毛尖紫萼藓(Grimmia pilifera)cDNA文库构建及抗旱相关基因克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱胁迫是影响植物生长发育的主要环境因素,严重影响农作物的产量。解决这个问题的有效途径是培育和利用优良的抗旱品种。应用比较功能基因组学方法筛选抗旱相关基因,并通过基因工程培育抗旱品种已成为植物遗传资源与品种改良研究的重要内容。毛尖紫萼藓(Grimmia pilifera)是典型旱生藓类,生长在向阳的裸岩上,具有很强的抗旱能力,是很好的抗旱基因资源。
     为研究毛尖紫萼藓响应干旱的分子机制,本研究采用SMART技术构建了毛尖紫萼藓干旱cDNA文库,文库滴度2.8×105pfu/mL,菌落PCR检测表明,插入片段分布在500-2000bp之间,平均大小约800bp,重组率约为91.7%。通过文库测序共获得1045条有效序列,其中高质量的996条,GenBank接收号为GR307103-GR308098。这些ESTs代表875个Unigenes,其中contig62个,singlet 813个。Blast N及Blast X分析表明,625个Unigenes与Nr数据库中已知基因序列具有相似性,250个Unigenes没有相似性。与已知序列具有相似性的Unigene依据GO注释分为16类,其中生理学进程占(21.17%),细胞进程占(14.60%),细胞占(13.63%),催化占(13.14%),结合占(10.71%),细胞器占(10.46%),蛋白复合体占(7.54%),结构分子占(3.41%),应激响应占(1.95%),转运蛋白占(1.22%),抗氧化剂占(0.97%),翻译调节占(0.24%),酶调节占(0.24%),运动活性占(0.24%),转录调节占(0.24%),生物学途径调控占(0.24%)
     根据基因功能注释,共获得参与信号转导与基因表达调控、活性氧清除、光合系统保护及修复、蛋白质合成与降解、代谢、物质转运及离子平衡、细胞壁及细胞救援防御、抗胁迫8类68个抗旱相关基因。
     根据生物信息学分析结果,选择了9条毛尖紫萼藓抗旱相关的基因片段,采用荧光定量PCR进行干旱及复水条件下的表达分析。结果表明这些基因的表达都在一定程度上受干旱或复水的诱导,但不同基因的表达模式不同。
     通过Blast X分析,获得了毛尖紫萼藓抗坏血酸过氧化物酶、铜锌超氧化物歧化酶、谷胱甘肽转移酶及半胱氨酸过氧化物酶基因全长序列,命名为GpAPX、GpSOD、GpGST和GpCysPrx, GenBank接受号分别为GU989311、GU989312、GU989313和GU989314,通过生物信息学对其所编码的蛋白进行分析,同时利用荧光定量PCR技术分析干旱及复水条件下基因表达情况。
     本研究筛选获得部分抗旱相关基因,为植物抗旱基因工程研究提供了基因资源,同时也为毛尖紫萼藓抗旱分子机制研究奠定了基础。
Drought is one of the major environmental factors that affect the growth of plant and account for significant reduction in the yields of crops. An effective approach to solve this problem is to produce drought-tolerant crops. Therefore, comparative functional genomics studies are required to identify key genes responsible for dehydration and drought stress tolerance as well as candidate genes for genetic engineering of drought stress tolerance in crop plants. Grimmia pilifera, as a common drought tolerant moss, grows in habitats of rocky outcrops, having a high ability in resisting drought stress. Grimmia pilifera may serve as a rich genetic resource for the identification of novel genes associated with environmental stress and dehydration tolerance
     To further understand the mechanisms of Grimmia pilifera responding to drought stress, we constructed a cDNA library from the gametophyte of Grimmia pilifera, and the titer of the library was 2.8×105 pfu/mL. PCR amplification revealed that the insert cDNA fragments ranged mostly from 500 to 2000bp, with an average length of 800 bp, and the percentage of recombinants was 91.7%. A total of 1045 clones were randomly picked and subjected to 5'end single-pass sequencing from the library. After trimming of vector/adaptor sequences and discarding of low quality or short clones,996 high-quality ESTs were generated with GenBank accession numbers from GR307103 to GR308098. The total 996 ESTs represented 875 non-redundant unique transcripts, including 62 contigs and 813 singletons. Among them,625 Unigenes showed similarities to gene sequences in the non-redundant (Nr) GenBank database, and the other 250 had no similarities. The database-matched Unigene were further grouped into 16 functions according to GO assignments, i.e, physiological process(21.17%), cellular process(14.60%), cell(13.63%), catalytic activity(13.14%), binding(10.71%), organelle(10.46%), protein complex(7.54%), structural molecule activity(3.41%), response to stimulus(1.95%), transporter activity(1.22%), antioxidant activity(0.97%), translation regulator activity(0.24%), enzyme regulator activity(0.24%), motor activity(0.24%), transcription regulator activity(0.24%), and regulation of biological process(0.24%).
     In total,68 Unigenes involved in signal transduction, reactive oxygen scavengers, protection and repair of photosynthesis system, protein synthesis and degradation, metabolism, materials transport and ionic equilibrium, cell wall and cell defense, and tress response were identified.
     Real-time quantitative PCR was used for identification of expression profiles of 9 drought stress induced genes from Grimmia pilifera. The results showed that the expressions of the 9 genes were all induced by dehydration or rehydration, and the expression patterns of those genes were different.
     Four genes including ascorbate peroxidase, copper/zinc-superoxide dismutase, glutathione S-transferase and cysperoxiredoxin were obtained, and named GpAPX、GpSOD、GpGST and GpCysPrx. They were submitted to the GenBank databases with accession numbers from GU989311 to GU989314. Protein analysis was performed using bioinformatics software, and QRT-PCR was used to study the expression profile during dehydration and rehydration.
     The identification of the drought-resistance genes provided genetic resources for plant breeding and genetic engineering of crop plants. This work represented an important step in understanding the molecular mechanism of drought tolerance in Grimmia pilifera.
引文
[1]L M Xiong, K S Schumaker, J K Zhu. Cell signaling during cold,drought,and salt stress. The Plant Cell,2002, (14):165~183
    [2]P H Yancey. Living with water stress evolution of osmoly to system. Science,1982, 217:1214~1222
    [3]Y Mika, M Hiromasa, U Kaoru, S Noriko, Y S Kazuko, S Kazuo, Y Yoshu. Effects of free proline accumulation in petunias under drought stress. J Exp Bot,2005,56(417): 1975~1981
    [4]B Leyman, M Ramon, G Iturriaga. Trehalose-6-phosphate synthase as an intrinsic selection marker for plant transformation. J Biotechnol,2006,121(3):309~317
    [5]T Abebe, A C Guenzi, B Martin, J C Cushman. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol,2003,131(4):1748~1755
    [6]贾炜珑,胡鸢雷,张彦芹,杨丽莉,林忠平,吴锜.海藻糖合酶基因转化黑麦草及耐旱性研究.分子植物育种,2007,5(1):27~31
    [7]张艳敏,郭北海,蒋春志,温之雨,丁占生,李辉,李洪杰,何锶洁,陈受宜,朱至清.转甜菜碱醛脱氢酶(BADH)基因小麦的耐盐耐旱性.华北农学报,2003,18(1):29~32
    [8]周国雁,杨正安,张应华,郭凤根,周晓罡,张绍松,孙茂林,伍少云,丁玉梅.农杆菌介导的甜菜碱醛脱氢酶基因转化甘蓝的研究.云南植物研究,2009,31(4):335~343
    [9]F Z Wang, Q B Wang, K S Yoon, K S Soo, W A Su. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol, 2005,162(4):465~472
    [10]Baker. Sequence and characterization of 6 LEA proteins and their genes from cotton. Plant Mol Biol,1998, (11):277~291
    [11]L Dure Ⅲ. A repeating 11-mers amino acid motif and plant desiccation. Plant J.1993, 3(3):363~369
    [12]J Ingram, D Bartels. The molecular basis of dehydration tolerance in plants. Plant Mol Biol,1996,47:377~403
    [13]宋松泉,陈玲.种子脱水耐性与LEA蛋白.植物生理学通讯,1999,35(5):424~431
    [14]K Hollung, M Espelund, K S Jakobsen. Another Lea B19 gene (Group 1 Lea) from barley containing a single 20 amino acid hydrophilic motif. Plant Mol Biol,1994,25(3):559~564
    [15]J Danyluk, A Perron, M Houde, A' Limin, B Fowler, N Benhamou, F Sarhan. Accumulation of an acidic dehydrin in the vicinity of the plasma membrance during cold acclimation of wheat. Plant cell.1988,10(4):623~638
    [16]T J Close. Dehydrins:A commonalty in the response of plants to dehydration and low temperature. Physiol Plant,1997,100(2):291~296
    [17]J Curry, M K Walker-sinunons. Unusual Sequence of group 3 LEA(Ⅱ) mRNA inducible by dehydration stress in wheat. Plant Mol Biol,1993,21(5):907~912
    [18]李楠,赵琦,黄静,赵玉锦,张世煌.六棱大麦HVA1基因在烟草中遗传转化的研究.生物技术通报,2007,(3):139~144
    [19]R Chandra Babu, J X Zhang, A Blum, T H David Ho, R Wu, H T Nguyen. HVAl,a LEA gene from barley confers dehydration tolerance in transgenic rice(Oryza sativa L.)via cell membrane protection. Plant Sci,2004,166(4):855~862
    [20]E A Bray. Molecular responses to water deficit. Plant Physiol.1993,103(4):1035-1040
    [21]Y Fujiyoshi, K Mitsuoka, B L Groot, A Philippsen, H Grubmuller, P Agre, A Engel. Structure and function of water channels. Curr Opin Struct Biol,2002, (12):509~515
    [22]张彤,齐麟.植物抗旱机理研究进展.湖北农业科学,2005,(4):107~110
    [23]B D McKersie, S R Bowley, E Harjanto, O Leprince. Water deficit tolerance and field performance of transgenic Alfalfa overexpressing superoxide dismutase. Plant Physiol, 1996,111(4):1177~1181
    [24]刘明求,刘齐元,丁小维,侯思名,刘飞虎.转基因SOD,POD高表达烟草幼苗抗热性研究.云南农业大学学报,2005,20(5):620~623
    [25]D S Latchman. Transcription factors:an overview. Int J Biochem Cell Biol,1997, 29(12):1305~1312
    [26]L Liu, M J White, T H MacRae. Transcription factors and their genes in higher plants functional domains,evolution and regulation. Eur J Biochem,1999,262(2):247~257
    [27]H Hofstette, A Schambock, J Van Den Berg, C Weissmann. Specific excision of the inserted DNA segment from hybrid plasmids constructed by the poly(dA)and poly(dT) method. Biochim Biophys Acta,1976,454(3):587~591
    [28]谢卡斌,张建伟,向勇.10828条籼稻全长cDNA的分离和注释.中国科学C辑,2005,35(1):6~12
    [29]S Kato, S Sekine, N S Kim, Y Umezawa, N Abe, M Y Kobayashi, T Aoki. Construction of a human full-length cDNA bank. Gene,1994,150(2):243~250
    [30]L X Du, S F Liu, J Zhu, H B Li, S G Li, X M Song, A H Wang. Construction of SMART cDNA Library of Sheep Ovary and Identification of Candidate Gene by Homologous Cloning. Agri Sci China,2007,6(11):1390~1395
    [31]B Skiba, R Ford, E C K Pang. Construction of a cDNA library of Lathyrus sativus inoculated with Mycosphaerella pinodes and the expression of potential defence-related expressed sequence tags(ESTs). Physiol Mole Plant Pathol,2005,66(1-2):55~67
    [32]马金彪,王晓杰,于秀梅,徐亮胜,韩青梅,黄丽丽,康振生.条锈菌诱导的小麦叶 片cDNA文库构建及表达序列标签分析.植物病理学报,2007,37(3):265~270
    [33]Y H Zhang, Z P Qu, W M Zheng, Y F Wang, L S Xu, J Zhao, L L Huang, Z S Kang. Construction and Characterization of a cDNA Library from Germinated Urediospores of Puccinia striiformisf. sp. tritici. Acta Phytopathologica Sinica,2007,37(5):487~499
    [34]L Diatachenko, F C Lauy, A P Campbell, A Chenchik, F Moqadam, B Huang, S Lukyanov, K Lukyanov, N Gurskaya, E D Sverdlov, P D Siebert. Suppression subtractive hybridization:A method for generating differentially regulated or tissue- specific cDNA probes and libraries. Pro Natl Sci USA,1996,93(12):6025~6030
    [35]N Wentzensen, B Wilz, P Findeisen, R Wagner, W Dippold, M von Knebel Doeberitz, J Gebert. Identification of differentially expressed genes in colorectal adenoma compared to normal tissue by suppression subtractive hybridization. Int J Oncol,2004,24(4):987~994
    [36]M L Swearingen, D Sun, M Boumer, E J Weinstein. Detection of dfierentialy expressed HES6- gene in metastatic colon carcinoma by combination of suppression subtractive hybirdiaztion and cDNA library array. Cancer Letters,2003,198(2):229~239
    [37]刘会宁,李剑,柳立军,苏建玲,范增林,周韶辉.SSH方法对食管癌相关差异基因cDNA文库的建立及初步分析.河北医科大学学报,2008,29(2):165~169
    [38]R Tsuwamoto, H Fukuoka, Y Takahata. Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus. Planta,2007, 22(5):641~652
    [39]P Namasivayam, D Hanke. Identification of differentially expressed sequences in pre-embryogenic tissue of oilseed rape by suppression subtractive hybridisation (SSH). Plant Cell Tiss Organ Cult,2006,86(3):417~421
    [40]H G Wang. H L Zhang, F H Gao, J X Li, Z C Li. Comparison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray. Theor Appl Genet,2007,115(8):1109~1126
    [41]Y F Sasaki, D Ayusawa, M Oishi. Construction of a normalized cDNA library by introduction of a semir solid mRNA-cDNA hybridization system. Nucl Acid Res,1994, 22(6):987~992
    [42]M F Bonoldo, G Lennon, M B Soares. Normalization and Subtraction:Two approaches to facilitate gene discovery. Genomo Pes,1996, (6):791~806
    [43]T Roeder. Solid-phase cDNA libary construction a Versatile approach. Nucl Acid Res, 1998,26(14):3451~3452
    [44]刘孝开,张木清.斑茅抗旱全长cDNA文库的构建.中国糖料,2008,(3):4~6
    [45]祝钦泷,李艳冬,刘光德,郭余龙,眭顺照,李名扬.彩叶草叶片cDNA文库的构建与分析.农业生物技术科学,2007,23(2):60~64
    [46]郭九峰,孙国琴,沈传进,乔惠蕾,贾利敏,郭志杰.沙冬青cDNA文库的构建和 EST分析.华北农学报,2007,22(4):37~41
    [47]王昆,王颖,鲍永利,孟祥颖,乌垠,易静文,李玉新.人参叶全长cDNA文库的构建及部分克隆的序列分析.分子科学学报,2006,22(1):58~62
    [48]王心宇,杨恩东,戚存扣,陈松,张洁夫,杨清.油菜cDNA表达文库构建及核盘菌致病因子互作蛋白的筛选和鉴定.作物学报,2008,34(2):192~197
    [49]祝建波,刘海亮,王重,周鹏.天山雪莲叶片全长cDNA文库的构建.西北农业学报,2006,15(6):170~173
    [50]马春泉,张莹,崔颖,王冰,王玉婷,刘金玲,王宏建,李海英.甜菜M14品系花期cDNA文库的构建及特异表达基因的筛选.植物研究,2008,28(4):408~411
    [51]M Gorantla, P R Babu, V B Reddy Lachagari, F Alex Feltus, A H Paterson, A R Reddy. Functional genomics of drought stress response in rice:Transcript mapping of annotated uningene of anindica rice. Curr Sci,2005,89(3):496~517
    [52]王建革,苏晓华,孙宝启.干旱胁迫下旱稻幼苗特异性表达cDNA的筛选.江西农业大学学报,2007,29(1):138~141
    [53]刘运华,刘灶长,周立国,余舜武,刘鸿艳,罗利军.干旱胁迫下耐旱稻中旱3号全长cDNA文库的构建.分子植物育种,2007,5(3):367~370
    [54]H Way, S Chapman, L McIntyre, R Casu, G P Xue, J Manners, R Shorter. Identification of differentially expressed genes in wheat undergoing gradual water deficit stress using a subtractive hybridization approach. Plant Sci,2005,168(3):661~670
    [55]李会勇,黄素华,赵久然,王凤格,张中保,毛毅辉,王秀堂,石云素,宋燕春,王国英,黎裕,王天宇.应用抑制差减杂交法分离玉米幼苗期叶片土壤干旱诱导的基因.中国农业科学,2007,40(5):882~888
    [56]J Zheng, J F Zhao, Y Z Tao, J H Wang, Y J Liu,,J J Fu, Y Jin, P Gao, J P Zhang, Y F Bai, G Y Wang. Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarry. Plant Mol Biol,2004,55(6):807~823
    [57]刘桂丰,侯英杰,王玉成,褚延广.干旱胁迫下刚毛柽柳消减文库的构建及分析.植物研究,2005,25(1):69~73
    [58]刘桂丰,侯英杰,王玉成,褚延广.干旱胁迫下多枝柽柳正反向消减cDNA文库的构建.东北林业大学学报,2005,23(5):1-5
    [59]蔡勤安,王玉成,董玉芝,邢少辰,韦正乙.干旱胁迫下白花柽柳抑制性消减文库的构建与分析.农业生物技术学报,2007,15(2):354~355
    [60]H M Wang, Y B Wang, Y G Zu, L H Sun. Construction and Analysis of Subtractive cDNA Library of Phellodendron amurense under Drought Stress. Chin J Biotech, 2008,24(2):198~202
    [61]J P Zhang, T S Liu, J J Fu, Y Zhu, J P Jia, J Zheng, Y H Zhao, Y Zhang, G Y Wang. Construction and application of EST library from Setaria italica in response to dehydration stress. Genomic,2007,90(1):121~131
    [62]林凡云,胡银岗,宋国琦,张宏,刘天明,何蓓如.干旱复水条件下诱导的糜子特异表达基因的分离与分析.农业生物技术学报,2006,14(4):537~541
    [63]G Iturriaga, M A F Cushman, J C Cushmanb. An EST catalogue from the resurrection plant Selaginella lepidophylla reveals abiotic stress-adaptive genes. Plant Sci,2006, 170(6):1173~1184
    [64]I Gazendam, D Oelofse. Isolation of cowpea genes conferring drought tolerance: Construction of a cDNA drought expression library. Water SA,2007,33(3):387~392
    [65]刘文荣,张积森,饶进,蔡秋华,翁笑艳,阮妙鸿,阙友雄,陈如凯,张木清.于旱胁迫下斑茅消减文库的构建及分析.作物学报,2007,33(6):961~967
    [66]Z L Wang, P H Li, M Fredricksen, Z Z Gong, C S Kim, C Q Zhang, H J Bohnert, J K Zhu, R A Bressan, P M Hasegawa, Y X Zhao, H Zhang. Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Sci,2004, 166(3):609~616
    [67]L D Hillier, G Lennon, M Becker. Generation and analysis of 28000 human expressed sequence tags. Genome Res.1996,6(9):807~828
    [68]H G Wang, H L Zhang, F H Gao, J X Li, Z C Li. Comparison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray. Theor Appl Genet,2007,115(8):1109~1126
    [69]H Collett, A Shen, M Gardner, J M Farrant, K J Denby, N Illing. Towards transcript profiling of desiccation tolerance in Xerophyta humilis:Construction of a normalized 11k X.humilis cDNA set and microarray expression analysis of 424 cDNAs in response to dehydration. Physiol plant,2004,122(1):39~53
    [70]Y Oono, M Seki, T Nanjo, M Narusaka, M Fujita, R Satoh, M Satou, T Sakurai, J Ishida, K Akiyama, K Iida, K Maruyama, S Satoh, K Yamaguchi-Shinozaki, K Shinozaki. Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca.7000 full-length cDNA microarray. The Plant J,2003, 34(6):868~887
    [71]邱咏梅,夏庆友.EST规模测序在家蚕功能基因组中的应用.蚕学通讯,2002,22(4):16~19
    [72]C Q Gao, Y C Wang, G F Liu, C P Yang, J Jiang, H Y Li. Expression profiling of salinity-alkali stress responses by large-scale expressed sequence tag analysis in Tamarix hispid. Plant Mol Biol,2008,66(3):245~258
    [73]T Degenkolbe, P T Do, E Zuther, D Repsilber, D Walther, D K Hincha, K I Kohl. Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol Biol,2009,69(1-2):133~153
    [74]李小白,崔海瑞,张明龙.EST分子标记开发及在比较基因组学中的应用.生物多样性,2006,14(6):541~547
    [75]D G Schaefer, J P Zryd, C D Knight, D J Cove. Stable transformation of the moss Physcomitrella patens. Mol Gen Genet,1991,226(3):418~424
    [76]C D Knight, A Sehgal, K Atwal, J C Wallace, D J Cove, D Coates, R S Quatrano, S Bahadur, P G Stockley, A C Cuming. Molecular responses to abscisic acid and stress are conserved between moss and cereals. Plant Cell,1995,7(5):499~506
    [77]D G Schaefer, J P Zryd. Efficient gene targeting in the moss Physcomitrella patens. Plant J, 1997,11 (6):1195~1206
    [78]S A Rensing, S Rombauts, Y V D Peer, R Reski. Moss transcriptome and beyond. Trends Plant Sci,2002,7(12):535~538
    [79]TNishiyama, T Fujita, T Shin-I, M Seki, H Nishide, I Uchiyama, A Kamiya, P Carninci, Y Hayashizaki, K Shinozaki, Y Kohara, M Hasebe. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana:implication for land plant evolution. Proc Natl Acad Sci USA,2003,100(13):8007~8012
    [80]S A Rensing, D Fritzowsky, D Lang, R Reski. Protein encoding genes in an ancient plant:analysis of codon usage,retained genes and splice sites in a moss, Physcomitrella patens. BMC Genomics,2005, (6):43~56
    [81]M Bezanilla, A Pan, R S Quatrano. RNA interference in the moss Physcomitrella patens. Plant Physiol,2003,133(2):470~47
    [82]M Bezanilla, P F Perroud, A Pan, P Klueh, R S Quatrano. An RNAi system in physcomitrella patens with an internal marker for silencing allows for rapid identification of loss of function phenotypes. Plant Biol,2005,7(3):251~257
    [83]C Y Liang, Y Xi, J Shu, J Li, J L Yang, K P Che, D M Jin, X L Liu, M L Weng, Y K He, B Wang. Construction of a BAC library of Physcomitrella patens and isolation of a LEA gene. Plant Sci,2004,167(3):491~498
    [84]A C Cuming, S H Cho, Y Kamisugi, H Graham, R S Quatrano. Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens. New Phytol,2007,176(2):275~287
    [85]沙伟,闫苗苗,吕凤香.自然干燥紫萼藓总RNA提取方法.植物研究,2006,26(6):715~717
    [86]张道远,张元明,曹同.耐旱苔藓植物DNA提取及优化RAPD、ISSR反应体系的建立.中国沙漠,2006,26(5):826~831
    [87]沙伟,李晶,曹同,苏晓明.藓类植物RAPD反应体系的建立.植物研究.2004,24(4):482~485
    [88]张晗,高永超,沙伟、李汝玉,戴双.紫萼藓科植物DNA提取及遗传多样性的分析. 山东农业科学,2006,(1):7~9
    [89]J D Bewley. Physiological aspects of desiccation tolerance. Annu Rev Plant Physiol,1979, 30:195-238
    [90]M J Oliver, J D Bewley. Desiccation tolerant of plant tissue:A mechanistic overview. Hortic Rev,1997,18:171~214
    [91]S N Timasheff, G N Somero, C B Osmond. Water and life:comparative analysis of water relationship at the organismic, cellular and molecular levels. Berlin:Springer-Verlag, 1992:141~160
    [92]H B Scott, M J Oliver. Accumulation and polysomal recruitment of transcripts in response to desiccation and rehydration of the moss Tortula ruralis. J Exp Bot,1994,45(5):577~583
    [93]A J Wood, M J Oliver. Translational control in plant stress:the formation of messenger ribonucleoprotein particles (mRNPs) in response to desiccation of Tortula ruralis gametophytes. The Plant J,1999,18(4):359~370
    [94]A J Wood, R J Luff, M J Oliver. Expressed sequence tags (ESTs) from desiccated Tortula ruralis identify a large number of novel plant genes. Plant Cell Physiol, 1999,40(4):361~368
    [95]M J. Oliver, J Velten, A J Wood. Bryophytes as experimental models for the study of environmental stress tolerance:Tortula ruralis and desiccation-tolerance in mosses. Plant Ecol,2000,151(1):73~84
    [96]X B Chen, Q Zeng, A J Wood. The stress-responsive Tortula ruralis gene ALDH21A1 describes a novel eukaryotic aldehyde dehydrogenase protein family. J Plant Physiol, 2002,159(7):677~684
    [97]M J Oliver, S E Dowd, J Zaragoza, S A Mauget, P R Payton. The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis:transcript classification and analysis, BMC Genomics,2004,(5):89
    [98]L Saavedra, J Svensson, V Carballo, D Izmendi, B Welin, S Vidal. A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. The Plant J,2006, 45(2):237~249
    [99]吴鹏程.苔藓植物生物学.北京:科学出版社,1998:318~320
    [100]欧阳浩淼,夏桂先,刘祥林.仙鹤藓RNA提取不同方法比较.首都师范大学学报:自然科学版,2004,25(2):57~60
    [101]刘蕾,杜海,唐晓凤,吴燕民,黄玉碧,唐益雄.MYB转录因子在植物抗逆胁迫中的作用及其分子机理.遗传,2008,30(10):1265~1271
    [102]黄霞,曾嘉,王敏,柳建设,邱冠周.铁硫簇的结构、功能及生物合成研究进展.现代生物医学进展,2008,8(5):944~947
    [103]S Ollagnier-de-Choudens, Y Sanakis, M Fontecave. SufA/IscA:reactivity studies of a class of scaffold proteins involved in [Fe-S] cluster assembly. J Biol Inorg Chem,2004, 9(7):828~838
    [104]T Y Wang, L X Xue, X Ji, J Li, Y F Wang, Y C Feng. Cloning and characterization of the 14-3-3 protein gene from the halotolerant alga Dunaliella salina. Mol Biol Rep,2009, 36(1):207~214
    [105]肖强,郑海雷.14-3-3蛋白与植物细胞信号转导.细胞生物学杂志,2005,27(4):417~422
    [106]M J Oliver. Desiccation tolerace in vegetative plant cells. Physiol plant,1996, 97(4):779~787
    [107]I Saadat, Z Sedaghat, M Afhami, A Bahaoddini, M Saadat. Effect of a 50-Hz electromagnetic field on the gene expression of glutathione S-transferase T1(Gsttl)in the testis and liver of male rats. Comp Clin Pathol,2010,19(2):211~214
    [108]H Lu, R L Han, X N Jiang. Heterologous expression and characterization of a proxidomal ascorbate peroxidase from Populus tomentosa. Mol Biol Rep,2009, 36(1):21~27
    [109]L V Gusta, N T Benning, G H Wu, X M Luo, X J Liu, M L Gusta, A McHughen. Superoxide dismutase:an all-purpose gene for agri-biotechnology. Mol Breeding,2009, 24(2):103~115
    [110]X L Shi, M Q Feng, Y J Zhao, X Guo, P Zhou. Overexpression, purification and characterization of a recombinant secretary catalase from Bacillus subtilis. Biotechnol Lett,2008,30(1):181~186
    [111]A H Khedr, M A Abbas, A A Wahid, W P Quick, G M Abogadallah. Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot,2003,54(392):2553~2562
    [112]K Feussner, I Feussner, I Leopold, C Wasternack. Isolation of a cDNA coding for an ubiquitin-conjugating enzyme UBC1 of tomato-the first stress-induced UBC of higher plants. FEBS Lett,1997,409(2):211~215
    [113]R C Wek, K A Staschke, J Narasimhan.7 regulation of yeast general amino acid control pathway in response to nutrient stress. Topics in Current Genetics,2004,7:171~199
    [114]C L Olsson, M Graffe, M Springer, J W B Hershey. Physiological effects of translation initiation factor IF3 and ribosomal protein L20 limitation in Escherichia coil. Mol Gen Genet.1996,250(6):705~714
    [115]P H Li, Z L Wang, H Zhang, B S Wang. Cloning and expression analysis of the B subunit of V-H+-ATPase in leaves of halophyte Suaedu salsa under salt stress. Acta Botanica Sinica,2004,46(1):93~99
    [116]朱维琴,吴良欢,陶勤南.干旱逆境对不同品种水稻生长、渗透调节物质含量及保 护酶活性的影响.科技通报,2006,3(2):180-181
    [117]沈元月,黄丛林,张秀海,曹鸣庆.植物抗旱的分子机制研究.中国生态农业学报,2002,10(1):30~34
    [118]余叔本,汤章程.植物生理与分子生物学.北京:科学出版社,1998:262~276
    [119]L Wei, Y Cao, L H Bai, X Liang, T T Deng, J Li, D R Qiao. Cloning and expression of a gene coding for the major light-harvesting chlorophyll a/b protein of photosystem Ⅱ in the green alga Dunaliella salina. J Appl Phycol,2007,19:89~94
    [120]E Bailo, L Fruk, C M Niemeyer, V Deckert. Surface-enhanced raman scattering as a tool to probe cytochrome P450-catalysed substrate oxidation. Anal Bioanal Chem,2009, 394(7):1797~1801
    [121]E B Tucker, J W Costerton, J D Bewley. The ultrastructure of the moss Tortula ruralis on recovery from desiccation. Canadian J B,1975,53:94~101
    [122]K A Platt, M J Oliver, W W Thomson. Membranes and organelles of dehydrated Selaginella and Tortula retain their normal configuration and structural integrity:freeze fracture evidence. Protoplasma,1994,178(1-2):57~65
    [123]M Proctor. Patterns of desiccation tolerance and recovery in bryophytes. Plant Growth Regul,2001,35(2):147~156
    [124]W M F reeman, S J Walker, K E Vrana. Quantitative RT-PCR:Pitfalls and Potential. Biotechniques,1999,26:112~125
    [125]R A Montgomery, M J Dallman. Semi-quantitative polymerase chain reaction analysis of cytokine and cytokine receptor gene expression during thymic ontogeny. Cytokine,1997, 9(10):716~726
    [126]Y F Yang, S Hou, G H Cui, S L Chen, J H Wei, L Q Huang. Characterization of reference genes for quantitative real-time PCR analysis in various tissues of Salvia miltiorrhiza. Mol Biol Rep,2009,37(1):507~513
    [127]J L Kenneth, D T Schmittgen. Analysis of Relative Gene Expression DataUsing Real-Time Quantitative PCR and the 2-△△Ct Method. Methods,2001,25(4):402~408
    [128]M S Rajeevan, D G Ranamukhaarachchi, S D Vernon, E R Unger. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods,2001,25(4):443~451
    [129]D S Zarlenga, J Higgins. PCR as a diagnostic and quantitative technique in veterinary parasitology.Vet Parasitol,2001,101(3-4):215~230
    [130]W P Kuo, F Liu, J Trimarchi, C Punzo, M Lombardi, J Sarang, M E Whipple, M Maysuria, K Serikawa, S Y Lee, D McCrann, J Kang, Shearstone JR, J Burke, D J Park, X Wang, T L Rector, P Ricciardi-Castagnoli, S Perrin, S Choi, R Bumgarner, J H Kim, G F Short 3rd, M W Freeman, B Seed, R Jensen, G M Church, E Hovig, C L Cepko, P Park, L Ohno-Machado, T K Jenssen. A sequence-oriented comparison of gene expression measurements across different hybridization-based technologies. Nat Biotechnol,2006, 24(7):832~840
    [131]E Lyse, K R Bone, S S Klemsdal. Identification of up-regulated genes during zearalenone biosynthesis in Fusarium. Eur J Plant Pathol,2008,122(4):505~516
    [132]L Y Zhao, T Z Mi, Y Zhen, M Y Li, S Y He, J Sun, Z G Yu. Cloning of proliferating cell nuclear antigen gene from the dinoflagellate Prorocentrum donghaiense and monitoring its expression profiles by real-time RT-PCR. Hydrobiologia,2009,627:19~30
    [133]I M Mackay, K E Arden, A Nitsche. Survey and summary Real-time PCR in virology. Nucl Acid Res,2002,30(6):1292~1305
    [134]B Pico, C Roig, A Fita, F Nuez. Quantitative detection of Monosporascus cannonballus in infected melon roots using real-time PCR. Eur J Plant Pathol,2008,120(2):147~156
    [135]D Minerdi, M Moretti, Y Li, L Gaggero, A Garibaldi, M L Gullino. Conventional PCR and real time quantitative PCR detection of Phytophthora cryptogea on Gerbera jamesonii. Eur J Plant Pathol,2008,122(2):227~237
    [136]J Beltran, H Jaimes, M Echeverry, Y Ladino, D Lopez, M C Duque, P Chavarriaga, J Tohme. Quantitative analysis of transgenes in cassava plants using real-time PCR technology. In Vitro Cell Dev Biol Plant,2009,45(1):48~56
    [137]T B Jiang, F J Li, C P Yang. Use of real-time RT-PCR analysis for mRNA expression of tobacco ferritin gene(NtFerl). Journal of Northeast Agricultural University,2006, 13(2):125~128
    [138]G J Vandemark, D Fourie, P N Miklas. Genotyping with real-time PCR reveals recessive epistasis between independent QTL conferring resistance to common bacterial blight in dry bean. Theor Appl Genet,2008,117(4):513~522
    [139]H Wang, M J Chen. Construction of a Plasmid and a Standard Curve for Real-time Quantitative PCR of the Cold-induced Cor3 Gene fromVolvariella volvacea. Acta Edulis Fungi,2007,14(3):20~23
    [140]M Hernandez, T Esteve, S Prat, M Pla. Development of real-time PCR systems based on SYBR Green I,amplifluore and TaqMan technologies for specific quantitative detection of the transgenic maize event GA21. J Cereal Sci,2004,39(1):99~107
    [141]M J Oliver, J Velten, Brent D.Mishler. Desiccation Tolerance in Bryophytes:A Reflection of the Primitive Strategy for Plant Survival in Dehydrating Habitats? Integr.Comp Biol, 2005,45(5):788~799
    [142]T N Le, S J McQueen-Mason. Desiccation-tolerant plants in dry environments. Rev Environ Sci Biotechnol,2006, (5):269~279
    [143]L Rizhsky. H Liang, J Shuman. V Shulaev. S Davletova, R Mittler. When defense pathways collide:The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol,2004,134(4):1683~1696
    [144]郭相平,张烈军,王琴,郝树荣,王为木.作物水分胁迫补偿效应研究进展.河海大学学报,2005,33(6):634~637
    [145]G Bernacchia, F Salamini, D Bartel. Molecular characterization of the rehydration process in the resurrection plant Craterostigma plantagineum. Plant Physiol,1996, 111:1043~1050
    [146]M Proctor. Patterns of desiccation tolerance and recovery in bryophytes. Plant Growth Regul,2001,35(2):147~156
    [147]G Q Jiang, Z Wang, H H Shang, W L Yang, Z Hu, J Phillips, X Deng. Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration. Planta,2007,225(6):1405~1420
    [148]M J Oliver.1996. Desiccation tolerance in vegetative plant cells. Physiol Plant, 97(4):779~787
    [149]吴建慧,高野哲夫,柳参奎.碱茅(puccinellia tenuifolra)Put-Cu/Zn-SOD基因的克隆及在酵母中的表达.基因组学与应用生物学,2009,28(1):10-14
    [150]马淑娟,喻树迅,范术丽,宋美珍.转棉花叶绿体Cu/Zn-SOD基因烟草的获得及其功能的初步验证.分子植物育种,2007,5(3):319-323
    [151]K A Marrs. The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol,1996,47:127~158
    [152]T Neuefeind, P Reinemer, B Bieseler. Plant glutathione S-transferases and herbicide detoxification. Biol Chem,1997,378(3-4):199~205
    [153]刘明坤,刘关君.西伯利亚蓼Tau类谷胱甘肽转移酶基因的克隆与表达分析.农业生物技术学报,2009,17(1):98~106
    [154]I Cummins, D J Cole, R Edwards. Purification of Mutiple Glutathione Transferases Involved in Herbicide Detoxification from Wheat Treated With the safener Fenchlo-razole-Ethy. Pestic Biochem Physio,1997,59(1):35~45
    [155]J D Hayes, L I Mclellan. Glutathione and Glutathione-Dependent Enzymes Represent a Co-Ordinately Regulated Defence Against Oxidative Stress. Free Radic Res,1999. 31(4):273~300
    [156]A Moons. Osgstu3 and osgtu4,encoding tau class glutathione S-transferases,are heavy metal-and hypoxic stress induced and differentially salt stress-responsive in rice root. FEBS Letters,2003,55(3):427~432
    [157]D P Dixon, L Cummins, D J Cole, R Edwards. Glutathione-mediated detoxification systems in plants. Curr Opin Plant Biol,1998, (1):258~266
    [158]M C J Wilce, M W Parker. Review:Structure and function of glutathione S-transferases. Biochimica Et Biophysica Acta,1994,1205(1):1~18
    [159]戚元成,张世敏,王丽萍,王明道,张慧.谷胱甘肽转移酶基因过量表达能加速盐胁迫下转基因拟南芥的生长.植物生理与分子生物学学报,2004,30(5):517~522
    [160]蒋选利,李振歧,康振生.过氧化物酶与植物抗痫性研究进展.西北农林科技大学学报,2001,29(6):124~129
    [161]李筠,邓西平,郭尚洙,田中净.转铜/锌超氧化物歧化酶和抗坏血酸过氧化物酌基因甘薯的耐早性.植物生理与分子生物学学报,2006,32(4):451~457
    [162]R Mittle, B A Zilinskas. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enxymes during the progression of drought stress and following recovery from drought. Plant J,1994,5(3):397~405
    [163]汤莉,汤晖,Sang-Soo Kwak, Haeng-Soon Lee,王素英,杨晓丽.转铜/锌超氧化物歧化酶和抗坏血酸过氧化物酶基因马铃薯的耐氧化和耐盐性研究.中国生物工程杂志,2008,(3):25~31
    [164]孙卫红,李风,束德峰,董新纯,杨秀梅,孟庆伟.转番茄正义抗坏血酸过氧化物酶基因提高烟草耐盐能力.中国农业科学,2009,42(4):1165~1171

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700