed in the 8-10 chromosomes, no other chromosome hybridization signals; When F. vesca L. gDNA were used as probes, hybridization signals to the highest of all regions were 20-24 chromosomes appeared strong hybridization signal; and hybridization signals distributed in 18-22,15-18,14-17 chromosomes of the F. viridis Duch, F. nubicola (Hook. f.) Lindl. ex Lacaita, F. mandschurica Staudt respectively.
     (5)Tetraploid F. moupinensis (Franch.) Card.(2n=4x=28). Using F. iinumae as a probe, the signal is weak, and only distributed in the 8-10 chromosomes, no other chromosome hybridization signals; Using F. nubicola (Hook. f.) Lindl. ex Lacaita and F. mandschurica Staudt as probes, blight hybridization signals occurred in all chromosomes. Followed by F. vesca L. and F. viridis Duch,26-28 and 25-28 chromosomes respectively, all regions of chromosome showed hybridization signals.
     (6) Tetraploid F. orientalis Lozinsk. (2n=4x=28). Using F. iinumae as a probe, only 12-15 chromosomes appeared in some areas of weak hybridization signals, and no hybridization signal appeared in the remaining chromosomes; and when probed with gDNA from F. vesca L. and F. mandschurica Staudt, blight hybridization signals for F. nubicola (Hook. f.) Lindl. ex Lacaita and F. viridis Duch appeared in 28 chromosomes, but also 24-26 and 26-28 respectively, all regions of chromosome showed hybridization signals.
     (7) Pentaploid F. orientalis Lozinsk (2n=5x=35). It is the only odd multiple of the wild species in this study and it is similar to the tetraploid F. orientalis Lozinsk. F. iinumae genomic DNA only in the 10-12 region appeared weak hybridization signals; and tetraploid F. orientalis Lozinsk as F. vesca L. and F. mandschurica Staudt, their genomic DNA of all chromosomes in pentaploid all regions have appeared on the blight hybridization signals. When probed with sequences from F. nubicola (Hook. f.) Lindl. ex Lacaita and F. viridis Duch, respectively, in 32-35 and 30-33 chromosomes appeared stronger hybridization signal.
     (8) F. moschata is a hexaploid species (2n=6x=42).When F. iinumae gDNA were used as a probe, only weak hybridization signals occurred in some regions of 12-15 chromosomes. When probed with gDNA from F. viridis Duch and F. vesca L. hybridization signals could occur in all regions of all chromosomes.When hybridized with F. nubicola (Hook. f.) Lindl. ex Lacaita,35-38 chromosomes may release positive signals, while 30-32 when hybridized with F. mandschurica Staudt.
     (9) F. virginiana is an octoploid species (2n=8 x=56). Be different with other tested wild speices, strong hybridization signals occurred in some regions of 16-18 metaphase chromosomes in F. virginiana as F. iinumae gDNA a probe, and even a few cover all regions of metaphase chromosomes which suggesting that its origin may be related with the F. iinumae. However, when using F. vesca L. gDNA as probe,40-45 chromosomes showing stronger hybridization signal which located in all chromosome region, followed by F. viridis Duch (33-35), F. mandschurica Staudt (32-35) and F. nubicola(Hook. f.) Lindl. ex Lacaita (Article 30-32).
     (10) F. iturupensis Staudt is octoploid species (2n=8 x=56) that origin and distribution in Japan.When F. iinumae gDNA was used as probe, only weak hybridization signals occurred some regions of 12-15 chromosomes. When hybridized with F. vesca L., strong hybridization signal is the highest of 40-42 chromosomes showed hybridization signals, located in whole chromosome region. When F. nubicola (Hook. f.) Lindl. ex Lacaita, F. mandschurica Staudt, F. viridis Duch were used as probes, they all have 30-35 chromosomes showed hybridization signals which appeared all region.
     (11) F. chiloensis is octoploid species (2n=8 x=56). When hybridized with F. iinumae, only weak hybridization signals occurred in some regions of 12-15 chromosomes. When probed with from F. vesca L., F. nubicola (Hook. f.) Lindl. ex Lacaita, F. mandschurica Staudt, F. viridis Duch, the stronger hybridization signals of chromosome number is 42-44,32-35,32-34 and 30-32 of all regions.
     (12) Comprehensive analysis, we can get the following conclusions:
     ①Diploid species of F. vesca L., F. nubicola (Hook. f.) Lindl. ex Lacaita, F. mandschurica Staudt, F. viridis Duch, F. pentaphylla Losinsk., F. gracilis Losinsk. have close genetic relationship.
     ②F. iinumae and F. yezoensis have close genetic relationship, but they are distantly related with the other species.
     ③F. corym bosa Lozinsk and F. vesca L.'s genetic relationship are closer than the other diploid strawberry, followed by F. viridis Duch. Combining with previous studies and the results of this 45S rDNA-FISH have suggested that F. corym bosa Lozinsk may be the offspring of F. vesca L. and F. viridis Duch.
     ④F. moupinensis (Franch.) Card., F. mandschurica Staudt and F. nubicola (Hook. f.) Lindl. ex Lacaita have closest relationship, followed by F. vesca L. and F. viridis Duch, suggesting the origin of F. moupinensis (Franch.) Card. may be from F. nubicola (Hook. f.) Lindl. ex Lacaita and F. mandschurica Staudt. And the result is same as 45S rDNA-FISH.
     ⑤Both all regions of all chromosomes in F. orientalis Lozinsk. of tetraploid and pentaploid can be detected the signals of F. mandschurica Staudt and F. vesca L. gDNA. While only some regions of chromosomes have hybridization signals when the other diploid species were used as probes. The results showed that the origin of F. orientalis Lozinsk possible from F. vesca L. and F. mandschurica Staudt. This is consistent with the results of 45S rDNA-FISH; In all 35 chromosomes in F. orientalis Lozinsk pentaploid the signals were shown by F. orientalis Lozinsk tetraploid gDNA and we considered that pentaploid may come from non-reduced gamete of tetraploid which was same as the result of 45S rDNA-FISH analysis.
     ⑥F. moschata is the only hexaploid species in the tested materials, its origin is relatively more complex. GISH results showed that the F. vesca L., F. viridis Duch and F. moschata were highest homology, so that they have closest relationship;
     ⑦F. virginiana is most likely to contain F. vesca L. and F. iinumae genome organization;
     ⑧The genetic relationship between F. iturupensis Staudt and F. vesca L., F. nubicola (Hook. f.) Lindl. ex Lacaita, F. viridis Duch, F. mandschurica Staudt are more closer than the F. iinumae. And this situation is same with F. chiloensis.
     48 wild materials of 15 species in Fragaria involving domestic and foreign resources were studied firstly by 45S rDNA-FISH and GISH in the world. Some important progress has been obtained which provide a strong basis and reference for the strawberry plants, the taxonomy and evolution of polyploid sources. The paper is great significance as well.
引文
1.别墅,王坤波,王春英,宋国立,孔繁玲,刘方,刘三宏,黎绍惠,张香娣,王玉红.二倍体栽培棉45S rDNA-FISH作图及核型比较.棉花学报,,2004,16(4):223-228
    2.陈春丽.柑橘体细胞杂种细胞遗传学及抗CTV等基因对枳的FISH分析.博士学位论文.武汉:华中农业大学,2004
    3.陈春丽,郭文武,邓秀新.柑橘基因组原位杂交(GISH)技术体系的建立.武汉植物学研究,2003,21(5):439-443.
    4.D.H.斯科特著,邓明琴等译.草莓、悬钩子、穗醋栗和醋栗育种进展.农业出版社,1989.
    5.代汉萍,雷家军,邓明琴.长白山野生草莓资源的调查与分类研究.园艺学报,2007,34(1):63-66.
    6.董静,张运涛,王桂霞,金万梅,钟传飞,王丽娜,常琳琳.五叶草莓与凤梨草莓种间杂交F1代的形态学及SSR标记鉴定.西北农业学报.2010,19(11):145-148
    7.葛会波,雷家军,郭振怀.草莓属植物染色体观察及种间杂交研究初报.河北农业大学学报,1997,20(3)56-59.
    8.葛会波.草莓种质资源的研究.河北农业大学博士论文.1991.
    9.关鹤,赵鸿,云兴福,刘凡.基因组原位杂交技术在植物研究中的应用.分子植物育种,2006,4(3):365-376.
    10.龚志云,吴信淦,程祝宽,顾铭洪.水稻45SrDNA和5SrDNA的染色体定位研究.遗传学报,2002,,29(3):241-244
    11.关鹤,赵鸿,云兴福,刘凡.基因组原位杂交技术在植物研究中的应用.分子植物育种,2006,4(3):365-376
    12.韩永华,亓翠花,佘朝文,刘立华,宋运淳.薏苡45S和5S rDNA的染色体定位研究.实验生物学报,,2003,36(5):393-396
    13.何淑娟.利用AFLP分子标记分析草梅的遗传多样性.河北农业大学硕士论文.2007
    14.吉万全,薛秀庄,王秋英.中间堰麦草染色体组的分子细胞遗传学研究。中国的遗传学研究.1995,110
    15.刘勇.袖类资源分子系统学及其核心种质构建研究.华中农业大学博士论文,2005
    16.刘文轩,陈佩度,刘大钧.利用荧光原位杂交检测导入普通小麦的大赖草染色质.遗传学报,1999,26(5):546-551
    17.雷家军,代汉萍,赵密珍,吴伟民.中国分布四倍体野生草莓的调查研究.果树学报,,2008,,25(3):358-361
    18.雷家军,杨高,代汉平等.我国的草莓野生资源.果树科学,1997,14(3):198-200
    19.雷家军,邓明琴,吴禄平等.新疆天山野草莓与绿色草莓(Fragaria viridis)同一 性的鉴定.园艺学报,2001,28(2):119-122
    20.雷家军,邓明琴,李怀才等.长白山野生草莓资源考察与鉴定.草莓研究进展.73-77.
    21.雷家军,代汉萍,谭昌华等.中国草莓属(Fragaria)植物的分类研究.园艺学报,2006,33(1):1-5.
    22.雷家军,望月龙也,邓明琴.草莓属二倍体种东北草莓(Fragaria mandschurica Staudt)研究.果树学报,2001,18(6):337-340.
    23.雷家军,邓明琴,吴禄平,望月龙也,野口裕司,曾根一纯.新疆天山野生草莓与绿色草莓(Fragariaviridis Duch.)同一性的鉴定.园艺学报,2001,28(2):119-122.
    24.雷家军.草莓茎尖染色加倍研究究.园艺学报,1999,6(1):13-18.
    25.李懋学,张赞平.作物染色体及其研究技术.北京:中国农业出版社,1996,23-39
    26.李宗芸,覃瑞,金危危等.利用粗线期染色体和DNA纤维的FISH分析水稻端粒序列.遗传学报,2005,32(8):832-836.
    27.李贵全.细胞学研究基础.北京:中国林业出版社,2000.
    28.马鸿翔,陈佩度,余桂红,任丽娟.东北草莓×凤梨草莓种间杂种一代的细胞遗传学观察与RAPD分析.园艺学报,2007,34(3):597-604.
    29.马鸿翔,陈佩度,余桂红,任丽娟.利用GISH和RAPD检测黄毛草莓×凤梨草莓种间杂种.植物遗传资源学报,2005,6(3):256-261.
    30.马鸿翔.黄毛草莓、东北草莓与凤梨草莓种间杂种后代的获得及其分子细胞遗传学研究,南京农业大学博士论文,2003
    31.马鸿翔,盛炳成,戴子林,陈秀兰,顾军.草莓品种的遗传距离研究.江苏农业学报,1995,11(3):41-45
    32.马渐新,周荣华,贾继增.用基因组原位杂交与RFLP标记鉴定小麦一簇毛抗白粉病代换系.遗传学报,1997,24(5):447-453
    33.马有志,富田因则,田中升等.应用分子原位杂交技术解析小麦一天兰冰草部分双二倍体-远中2号的染色体构成.遗传学报,24(4):344-349
    34.刘占林.松属植物rRNA基因的变异模式及其进化生物学意义.博士学位论文,北京:中国科学院植物所2002
    35.宁顺斌,金危危,丁毅,宋运淳.基因组原位杂交比较玉米和水稻基因组同源性.科学通报,2000,45(22):2431-2434
    36.宁顺斌,宋运淳,王玲,魏文辉,刘立华.玉米中抗病基因mybl和NDR1同源序列的荧光原位杂交物理定位.植物学报,2000,42(6):605-610
    37.覃瑞,魏文辉,宋运淳.BAC-FISH在植物基因组研究中的应用.生物化学与生物物理进展,2000,27(1):20-23
    38.生静雅.自然五倍体野生草葛的起源及品质性状评价研究,扬州大学硕士学位论文,2009
    39.时翠平.草莓属植物细胞学研究.河北农业大学硕士学位论文,2001.
    40.王坤波,王文奎,王春英等.海岛棉原位杂交及核型比较.遗传学报,2001, 28(1):69-75
    41.王玲,宁顺斌,宋运淳.荧光原位杂交技术的发展与应用.植物学报,2002,42(11):1101-1107
    42.王同坤,张京政,齐永顺,庞海珍.我国果树多倍体育种研究进展.果树学报,2004,21(6):592-597
    43.王文奎,戴思兰.染色体原位杂交技术在植物亲缘关系研究中的应用.北京林业大学学报,2000,22(6):100-104
    44.王志刚,张志宏.分子标记在草莓遗传研究中的应用.辽宁农业科学,2005,(3):36-38
    45.王志刚,张志宏,李贺,高秀岩,杜国栋,谭昌华.利用RAPD和SCAR标记鉴定草莓品种.园艺学报,2007,34(3):591-596
    46.汪卫星.天然与人工合成三倍体枇杷基因组变异及其DNA甲基化分析.西南大学博士论文,2008
    47.魏育明,郑有良,周荣华等。应用荧光原位杂交和RFLP标记检测多穗小麦新种质10-A中的黑麦染色质.植物学报,1999,41(7):722-725
    48.熊怀阳,赵丽娟,李立家.植物细胞遗传图及其应用.遗传,2005,27(4):659-664
    49.熊志勇.栽培稻及疣粒野生稻基因组的比较荧光原位杂交研究.博士学位论文,武汉:武汉大学,2004
    50.轩淑欣,申书兴,赵建军,张成合,陈雪平,郄丽娟.25S rDNA和5S rDNA在大白菜中期染色体上的FISH定位.中国农业科学2007,40(4):782-787
    51.杨景华,王士伟,刘训言,杨加付,张明方.高等植物功能性分子标记的开发与利用.2008,中国农业科学,41:3429-3436
    52.杨丽梅,Rmanana M S, Jong J H等。马铃薯与番茄融合之回交后代染色体的原位杂交检测.园艺学报,1997,24(4):338-342
    53.元增军,刘大钧,陈佩度。利用染色体C-分带和双色原位杂交技术鉴定普通小麦-黑麦-簇毛麦双重易位系和[RS、IBL、6VS6AL.遗传学报,2001,28(3):267-273
    54.余舜武,张端品,宋运淳.基因组原位杂交的新进展及其在植物中的应用.武汉植物学研究2001,19(3):248-254
    55.余舜武.荧光原位杂交和分子标记在水稻和小麦种质资源研究中的应用.博士学位论文.武汉:华中农业大学,2002
    56.余朝文.几种植物与模式植物基因组的分子细胞遗传学比较分析.博士学位论文.武汉:武汉大学,2005
    57.余朝文,宋运淳.植物荧光原位杂交技术的发展及其在植物基因组分析中的应用.武汉植物学研究,2006,24(4)365-376.
    58.向素琼,梁国鲁,李晓林,汪卫星,郭启高,何桥,陈瑶.沙田柚多倍体的获得与基因组原位杂交(GISH)分析[J].中国农业科学2008,41(6):1749-1754
    59.张连峰,何建,冯焱,刘利,郭启高,梁国鲁.金柑属及其近缘属植物亲缘关 系的SSR分析.果树学报,2006,23(3):335-338
    60.张运涛,冯志广,李天忠,董静,王桂霞,张开春,韩振海.草莓品种亲缘关系的AFLP分子标记分析.园艺学报,2006,33(6):1199-1202
    61.张辉,贾继增.用荧光原位杂交技术检测黑麦染色质。中国农业科学,1996,29(2):90-93
    62.李懋学.张赞平作物染色体及其研究技术.北京:中国农业出版社,1996
    63.郑成木,植物分子标记原理与方法,湖南科学技术出版社,2002,169-212
    64.钟筱波,Paul F. Fransz, Jannie Wennekes, Ab van Kammen.J Hans de Jong, Pim Zabe J.W. Franz, et al.在植物粗线期染色体和DNA纤维上的荧光原位杂交技术.遗传学报,1998.,25(2):142-149
    65.钟筱波,Paul F. Fransz, J. Hans de Jong, Pim Zabel用荧光原位杂交技术构建高分辨率的DNA物理图谱.遗传,1997,19(3):39-43
    66.朱恒.中国草莓属(Fragaria spp)植物的分类研究.沈阳农业大学硕士论文.2005.
    67. Abranches R, Santos A P, Wegel E, Williams S, Castilho A, Christou P. Shaw P, Stoger E. Widely separated multiple transgene integration sites in wheat chromosomes are brought together at interphase.Plant J,2000,24:713-723
    68. Andersen JR., Liibberstedt T. Functional markers in plants. Trends Plant Sci., 2003,8(11):554-560
    69. Arnau G, Lallemand J, Bourgoin M. Fast and reliable strawberry cultivar identification using inter simple sequence repeat (ISSR) amplification EUPHYTICA,2003,129 (1):69-79
    70. Bailey JP, Bennett MD.Genometic in hybiridization identifies Paretal chromosomes in the wide grass hybrid Festulpia hubbaii. Heredity,1993, 71:423-420
    71. Barro F, Martin A, Cabrera A. Transgene integration and chromosome alterations in two transgenic lines of tritordeum. Chromosome Res,2003,11:565-572
    72. Belyayev A, Raskina O, Nevo E. Evolutionary dynamics and chromosomal distribution of repetitive sequences on chromosomes of Aegilops speltoides revealed by genomic in situ hybridization. Heredity,2001,86:738-742
    73. Belyayev A, Raskina O. Heterochromatin discrimination in Aegilops speltoides by simultaneous genonuc in situ hubridization. Chromosome Res,1998,6:559-565.
    74. Bostein D,W hite RL,Skolnick M,et al. Am J Hum Genet,1980,32:314.
    75. Bringhurst RS, Gill T. Origin of Fragaria Polyploids Unreduced and double-Unreduced Garnetea Amer. J. Bat.1970,57:969-972
    76. Brown SE, Stephens JL, Lapitan N L V, Knudson D L. FISH landmarks for barley chromosomes (Hordeaim vulgare L.). Genome,1999,42:274-281
    77. Buongiorno-Nardelli M, Amaldi F. Autoradiographic detection of molecular hybrids between rRNA and DNA in tissue sections. Nature,1969,225,946-947
    78. Bringhurst RS. Cytogeneties and Evolution in Americna Fragaria. Hortseienc, 1990,25:879-881
    79. Bringhurst RST, Sananayake DA.. The Significance of Natural Fragaria chilonesis X F.vesca Hybrids Resulting from unxeduced Gametes Amer. J.bot,1966,53:1000-1006
    80. Bringhurst RS, Khan DA. Natural Pentaploid Fragaria chnioenssi-F vesca hybrids in coastal Caliofrnia and their significance in Polyoloid evolution. Amer J. Bot, 1963,50:658-661
    81. Cerbah M, Coulaud J, Siljak-Yakovlev S. rDNA organization and evolutionary relationships in the genus Hypochoeris (Asteraceae). J Hered,1998,89:312-318
    82. Chen RY, Lin SH, Song WQ, et al. Chromosome atlas of Chinese principal economic plants. Tomus I. International academic publishers.1993,280~281.
    83. Choi HW, Lemaux PG, andCho MJ. Use of fluorescence gene insertion that we detected following more detailed in situ hybridization for gross mapping of transgenes and screening for homozygous plants in transgenic barley(Hordeum vulgare L.). Theor Appl Genet,2002,106:92-100
    84. Choi YA, Tao R, Yonemori K, Sugiura A. Genomic in situ hybridization between Persimmon(Diospyros kaki) and several wild species of Diospyros. Journal of the Japanese Society for Horticultural Science,2003,72(5):385-388.
    85. Claussen U.Chromosomics. Cytogenet Genome Res,2005,109:101-106
    86. Congiu L, Chicca M, Cella R. The use of random amplified polymorphic DNA(RAPD) markers to identify strawberry varieties:a forensic application[J].Molecular Ecology,2000,9:229-232.
    87. Cuadrado A, Rubio P, Ferrer E, Nicolas J. Sequential combinations of C-banding and in situ hybridization and their use in the detection of interspecific introgressions into wheat. Euphytica,1996,89,1:107-112
    88. Dale A. A key and vegetative descrip tion of thirty two common strawberry varieties grown in North America.Advances in Strawberry Reasearch,1996, 15(1):1-12.
    89. Debnath, SC, Khanizadeh, S, Jamieson, AR, Kempler, C. Inter Simple Sequence Repeat (ISSR) markers to assess genetic diversity and relatedness within strawberry genotypes. CANADIAN JOURNAL OF PLANT SCIENCE,2008,88 (2):313-322
    90. De Jong JH, Fransz PF, Zabel P. High resolution FISH in plants-techniques and applications. Trends Plant Sci,1999,4:258-263
    91. De Jong JH. Visualizing DNA domains and sequences by microscopy:a fifty-year history of molecular cytogenetics. Genome,2003,46:943-946
    92. D'Hont A, Paget-Goy A, Escoute J, Carreel F. The interspecefic genome structure of cultivated banana, Musa spp. revealed by genomein situ hybridization. Theoretical and Applied Genetics,2000,100:177-183.
    93. Dolezelova M, Valarik M. Swennen R, Horry JP, Dolezel J. Physical mapping of the 18S-25S and 5S ribosomal RNA genes in diploid bananas. Biologia Plantarum, 1998,41:497-505
    94. Dong J, Kharb P, Cervera M, Hall T C. The use of FISH in chromosomal localization of transgenes in rice. Methods in Cell Science,2001,23(1-3): 105-113
    95. Dou QW, Chen PD, Me JF. Cytological and molecular identification of alien chromatin in giant spike wheat germplasm. Acta Bot Sin,2003,45:1109-1115.
    96. Florijn RJ, Blonden LAJ, Vrolijk J, Vandrager J V V, Bans F, Den Dunnen J T, Tanhe H J Van Ommen G J B, Raap A K. High-resolution DNA fiber-FISH for genomic DNA mapping and color bar-ending of large genes. Hum Mol Genet.1995, 5:831-836
    97. Fominaya A, Linares C.Loarce Y, Ferrer E. Microdissection and microcloning of plant chromosome. Cytogenet Genome Res,2005,109:8-14
    98. Fransz PF, Alonso-Blanco C. High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibers. Plant J,1996,9 (3):421-430
    99. Fransz PF, Armstrong S, Alonso-Blanco C, Fischer TC, Torres-Ruiz R A, Jones G. Cytogenetics for the model system Arabidopsis thaliana. Plant J,1998,13:867-876
    100.Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS. Characterization of wheat-alien translocations conferring resistance to diseases and pests. Euphytica, 1996,91:59-87.
    101.Fu CH, Chen CL, Guo WW, Deng XX..GISH, AFLP and PCR-RFLP analysis of an intergenetic somatic hybrid combining Goutou sour orange and Poncirus trifoliata. Plant Cell Reports,,2004 (23):391-396
    102.Fukui K, Nakayama S, Ohmido N, Yoshiaki H, Yamabe M. Quantitative karyotyping of three diploid Brassica species by imaging methods and localization of 45S rDNA loci on the identified chromosomes.Theor Appl Genet,1998,96: 325-330
    103.Galasso 1, Blanco A, Katsiotis A. Pignone D, Heslop-Harrison JS. Genomic organization and phylogenetic relationships in the genus Dasypyrum analysed by Southern and in situ hybridization of total genomic and cloned DNA probes. Chromosoma,1997,106:53-61
    104.Gall JG, Pardue ML. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA,1969,69:378-383
    105.Garcia MG, Ontivero M, Ricci JCD, Castagnaro A. Morphological traits and high resolution RAPD markers for the identification of the main strawberry varieties cultivated in Argentina.PLANT BREEDING,2002,121(1):76-80
    106.Gil-Ariza DJ, Amaya I, Lopez-Aranda JM, Sanchez-Sevilla JF, Botella MA, Valpuesta, Ⅴ. Impact of Plant Breeding on the Genetic Diversity of Cultivated Strawberry as Revealed by Expressed Sequence Tag-derived Simple Sequence Repeat Markers. JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE,2009,134 (3):337-347
    107.Gill BS, Friebe B. Plant cytogenetics at the dawn of the 21st century. Curr Opin Plant Biol,1996,1:109-115
    108.Graham J, McN icol RJ,McN icol JW. A comparison of methods for the estimation of genetic diversity in strawberry cultivars. Theoretical and App lied Genetics, 1996,93(3):402-406.
    109.Guerra M, Pedrosa A, Silva AEB, Cornelio M T M, Santos K, Walter dos Santos Soares Filho. Chromosome number and secondary constriction variation in 51 accessions of a citrus germplasm bank. Brazilian Journal of Genetics. Braz. J. Genet.1997,20(3):489-496
    110.Hancock JF, Callow PA. Randomly amplified polymorphic DNA s in the cultivated strawberry,F ragaria ananassa.Journal of the American Society for Horticultural Science,1994,119(4):862-864.
    111.Hancock JF, Callow PA.. Randomly amplified polymorphic DNAs in the cultivated strawberry,Fragariaxananassa. J Amer Soc Hort Sci,1994,119:862-864.
    112.Hancock Jam F, Temperate Fruit Crop Breeding:Germplasm to Genomics.2008, 394-397
    113.Hancock Jam F, Temperate Fruit Crop Breeding:Germplasm to Genomics. 2008,401-405
    1 H.Hanson R E, Islam-Faridi M N, Percival E A, Crane C F, Ji Y, McKnight T D, et al. Distribution of 5S and 18S-28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors.Chromosoma,1996,105:55-61
    115.Harwood WA, Bilham L J, Travella S, Salvo-Garrido H, Snape J W. Fluorescence in situ hybridization to localize transaenes in plant chromosomes. Methods Mol Biol,2005,286:327-340
    116.Hasterok R, Jenkins G, Langdon T, Jones RN, Maluszynska J. Ribosomal DNA is an effective marker of Brassica chromosomes. Theor Appl Genet,2001,103: 486-490
    117.Heng HHQ. High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc.Natl.Acad.Sci.USA,1992,89(9):509-513
    118.Heslop-Harrison J S, LeitehA R, Sehwarzacher T et al. Deteetion and characteri-zation of IB/!R transloeation in hexpaloid wheat. Heredity,1990,65:385-392
    119.Hizume M. Shibata F, Matsusaki Y, Garajova Z. Chromosome identification and comparative karyotypic analyses of four Pinus species TAG THEORETICAL AND APPLIED GENETICS,2002,105(4):491-497
    120.Hont AD, Paget-Goy A, Escoute J, Carreel F. The interspecific genome structure of cultivated banana. Musa spp. revealed by genomic DNA in situ hybridization.Theor Appl Genel,2000,100:177-183
    121.Hont AD. Unraveling the genome structure of polyploids using FISH and GISH: examples of sugarcane and banana. Cytogenetic and Genome Research 2005;109(1-3):27-33
    122.Husband BC. Chromosome variation in plant evolution.Amercican Journal of Botany.2004,91:621-625
    123.Ingrid Grummt, Craig S. Pikaard.Epigenetic silencing of RNA polymerase I transcription. Nature Reviews Molecular Cell Biology,2003,4,641-649
    124.Islam AS. The Roll of unreduted Gametes in the Origin of Polyploidy Fragaria. Biologia,1960,6:189-192
    125.Jackson SA, Zhang P,Chen WP,Phillips R L,Friebe B, Muthukrishnan S, Gill B S. High-resolution structural analysis of biolistic transgene integration into the nuclear genome of wheat. Theor Appl Genet,2001,103:56-62.
    126.Ji Y. Pertuze R, Chetelat RT. Genome differentiation by GISH in interspecific and intergeneric hybrids of tomato and related nightshades. Chromosome Res,2004, 12:107-116
    127.Jiang J M, Gill BS. New 18S-26S ribosomal RNA gene loci:chromosomal landmarks for the evolution of polyploid wheat. Chromosoma 1994a,103:179-185
    128.Jiang J, Gill BS. Nonisotopic in situ hybridization and plant genome mapping:the first 10 years.Genome,1994b,37:717-725
    129.Jiang JM, Chen PD, Friebe B etal. Sequential chromosome banding and in situ hybridization analysis. Genome,1993,36:327-333
    130.John HL, Birnstiel ML, Jones KW. RNA-DNA hybrids at the cytological level. Nature,1969,223:912-913
    131.Kato A, Lamb JC, Birchler JA. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA.2004,101:13554-13559
    132.Kato A, Vega JM, Han FP, Lamb JC, Birchler JA. Advances in plant chromosome identification and cytogenetic techniques. Current Opinion in Plant Biology,2005, 8:148-154.
    133.Kenton A, Parokonny AS, Gleba YY, Bennett MD. Characterization of the Nicotiana tabacum L.genome by molecular cytogenetics. Mol Gen Genet,1993, 240:159-169
    134.Khrustaleva L I, Kik C. Localization of single-copy T-DNA insertion in transgenic shallots (Allium cepa) by using ultra-sensitive FISH with tyramide signal amplification. Plant J,2001,25:699-707
    135.Kim E, Hummer, Hancock J. trawberry Genomics:Botanical History, Cultivation, Traditional Breeding, and New Technologies. GENETICS AND GENOMICS OF ROSACEAE. Plant Genetics and Genomics:Crops and Models,2009, Volume 6,7, 413-435
    136.Kitamura S, Inoue M, Shikazono N, Tanaka A. Relationships among Nicotiana species revealed by the 5S rDNA spacer sequence and fluorescence in situ hybidization. Theor Appl Genet,2001,103:678-686
    137.King LP, Purdie KA, Orofrd SE, etal. Detection of homoeologous chiasma of mrationin Triticum durum×Thinopyrum bessaraicum hybrids using genomic insitu hybridization. Heredit,1993,71:369-372
    138.Koo DH, Plaha P, Lim YP. Hur Y, Bang J W. A high-resolution karyotype of Brassica rapa ssp.pekinensis revealed by pachytene analysis and multicolor fluorescence in situ hybridization. Theor Appl Genet,2004,109:1346-1352
    139.Korbin, Malgorzata U.. Molecular approaches to disease resistance in Fragaria SPP.. Journal of Plant Protection Research,2011,51(1):60-65
    140.Langer-Safer PR, Levine M, Ward DC. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci USA,1982,79: 4381-4388
    141.Lapitan NLV. Organization and evolution of higher plant nuclear genomes. Genome, 1992,35:171-181
    142.Lapitan NLV, Brown SE, Kennard W, Stephens JL, Knudson DL. FISH physical mapping with barley BAC clones.Plant J,1997,11:149-156.
    143.Leitch IJ, Leitch AR, Heslop-Harrison J S. Physical mapping of plant DNA sequences by simultaneous in situ hybridization of two differently fluorescent probes. Genome,1991,34:329-333
    144.Leitch IJ, Heslop-Harrison JS. Physical mapping for four sites of 5S rDNA sequences and one side of the alpha-amylase gene in barley (Hordeum vulgare). Genome,1993,36:517-523
    145.Le HT, Armstrong KC, Miki B. Detcetion of rye DNA in wheat-yre hybrids and wheat transloeation stocks using total genomic DNA as a probe. Plnat Mol ReP, 1989,7:150-158
    146.Li WB, Liu GF, He SW. Leaf isozymes of mandarin. Proceedings International Society of Citriculture,1992, (1):217-220
    147.Liu B,Wendel JF. Epigenetic phenomena and the evolution of plant allopolyploids.Molecular Phylogenetics and Evolution,2003,29:365-379.
    148.Lichter P, Tang CJC,Call K, Hemanson G, Evans GA, Housman D, Ward DC. High-resolution mapping of human chromosomes llby in sity hybridization with cosmid clones. Science.1990.247:64-69
    149.Lim KB, Wennekes J, de Jong J H, Jacobsen E, vanTuyl JM. Karyotype analysis of Lilium longiflorum and Lilium rubellum by chromosome banding and fluorescence in situ hybridization. Genome,2001,44:911-918
    150.Lombello RA, Pinto-Maglio CAF. Cytogenetic studies in Coffea L. and Psilanthus Hook.f. using CMA/DAPI and FISH. Cytologia,2004,69 (1):85-91
    151.Longley AE. Chromosomes and their significance in strawberry classification. Jour. Agrie. Res.,1926,32:559-568.
    152.Mcclintock B. The relation of a particular chromosomal element to the development of the nucleoli in Zea mays. CELL AND TISSUE RESEARCH.1934, 21(2):294-326
    153.Melo NFD,Guerra M. Variability of the 5S and 45S rDNA Sites in Passiflora L. Species with Distinct Base Chromosome Numbers. Annals of Botany,2003,92: 309-316
    154.Milella L, Saluzzi D, Lapelosa M, Bertino G, Spada P, Greco I, Martelli G. Relationships between an Italian strawberry ecotype and its ancestor using RAPD markers. GENETIC RESOURCES AND CROP EVOLUTION,2006,53 (8):1715-1720
    155.Miranda M, Ikeda F, Endo T, Moriguchi T, Omura M. Chromosome markers and alterations in mitotic cells from interspecific Citrus somatic hybrids analysed by fluorochrome staining. Plant Cell Reports,1997b,16:807-812
    156.Moore G, Roberts M, Alcaide L, Foote T. Centromere sites and cereal genome evolution. Chromosoma,1997,105:321-323
    157.Moscone EA, Lein F, Lambrou M, Fuchs J, Schweizer D. Quantitative karyotyping and dual-color FISH mapping of 5S and 18S-25S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome,1999,42:1224-1233
    158.Mukai Y, Endo TR, Gill BS. Physical mapping of the 5S rRNA multigene family in common wheat. J Hered,1990,81:290-295.
    159.Mukai Y, Friebe B, Hatchett J H, Yamamoto M, Gill B S. Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to hessian fly. Chromosoma,1993a,102:88-95.
    160.Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolour fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome,1993b,36:489-494.
    161.Murata M, Heslop-Harrison J S, Motoyoshi F. Physical mapping of the 5S ribosomal RNA genes in Arabidopsis thaliana by multi-color fluorescence in situ hybridization with cosmid clones. Plant J,1997,12:31-37
    162.Mukai YEndo TR,Gill BS.Physical mapping of the 18S,26S rRNA multigene family in common wheat:Identification of a new locus. Chromosoma,1991,100(2): 71-78.
    163.Mukai Y, Gill BS. Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome,1991,34:448-452.
    164.Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolour fluorescence in situ hybridization using total genomic and highly repeated DNA probes.Genome,1993,36:489-494.
    165.Neves N, Delgado M, Silva M, Caperta, Morais-Cecilio L,Viegas. Ribosomal DNA heterochromatin in plants. Cytogenet Genome Res,2005,109,104-111
    166.Ollitrault P, Treanton K, Dambier D, D'Hont A. In situ hybridization for polyploid Citrus genome analysis. Proc Int Soc Citriculture,2000,9:189-190
    167.Orgaard M, Heslop-Harrison JS. Investigations of genome relationships in Leymus, Psathyrostachys and Hordeum by genomic DNA:DNA in situ hybridization. Ann Bot,1994,73:195-203
    168.Gonzalez-Melendi P, Wells B, Alison F. Beven, Peter J. Shaw. Single ribosomal transcription units are linear, compacted Christmas trees in plant nucleoli. The Plant Journal.2001,27(3):223-233
    169.Pikaard CS. Nucleolar dormnance:uniparental gene silencing on a multi-mugabase scale in genetic hybrids. Plant Mol Biol.2000,43(2-3):163-177.
    170.Powers L. Strawberry studies involving crosses between the cultivated varieties (F. nanassa) and the natie Roeky Mountain strawberry (F.ovalis). J. Agr. Res.,1945,70: 95-122
    171.Pinkel D, Straume, Gray JW. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA,1986,83: 2934-2938
    172.Raap A K. Advance in fluorescence in situ hybridization. Mutat Res,1998,400: 297-298
    173.Raina SN, Rani V. GISH technology in plant genome research. Methods Cell Sci, 2001,23:83-104.
    174.Ricroch A, Peffley EB, Baker RJ. Chromosomal location of rDNA in Allium:in situ hybridization using biotin- and fluorescein-labelled probes. Theor Appl Genet,1992, 83:413-418
    175.Salvo-Garrido H, Travella S, Schwarzacher T, Harwood W A, Snape J W. An efficient method for the physical mapping of transgenes in barley using in situ hybridization. Genome,2001,44:104-110
    176.Schuster M, Fuchs J, Schubert L.Cytogenetics in fruit breeding:localization of ribosomal RNA genes on chromosomes of apple (Matus domestica Borkh.). Theor Appl Genet,1997,94:322-324
    177.Schwarzacher T, Anamthawat-Jonsson K, Harrison G E, Islam A K. Jia J Z, King I P, Leitch A R, Miller T E, Reader S M, Rogers W J, Shi M and Heslop-Harrison J S. Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor Appl Genet,1992,84:778-786
    178.Schwarzacher T. Meiosis, recombination and chromosomes:a review of gene and isolation and fluorescent in situ hybridization data in plants. Journal of Experimental Botany,2003,54(380):11-23.
    179.Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS. In situ hybridization of parental genomes in a wide hybrid. Ann Bot,1989,64:315-324
    180.Scott DH, Laurenee FJ. starwberry. In Jnaick J. and J. N. Moore(eds). Advances in Fruit Breeding, Purdue University Press. Indiana.1975:71-79.
    181.Scott DH. Cytological Studies on Polyploids derived from Tetraplaid F. vesca and Gultivated Strawberry.Genetics,1961,36:311-325
    182.Scot DH. Cytological studies on polyploids from Fragaria vesea and cultivated strawberries. Genetics,1951,36:311-331.
    183.Schwarzacher T. DNA, chromosomes, and in situ hybridization. Genome,2003,46: 953-962
    184.Sehwarzacher T, Tleiteh AR. BennettMetal. Insitu localiztion of genomes in a wide hybrid. Ann Bot.1989,64:315-324
    185.Sehwazraeher T, Anmathawat-onssonk, Harrison GE etal.Genomia insitu hybridiaztion to identify alien chromosome segments in wheat. Theor AppI Genet, 1992,84:778-786
    186.Senanayake YDA, Bringhurst RS. Origin of Fragaria polyploids.1.Cytological analysis. Amer J Bot,1967,54(2):221-228.
    187.Schlarbaum SE, Tsuchiya T. The chromosomes of C. konishii, C. lanceolata, and T. cryptomerioides (Taxodiaceae). PLANT SYSTEMATICS AND EVOLUTION.1984,145 (3-4):169-181.
    188.Shulaev V., Sargent D.J., Crowhurst R.N.. The genome of woodland strawberry (Fragaria vesca). Nature genetics,2011,43 (2):109-116.
    189.Singh RJ, Kim HH, Hymowitz T. Distribution of rDNA loci in the genus Glycine Willd. Theor Appl Genet,2001,103:212-218
    190.Snowdon RJ, Kohler W, Kohler A. Chromosomal localization and characterization of rDNA lociin the Brassica A and C genomes.Genomes,1997,40:582-587
    191.Song YC, Gustafson JP. The physical location of fourteen RFLP markers in rice (Oryza sativa). Theor Appl Genet,1995,90 (1):113-119
    192.Stevenson M, Armsteong SJ, Ford-Lloyd BV, Jones GH. Comparative analysis of crossover exchanges and chiasmata in Allium cepa XA. fistulosum after genomic in situ hybridization (GISH). Chromosome Res,1998,6(7):567-574
    193.Staudt G. The species of Fragaria, their taxonomy and geographical distribution. Aeta Horticulturae.1989,265:23-33.
    194.Svitashev S, Ananiev E, Pawlowski WP. Association of transgene integration sites with chromosome rearrangements in hexaploid oat. Theor Appl Genet,2000,100: 872-880
    195.Svitashev SK, Somers DA. Characterization of transgene loci in plants using FISH: A picture is worth a thousand words. Plant Cell Tiss Org,2002,69:205-214
    196.Taketa S, Harrison GE, Heslop-Harrison JS. Comparative physical mapping of the 5S and 18S-25S rDNA in nine wild Hordeum species and cytotypes, Theor Appl Genet 1999,98:1-9
    197.Takrouni MM, Boussaid M. Genetic diversity and population's structure in Tunisian strawberry tree (Arbutus unedo L.). SCIENTIA HORTICULTURAE, 2010,126 (3):330-337
    198.Thongthieng T, Smitamana P. Genetic relationship in strawberry cultivars and their progenies analyzed by isozyme and RAPD. ScienceAsia,2003,29 (1):1-5
    199.Thomas HE,Danna GE. Finely Orchestrated Movements:Evolution of the Ribosomal RNA Genes. Genetics,2007,175:477-485
    200.Tyrka M, Dziadczyk P, Hortynski JA. Simplified AFLP procedure as a tool for identification of strawberry cultivars and advanced breeding lines. EUPHYTICA, 2002,125 (2):273-280
    201.Wiegant J. High-resolution in situ hybridization using DNA halo preparations. Human Molecular G enetics 1992,1:587-591
    202.Wolters AM, Trindade LM, Visser J. Fluorescence in situ hybridization on extended DNA fibers as a tool to analysis complex T-DNA loci in potato. Plant J,1998,13: 837-847
    203.yamamoto M, Shimada T, Haji T, Mase N, Sato Y. Physical mapping of the 18S ribosomal RNA gene of peach (Prunus persica Betsch) chromosomes by fluorescence in situ hybridization. Breeding Science,1999,49:49-51
    204.Zhang D, Sang T. Chromosomal structural rearrangement of Paeonia brownii and P. californica revealed by fluorescence in situ hybridization. Genome,1998,41: 848-853
    205.Zhang R, Zhang CT. Isochore structures in the genome of the plant Arabidopsis thaliana. J Mol Evol,2004,59:227-238
    206.Zoller JF, Yang Y, Herrmann RG, Hohmann U. Comparative genomic in situ hybridization (cGISH) analysis on plant chromosomes revealed by labeled Arabidopsis DNA. Chromosome Res,2001,9:357-375

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700