普通烟草中的白肋型烟草叶色性状遗传及其质体色素差异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选用白肋型烟草品种Burley21和正常绿色型马里兰烟品种Maryland609为供试材料,在分析了白肋型烟草叶色性状遗传特点的基础上,对Burley21和Maryland609生长发育过程中叶片质体色素含量的差异及其可能机理进行了探讨,以期为白肋型烟草叶色性状、香气品质及高等植物叶色突变研究提供参考依据。论文研究的主要内容及所得结果如下:
     1、通过大田常规遗传群体的构建,分析了白肋型烟草叶色性状的遗传特点。结果发现, Burley21和Maryland609两类烟草品种的正交与反交F1代植株,全部表现为正常绿色型,而在其BC1代和F2代群体中,既有正常绿色型植株,也有白肋型植株。统计分析表明,杂交F2代群体中正常绿色型和白肋型分离比例为12.5:1,BC1代群体的分离比例为4.9:1。卡平方检验分析表明,两类烟草品种间的F2代和BC1代的分离比例符合双隐性性状遗传规律。从而进一步验证了白肋型烟草叶色的黄绿色性状遗传为两对隐性重叠基因控制的细胞核遗传。
     2、生育期的连续调查发现,Burley21植株主茎与叶片主脉呈乳白色的性状表现,从苗床期就明显显现,且在整个生长发育过程中均稳定保持该性状表现;但叶色黄绿的表型性状,则是从旺长期开始明显显现,而在苗期和旺长期之前,与Maryland609之间并无明显差异。
     3、采用分光光度法测定比较了Burley21和Maryland609植株生长发育的假植期、团棵期、旺长期、现蕾期和成熟期中部叶片中质体色素的含量。结果表明, Burley21在生长前期,叶脉中的叶绿素含量均显著低于Maryland609,但类胡萝卜素含量差异在上述五个发育阶段均不明显。生长前期,二者叶肉组织中的叶绿素和类胡萝卜素含量在同一发育时期均无明显差异。从旺长期开始,Burley21叶肉组织中的叶绿素含量明显低于Maryland609,二者在同一发育时期的差异性达到极显著水平。成熟期,这种差异达到最大值,Maryland609叶绿素含量为Burley21中的3.35倍。旺长期之后,Burley21叶肉组织中的类胡萝卜素含量也明显低于Maryland609,但差异幅度明显少于叶绿素。
     4、测定比较了Burley21和Maryland609旺长期植株叶片中影响叶绿素合成的7种主要前体物含量。结果表明,两种烟草品种旺长期植株叶片中叶绿素合成前体物δ-氨基乙酰丙酸(ALA)、胆色素原(PBG)、尿卟啉原Ⅲ(UrogenⅢ)、粪卟啉Ⅲ(CoprogenⅢ)的含量并没有明显差异,但Burley21叶片中原卟啉Ⅸ(ProtoⅨ)、镁原卟啉Ⅸ(Mg-ProtoⅨ)和原叶绿素酸酯(Pchlide)的含量明显低于Maryland609中。这说明Burley21叶片中叶绿素合成在这几步受阻,从而导致叶绿素含量降低,叶片呈现黄绿色。据此推断,白肋型烟草叶色突变的分子机制,可能与叶绿素生物合成途径中的基因突变有关。
     5、叶绿素酶是植物体叶绿素降解的关键限速酶。实验采用分光光度法,测定了旺长期Burley21和Maryland609植株叶片叶绿素酶活性,并采用实时定量PCR技术对这两类烟草品种旺长期叶片叶绿素酶基因的表达水平进行了检测比较。酶活性测定结果发现,Burley21和Maryland609叶片中叶绿素酶活性分别为525.17nmol g~(-1h)~-1和257.60nmolg~(-1)h~(-1),前者为后者的2.04倍。实时定量PCR检测结果发现,Burley21叶片中叶绿素酶基因表达量为Maryland609中的3.01倍。这一结果表明,旺长期Burley21叶片的黄绿色性状显现与叶片叶绿素酶活性升高及其基因表达增强有关。由此推断,叶绿素酶基因表达增强及酶活性升高的协同作用,可能加速了叶绿素的降解,进而对白肋型烟草叶片的黄绿色表型性状的显现起到了促进作用。
     6、采用Southern杂交技术,对Burley21和Maryland609叶绿素酶基因的拷贝数进行了检测。杂交结果表明,这两类烟草中叶绿素酶基因均以单拷贝形式存在。
     7、采用气质联用技术,对Burley21和Maryland609晾制烟叶中叶绿素和类胡萝卜素降解产生的挥发性香气物质进行了检测分析。结果表明,检测到的16种质体色素类降解物中,有5种为叶绿素降解产生,11种为类胡萝卜素降解产生,但是种类上占优势的类胡萝卜素降解物的总含量却远远小于叶绿素降解产物。在这16种香气成分中,新植二烯含量在两种烟叶样品中均最高。由此推测,晾制过程中,白肋型烟草叶片中质体色素类的降解可能比正常绿色型马里兰烟更加充分,进而对白肋型烟草特有的香气品质的形成产生了影响。
In this paper, the Burley21 and Maryland609 were chose as the experimental plant materials, and the heredity of yellowing leaf color and the variation of plastid pigment contents and the mechanism of this variation between Burley21 and Maryland609 were researched. The research results of this paper will give the experimental proof for the causes of burley leaf color, the aroma quanlity of white burley as well as green-deficient mutant in other higher plants. The main researches and conclusions of this paper were as follows:
     1. The leaf color heredity of white burley was studied by way of construction of field breeding groups. The results found that the F1 generation plants of reciprocal cross between Burley21 and Maryland609 showed the normal green type, and the BC1 generation, F2 generation have both normal green and white burley type. Statictical analysis showed that the ratio of normal green type and white burley type in F2 generation and BC1 generation were 12.5:1 and 4.9:1, respectively. Chi square test showed that the segregation ratio of F2 generation and BC1 generation were consistent with the inheritance law of double-recessive trait. These results further estimated that the leaf color in white burley was the double-recessive trait controlled by nucleus.
     2. Continuous observation found that the white vein trait in Burley21 can be seen during the whole growth and development period. There was no significant difference between Burley21 and Maryland609 in leaf color before the vigorous growing period, but the yellowing leaf color trait of Burley21 can be seen clearly from the vigorous growing period.
     3. Chlorophyll and carotenoid contents in the leaf mesophyll and vein tissue of Burely21 and Maryland609 were determined using spectrophotometer during the development of temporary planting period, rosette period, vigorous growing period, flower budding period and mature period, respectively. The results indicated that the contents of chlorophyll in the leaf vein of Burley21 was significantly lower than in that of Maryland609 at the earlier growing periods, but there was no obvious difference in the contents of carotenoids during all those five periods. There were no significant differences in chlorophyll and crotenoid contents before vigorous growing periods in the leaf mesophyll, but from vigorous growing period, the difference of chlorophyll content between the two tobacco varieties was significantly at the same growth and development period. The difference of chlorophyll contents in leaf mesophyll ranked the largest at the mature period, and the chlorophyll contents in Burley21 was 3.35 times as high as in that of Maryland609. The contents of crotenoid in the leaf mesophyll of Burley21 also lower than in that of Maryland609 at the same growh and development period from vigorous growing period, but these differences were much smaller than chlorophyll contents.
     4. Seven kinds of precursors in the biosynthesis of chlorophyll in leaf mesophyll of Burley21 and Maryland609 during viogous growing period were measured. The results showed that there were no significant difference in the contents of AlA, PBG, UrogenIII, Coprogen III in leaf mesophyll between Burley21 and Maryland609, but the contents of ProtoⅨ, Mg-ProtoⅨand pchlide in Burley21 were significantly lower than in that of Maryland609. This indicated that the synthesis of chlorophyll was inhibited during these steps, and this might led to the lower chlorophyll contents and yellowing leaf phenotype of Burley21 from vigorous growing period. It can be supposed that the mechanism of yellwong leaf phenotype might relate with the mutation of gene in the chlorophyll biosynthesis.
     5. Chlorophyllase is the rate-limiting enzyme in the degradation of chlorophyll(Matile et al.,1999; Gan et al.,2002; Tang, 2002). The activities of chlorophyllase as well as its gene expression level in the leaf mesophyll of Burley21 and Maryland609 in vigorous growing period were measured using the technologies of spectrophotometer and real-time quantitative PCR, respectively. The results showed that the activities of chlorophyllase in leaf mesophyll of Burley21 and Maryland609 in vigorous growing period were 525.17nmolg~(-1h)~(-1) and 257.60nmolg~(-1)h~(-1). The relative activitiy of chlorophyllase in Burley21 leaf was 2.04 times as high as in Maryland609. The gene expression level of chlorophyllase analysized by real-time quantitative PCR showed 2.01 times higher in Burley21 than in that of Maryland609. These results indicated that the increased activities and its gene expression level of chlorophyllase in the leaf mesophyll of Burley21 in vigorous growing period resulted in the speed up chlorophyll degradation and yellowing leaf color of Burley21.
     6. The gene copies of chlorophyllase in Burley21 and Maryland609 were studied by using the Southern blotting method. The results indicated that the chlorophyllase was encoded by single-copied gene in both Burley21 and Maryland609. 7. Using Gas Chromatography-Mass Spectrometry (GC-MS) technology, the volatile aroma ingredients produced from the degradation of chlorophyll and caroteniod in the tobacco leaf of Burley21 and Maryland609 were analyzed. The results indicated that sixteen kinds of aromatic components detected from the degradation of these plastid pigments in all volatile aroma ingredients, and in which of sixteen kinds of aromatic components, five kinds were get from the degradation of chlorophyll and the other eleven kinds were from that of caroteniod. But the total contents of these eleven kinds degradated from carotenoid were lower than that of five kinds degradated from chlorophyll. The contents of neophytadiene was the highest in all these detected aroma compounds in both tobacco leaf of Burley21 and Maryland609. We might concluded from these results that the plastid pigments were degradated more fully in curing process in white burley than in that of Maryland tobacco, and this affected the the unique arom quality of white burley.
引文
1.白宝璋.植物生理学[M].北京:中国科学技术出版社, 1992, pp: 62~68.
    2.包俊英,余新炳,吴忠道.比较基因的表达分析[J].热带医学杂志, 2001, 2(1): 172~174.
    3.蔡长春,柴利广,王毅,等.白肋烟分子标记遗传图谱的构建及部分性状的遗传剖析[J].作物学报, 2009, 35(9): 1646~1654.
    4.蔡刘体,郑少清,胡重怡,等.烟草突变体库及其在功能基因组研究中的应用[J].中国烟草科学, 2008, 29(6), pp: 27~31.
    5.柴家荣,黄成江.白肋烟不同品种香气前体物降解产物及品质的研究[J].湖南农业大学学报(自然科学版), 2006, 32(2): 149~153.
    6.柴家荣,刘敬业,杨宏光,等.白肋烟TN90成熟期叶绿体色素及糖类物质动态初探[J].昆明师范高等专科学校学报, 2003, 25(4):58~61.
    7.柴家荣,尚志强,字萍,等.白肋烟品种间游离氨基酸含量变化规律初探[J].云南农业大学学报, 2004, 19(1): 86~94.
    8.常爱霞,贾兴华,郝廷亮,等.特香型烤烟挥发性致香物质的测定与分析[J].中国烟草科学,2002, 1:1~5.
    9.陈传孟,陈继树,谷堂生,等.南岭山区不同海拔烤烟品质研究[J].中国烟草科学, 1997, pp:8~12.
    10.陈文峻,蒯本科.植物叶绿素的降解[J].植物生理学通讯, 2001, 37(4): 334~339.
    11.陈远良,刘新宇,李树贤.黄瓜“芽黄”突变体的发现及其遗传分析[J].中国蔬菜, 2000, ( 3) : 35~36.
    12.程君奇,周群,王毅,等.白肋烟烟叶香味物质含量的动态变化研究[J].中国烟草学报, 2010,16(5):6~12.
    13.邓丽娟.穆蕾,李雪丽,等.彩叶植物叶片呈色影响因素浅析[J].安徽农学通报, 2010, 14(16): 205~206.
    14.甘志军,王晓云.叶绿素酶的研究进展[J].生命的科学, 2002, 6(1): 21~24.
    15.高东,魏富刚,何霞红,等.水稻OsCKX2基因表达实时荧光定量[J].云南农业大学学报, 2010, 25(3): 351~357.
    16.宫长荣.烟草调制学[M].北京:中国农业出版社, 2003, pp:91~119.
    17.顾文莉,周慧君,陆佩华.实时荧光PCR检测γ-干扰素对大鼠神经干细胞versican基因表达的调控[J].现代检验医学杂志, 2008, 23(2): 16~19.
    18.国艳梅,顾兴芳,张春震,等.黄瓜叶色突变体遗传机制的研究[J].园艺学报, 2003, 30(4): 409~412.
    19.韩锦峰,汪耀富,杨素琴,等.干旱胁迫对烤烟化学成分和致香物质含量的影响[J].中国烟草, 1994, (1): 35~38.
    20.何冰,刘玲珑,张文伟,等.植物叶色突变体[J].植物生理学通讯, 2006, 42(1): 1~9.
    21.何奕昆,代庆阳,苏学辉.雁来红叶色转变与超微结构及色素含量的关系[J].四川师范学院学报, (自然科学版), 1995, 16(3): 195~197.
    22.洪云,李津,汪和睦,等.实时荧光定量PCR技术进展[J].国际流行病学传染病学杂志, 2006, 33(3): 161~166.
    23.胡国松,杨林波,魏巍.海拔高度、品种和某些栽培措施对烤烟香吃味的影响[J].中国烟草科学, 2000, 3: 9~13.
    24.胡敬志,田琪,鲁心安.枫香叶片色素含量变化及其与叶色变化的关系[J].西北农林科技大学学报, 2007, 35(10): 219~223.
    25.计玮玮,鲁聪,刘中华,等.吊兰光合色素与叶绿素生物合成特性的初步研究[J].安徽农业科学,2008,36(32): 14065~14066.
    26.景延秋,宫长荣,张月华,等.烟草香味物质分析研究进展[J].中国烟草科学, 2005, 2: 44~48.
    27.李爱军,代惠娟,娄本等.烟草类胡萝卜素研究进展[J].安徽农业科学,2008,36(6):2364~2366
    28.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社. 2000, pp: 134~137.
    29.李红秋,刘石军.光强度和光照时间对色叶树叶色变化的影响[J].木本植物研究, 1998, 18(2) : 194~205.
    30.李庆龙,陈铃,杨文彬,等.固相微萃取气质联用技术在烟草顶空成分分析中的应用[J].烟草科技, 2000, 141(2): 21~24.
    31.李天飞,孙敏,杨金辉,等.烟叶中核心香气成分的GC/MS分析[J].云南大学学报(自然科学版), 2001, 23(30): 217~221.
    32.李炎强,申进朝,刘克建,等. GC/MS技术分析烟草挥发性、半挥发性酸性成分[J].分析化学, 2004, 32(5): 694~697.
    33.李云,毛若云.气相色谱法分析中国烟叶的低级脂肪酸[J].烟草科技, 1989, 3: 27~30.
    34.李宗平.白肋烟数量性状配合力分析[J].湖北农业科学, 1994, 2: 41~44.
    35.林国平,蔡长春,王毅,等.白肋烟品种资源的聚类分析[J].中国烟草学报, 2008, 14(5): 33~38.
    36.刘百战,洗可发.不同部位、不同成熟度及颜色的云南烤烟中某些中性香味成分的分析研究[J].中国烟草学报, 1999, 5(1): 8~11.
    37.刘百战,宗若雯,岳勇,等.国内外部分白肋烟香味成分的分析对比[J].中国烟草学报, 2000, 6(22): 1~6.
    38.刘国顺.烟草栽培学[M].北京:中国农业出版社, 2003, pp:56~58.
    39.刘惠民,唐纲岭,李荣,等.闪蒸/气相色谱/质谱法定性定量分析烟叶中香味物质的研究[J].中国烟草学报, 2003, 9(1):1~4.
    40.刘晓霞,杨金广,王凤龙,等.烟草PVY Real-Time PCR定量检测体系的建立及应用[J].中国烟草科学, 2010, 31(1): 9~12.
    41.刘宇,颜合洪.烟草致香物质的研究进展[J].作物研究, 2005, (5): 470~474.
    42.刘中华,计玮玮,鲁聪,等.彩叶富贵竹叶绿素生物合成代谢的研究[J].安徽农业科学, 2009, 37(19): 8963~8964, 8995.
    43.陆胜民,王阳光,席玙芳,等.气调包装和乙烯吸收剂对梅果叶绿素含量、叶绿素酶活性与乙烯释放的影响[J].果树学报, 2004, 21(1): 88~90.
    44.陆小平,周文军,小岛峰雄.地高辛标记探针在Southern杂交分析中的技术要点[J].生物学通报, 2003, 38(1): 52~53.
    45.吕明.芥菜型油菜黄化突变体L638-y叶片缺绿的生化机制探讨[D].杨凌:西北农林科技大学, 2010, pp: 20~21.
    46.马丽颖,刘双环,岳秉飞,等. Southern杂交方法用于近交系小鼠H-2基因检测[J].中国实验动物学报, 2008, 16(1): 62~64.
    47.苗晗,顾兴芳,张圣平,等.蔬菜叶色突变体研究进展[J].中国蔬菜, 2007 (6) : 39~42.
    48.潘高伟,王川,甘学文,等.加料工序的不同工艺条件对烟草香味成分含量变化的影响研究[J].郑州轻工业学院学报(自然科学版), 2007, 22: 43~48.
    49.潘瑞枳,王小菁,李娘辉.植物生理学[M].北京:高等教育出版社, 2008, pp:56.
    50.任民.烤烟香气特征性状的鉴定及其分子标记研究[D].北京:中国农业科学院研究生院, 2008, pp: 24~25.
    51.沈成国,张福锁,毛达如.植物叶片衰老过程中叶绿素降解代谢研究进展[J].植物学通报, 1998, 15(增刊):41~46.
    52.史典义,刘忠香,金危危.植物叶绿素合成、分解代谢及信号调控[J].遗传, 2009, 31(7): 698~704.
    53.史宏志,韩锦峰,官春云.烟叶香气前体物在成熟和调制过程中的变化[J].作物研究, 1996, 10(2): 22~25.
    54.史宏志,刘国顺.烟草香味学[M].北京:中国农业出版社, 1998, pp: 19~25, 26~35.
    55.宋朝鹏,荆永峰,李常军,等.调制过程中烤烟烟叶色素降解及其调控措施研究进展[J].作物杂志, 2008, 6: 8~11.
    56.苏德成,朱贤朝.山东烟草[M].北京:中国农业出版, 1999, pp:2-28.
    57.苏德成.烟草化学与分析[M].北京:中国财政经济出版社, 1992, pp:45.
    58.孙捷音,张年辉,杜林方.油菜叶绿素b减少突变体Cr3529叶绿素生物合成的研究[J].西北植物学报, 2007, 27(10): 1962~1966.
    59.孙志梅.动态顶空法分析烟草中的香味成分[J].淮南师范学院学报, 2003, 5(5): 29~31.
    60.唐纲岭,刘惠民,李荣,等.固相微萃取/气相色谱/质谱法定性定量分析烟叶中香味物质的研究[J].中国烟草学报, 2002, 8(3): 1~10.
    61.唐蕾.叶绿素酶研究的新进展[J].生命的化学, 2002, 22(4): 373~374.
    62.佟道儒.烟草育种学[M].北京:中国农业出版社, 1997,pp: 12, 56, 134~135.
    63.涂礼莉,张献龙,刘迪秋,等.棉花纤维发育和体细胞胚发生过程中实内对照基因的筛选[J].科学通报, 2007, 52(20): 2379~2385.
    64.汪耀富,高华军,刘国顺,等.不同基因型烤烟叶片致香物质含量的对比分析[J].中国农学通报, 2005, 21(5): 117~120.
    65.汪耀富,高华军,刘国顺,等.不同基因型烤烟叶片致香物质含量的对比分析[J].中国农学通报, 2005, 21(5): 117~120.
    66.汪耀富,高华军.采收时间对烤烟致香物质含量和评吸质量的影响[J].西北农林科技大学学报(自然科学版), 2006, 34(12): 74~78.
    67.王爱玉,张春庆,吴承来,等.玉米叶绿素含量快速测定方法研究[J].玉米科学, 2008, 16(2): 97~100.
    68.王宝增.叶绿素降解代谢的研究进展[J].生物学教学, 2010, 35(2):7~8.
    69.王凤辰,王浩波.西瓜“芽黄”新突变体简报[J].中国西瓜甜瓜, 1997 ( 3) : 14~15.
    70.王家训,苏晓东,刘卫东.黄瓜黄绿叶突变性状的遗传分析[J].遗传, 2000,22 ( 5) : 313~315.
    71.王梁燕,洪奇华,张耀洲.实时定量PCR技术及其应用[J].细胞生物学杂志, 2004, 26(1): 62~67.
    72.王平荣,张帆涛,高家旭,等.高等植物叶绿素生物合成的研究进展[J].西北植物学报, 2009, 29(3): 629~636.
    73.王琪,黄崇,张照斌,等.实时定量RT-PCR方法检测雌二醇诱导原代培养青鳉鱼肝细胞的基因表达[J].环境科学学报, 2008, 28(12): 2568~2572.
    74.王瑞新,马常力,韩锦峰,等.烤烟香气成分与成熟度的关系[J].烟草科技, 1991, 4: 25~28.
    75.王瑞新.烟草化学[M].北京:中国农业出版社, 2003年7月,pp: 84~98, 284-291.
    76.王廷华.分子杂交理论与技术[M].北京:科学出版社, 2009, pp:5.
    77.王彦亭,司龙亭.烟草白肋型与正常绿叶型之间叶绿体性状差异的遗传研究[J].山东农业大学学报, 1986, 17(1): 11~24.
    78.王毅,程君奇,蔡长春,等.白肋烟主要农艺性状的杂种优势及其遗传分析[J].中国烟草科学, 2009, 30(3): 28~32.
    79.王毅,林国平,黄文昌,等.白肋烟烟碱、总氮含量及氮碱比的配合力与遗传力分析[J].中国烟草学报, 2007, 13(3): 52~56.
    80.王毅,周永碧,张俊杰,等.白肋烟农艺性状和经济性状的配合力分析[J].烟草科技, 2006, 12: 46~50.
    81.王毅.白肋烟主要性状的杂种优势与遗传研究[D].郑州:河南农业大学,2008, pp:3~4.
    82.王玉怀.黄瓜子叶颜色遗传规律的研究[J].东北农业大学学报,1990,2 (12) : 196~197.
    83.韦凤杰,刘国顺,杨永峰,等.烤烟成熟过程中类胡萝卜素变化与其降解香气物质关系[J].中国农业科学, 2005, 38(9): 1882~1889.
    84.魏敏熊建华,李阳生,等.实时PCR定量分析干旱胁迫下水稻糖原合成酶激酶基因表达差异[J].中国水稻科学, 2006, 20(6): 567~571.
    85.魏万之,胡妍波,夏建军,等.气相色谱-质谱两用法分析卷烟烟气中15种多环芳烃[J].烟草科技, 2005, 32(2): 76~80.
    86.吴殿星,夏英武,舒庆尧.植物叶绿素突变体的研究及其应用探讨[J].中国农学通报, 1995, 11(4): 36~39.
    87.吴自明,张欣,万建民.叶绿素生物合成的分子调控[J].植物生理学通讯, 2008, 44(6): 1064~1070.
    88.肖协忠,李德臣,郭承芳,等.烟草化学[J].北京:中国农业科技出版社, 1997, pp: 44~73.
    89.谢剑平,赵明月,吴鸣,等.白肋烟重要香味物质组成的研究[J].烟草科技, 2002, 10: 3~16.
    90.邢才,王贵学,黄俊丽,等.植物叶绿素突变体及其分子机理的研究进展[J].生物技术通报, 2008, 5: 10~27.
    91.邢姗姗,胡汉桥,李信申,等.普通野生稻中NBS-LRR类基因的克隆及Southern杂交[J].广东海洋大学学报, 2007, 27(3):112~116.
    92.徐培洲.非孟德尔遗传在EGSR水稻上的表现及叶绿素缺乏突变体W1色素缺乏机理的探讨[D].雅安:四川农业大学, 2006, pp: 99~100.
    93.徐正富,王建明,张玉华,等.宾川白肋烟与气候[M].北京:气象出版社, 2009, pp: 2~13.
    94.许自成,张婷,马国华,等.不同调控措施对烤烟质体色素及其降解产物的影响[J].河南农业大学学报, 2006, 40(1): 15~17.
    95.薛运波,李兴安,葛凤晨,等.长白山中华蜜蜂基因组CBS-700(bp)DNA同源片段克隆及其Southern杂交的研究[J].中国蜂业, 2006, 57(10): 8~11.
    96.杨虹琦,周冀衡,罗泽民,等.不同产区烤烟中质体色素及降解产物的研究[J].西南农业大学学报(自然科学版), 2004, 26(5): 640~644.
    97.杨克强,王跃进,张今今,等.用限制性酶切和Southern杂交对葡萄无核基因分子标记的分析[J].农业生物技术学报, 2005, 13(3): 294~298.
    98.杨胜洪,杜林方,赵云,等.抽薹期叶绿素缺乏油菜突变体类囊体膜的研究[J].云南植物研究, 2001, 23: 97~104.
    99.杨铁钊.烟草育种学[M].北京:中国农业出版社,2003年7月,pp:8.
    100.杨欣同.普通烟草叶绿素含量的遗传[J].山东农业大学学报, 1988, 19(2): 27~32.
    101.余舜武,刘鸿艳,罗利军.利用不同实时定量PCR方法分析相对基因表达差异[J].作物学报, 2007, 33(7): 1214~1218.
    102.俞敏,胡承孝,王运华.低温条件下钼对冬小麦叶绿素合成前体的影响[J].中国农业科学, 2006, 39(4):702~708.
    103.张锦涛,段风云,李丽,等.不同烤烟品种(系)主要香味物质含量对比研究[J].昆明师范高等专科学校学报, 2006, 28(4): 34~37.
    104.张少斌,赵依诗,刘曦,等.实时定量PCR检测豌豆黄化苗中肌动蛋白异型体II的表达[J].北方园艺, 2010, (8): 110~113.
    105.张宪政.作物生理研究法[J].北京:农业出版社, 1992, pp: 148~149.
    106.赵铭钦,李晓强.不同基因型烤烟中性致香物质含量的对比分析[J].甘肃农业大学学报, 2008, 43(5): 98~103.
    107.赵铭钦,刘金霞,黄永成,等.烟草质体色素与烟叶品质的关系综述[J].中国农学通报, 2007, 23(7): 135~138.
    108.中国农业科学院烟草研究所.中国烟草栽培学[M].上海:上海科学技术出版社, 2005, pp:1~5, 34.
    109.中国烟草学会编.烟草栽培技术[M].北京:科学普及出版社, 1999, pp:1~13.
    110.钟建海.自然醇化对烟叶质量的影响[Z].烟草在线. http://www.Tobacco china.com/tobaccoleaf/curing/modulate/20086/200862141342_305563, 2008-6-6.
    111.周长发,张锐,张晓,等.地高辛随机引物法标记探针的Southern杂交技术优化[J].中国农业科技导报, 2009, 11(4): 123~128.
    112.周冀衡,王勇,邵岩,等.产烟国部分烟区烤烟质体色素及主要挥发性香气物质含量比较[J].湖南农业大学学报, 2005, (2): 128~132.
    113.周冀衡,杨虹琦,林桂华,等.不同烤烟产区烟叶中主要挥发性香气物质的研究[J].湖南农业大学学报(自然科学版), 2004, 30: 20~23.
    114.周昆,周清明,林跃平,等.气相色谱-质谱联用技术及其在烟草中应用研究进展[J].作物研究, 2007, 21(5): 755~758.
    115.周淑平,肖强,陈叶君,等.不同生态地区初烤烟叶中重要致香物质的分析[J].中国烟草学报, 2004, 10(1): 9~15.
    116.祝梅香,邹星,沈洁,等.转人组织蛋白酶K基因小鼠的Southern杂交鉴定[J].中国比较医学杂志, 2005, 15(1): 40~42.
    117.左天觉.烟草的生产、生理和生物化学[M].朱尊权译.上海:上海远东出版社, 1993, pp:386~396.
    118. Abul-Hayja Z, Williams P H. Inheritance of two seedling markers in cucumber[J]. Hort. Science, 1976, 11 ( 2) : 145.
    119. Almela L. Fernandez-Lopez J.A. Candela M.E, et al. Changes in pigments, chlorophyllase activity, and chloroplast ultrastructure in ripening pepper for paprika[J]. Journal of Agricultural and Food Chemistry, 1996, 44(7) : 1704~1711.
    120. Al-Taher A, Bashein A, Nolan T, et al. Global cDNA amplification combined with real-time RT-PCR: accurate quantification of multiple human potassium channel genes at the single cell level[J]. Yeast, 2000, 17:201~210.
    121. Amirshapira D, Goldschmidt E. E and Altlnan A. Chlorophyll catabolism in senescing plant tissue: In vivo breakdown intermediates suggest different degradative pathways for Citrus fruit and parsley leaves[J]. Proe.Natl. Acead. Sci. USA. 1987, 84:1901~1905.
    122. Andersen R.A,Kasperbauer M.J. Burton, H.R. Shade during growth: effects on chemical composition and leaf color of air-cured burley tobacco[J]. Agronomy Journal, 1985, 77 (4): 543~546.
    123. Aycock M. K.(蒋予恩译).马里兰烟、白肋烟和烤烟的杂交[J].中国烟草科学, 1983, 3: 45~48.
    124. Azoulay S.T, Harpaz-saad S, Belausov E, et al. Citrus chlorophyllase dynamics at ethylene-induced fruit color-break: A study of chlorophyllase expression, posttranslational processing kinetics, and in situ intracellular localization[J]. Plant Physiology, 2008, 148 (1): 108~118.
    125. Barry C. S, Mcquinn R. P, Chung M. Y, et al. Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper[J]. Plant Physiology, 2008, 147 (1):179~187.
    126. Beale S. I. Green genes gleaned[J]. Trends in Plant Science, 2005, 10(7): 301~312.
    127. Ben-Yaakov E. Harpaz-Saad, S. Galili, D, et al. The relationship between chlorophyllase activity and chlorophyll degradation during the course of leaf senescence in various plant species[J]. Journal of Plant Science, 2006, 54(2): 129~135.
    128. Beyene G, Foyer C. H, Kunert K. J. Two new cysteine proteinases with specific expression patterns in mature and senescent tobacco (Nicotiana tabacum L.) leaves[J]. Journal of Experimental Botany, 2006, 57 (6): 1431~1443.
    129. Bi11 J. S, Mann J. Diploidzation in Nicotiana tabacum: a study of the yellow burley character[J]. Journal of Heredity, 1960, 51(5): 222~227.
    130. Bogorad L. Porphydn synthesis. In:Colowick S P, Kapha N O (Eds). Methods in Enzymology[C],NewYork: Academic Proc, 1962, pp: 885~891.
    131. Brady L, Brozowski A. M, Berewenda Z. S et al. A serine protease triad forms the catalytic centre of a triacylglycerol lipase[J]. Nature, 1990, 343: 767~770.
    132. Brusslan J.A., Peterson M. P. Tetrapyrrole regulation of nuclear gene expression[J]. Photosynthesis Research, 2002, 71 : 185~194.
    133. Burton H. R, Kasperbauer M. J. Changes in chemical composition of tobacco laminar during senescence and curing plastid pigments[J]. Agriculture and Food Chemistry, 1985, 33: 879~883.
    134. Bustin S. A. Absolute quantification of mRNA using real time reverse transcription polymerase chain reaction assays[J]. Journal of Molecular Endocrinology, 2000, 25:169~193.
    135. Chaplin J. F, Miner G. S. Effects of genetic factors on chemical composition of tobacco[J]. Recent Advances in Tobacco Science, 1980, 6: 6~20.
    136. Chen L. F, Lin C. H, Kelkar S. M, et al. Transgenic broccoli (Brassica oleracea var. italica) with antisense chlorophyllase (BoCLH1) delays postharvest yellowing[J]. Plant Science, 2008, 174: 25~31.
    137. Clark T. J,Buneh J. E. Headspace-solid phase microextraction gas chromatography-mass- spectrometry analysis of flavorants on tobacco[J]. J. Agric. Food. Chem, 1997, 45(3): 844~849.
    138. Criado M.N, Motilva M. J, Ramo T, et al. Chlorophyll and carotenoid profile and enzymatic activities (chlorophyllase and Lipoxygenase) in Olive drupes from the Fruit-setting period to harvest time[J]. Journal of the American Society for Horticultural Science, 2006, 131(5) : 593~600.
    139. David G G. Gene quantification using real-time quantitative PCR: an emerging technology hits themainstream[J]. Experimental Hematology, 2002, 30:503~512.
    140. David G. G, Tony E. G, Janice N, et al. Measurement of DNA copy number at microsatellite loci using quantitative PCR analysis[J]. Cancer Research, 2000, 60: 5405~5409.
    141. Dei M. Benzyladenine-induced stimulation of 5-aminoleuvulinic acid accumulation under various light intensities in levulinic acid-treated cotyledons of etiolated cucumber[J]. Physiol. Plant, 1985, 64: 153~160.
    142. Demole E,Berthet D. A chemical study of burley tobacco flavor[J]. Helv. Chem. Chem. Acta, 1972, 55(2): 175.
    143. Enzell C. R. Leaf composition in relation to smoking quality and aroma[J]. Recent Advance of Tobacco Science, 1980, (6):64~122.
    144. Falbel T.G, Staehelin L. Partial blocks in the early steps of the chlorophyll synthesis pathway: A common feature of chlorophyll b deficient mutants[J]. Physiol. Plant, 1996, 97: 311~320.
    145. Falbel T.G., Staehelin L.A. Characterization of family of chlorophyll deficirnt wheat (Triticum) and barley (Hordeum vulgare) mutants with defects in the magnesium insertion step of chlorophyll biosynthesis[J]. Physiol. Plant, 1994, 104: 639~648.
    146. Fambrini. M, Castagna A, Vecchia F. D. Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.)with abnormal chloroplast biogenesis,reduced PSII activity and lowendogenous level of abscisic acid[J]. Plant science, 2004, 167: 79~89.
    147. Fang Z. Y, Bouwkmp J. S and Solomos T. Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L[J]. Journal of Experimental Botany, 1996, 49: 503~510.
    148. Fernandez-Lopez J.A, Almela. L, Soledad L.A.M, et al. Partial purification and properties of chorophyllase from chlorotic citrus lemon leaves[J]. Phytochemistry, 1992, 31: 447~449.
    149. Fromme P, Melxozernov A, Joradan P, et al. Structure and function of photosystem I:Interaction with its soluble electron carriers and external antenna systems[J]. FEBS Lett, 2003, 555: 40~44.
    150. Gan S, Amasino R. M. Inhibition of leaf senescence by autoregulated production of cytokinin[J]. Science, 1995, 270: 1986~1988.
    151. Gopalam.A, Gopalachari N. C. Biochemical changes in leaf pigments and chemical constituents during flue-curing of tobacco[J]. Tobacco Research, 1979, (5): 113~117.
    152. Hansson. A, Kannangara C G, von Wettstein D, et al. Molecular basis for semidominance of missense mutations in the XANTHA-H(42-kDa)subunit of magnesium chelatase[J]. Proc Natl Acad Sci USA, 1999, 96(4):1744~1749.
    153. Hayatom H, Shizuo S. The quality estimation of different tobacco types examined by headspace vapor analysis[J]. Beitr Tabak, 1999, 18(5): 213~222.
    154. Henika F. S. The inheritance of the white burley character in tobacco[J]. Journal of Agricultural Research, 1932, 44: 477~493.
    155. Higuchi R, Fockler C, Dollinger G, et al. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions[J]. Nature Biotechnology, 1993, 11:1026~1030.
    156. Holland P. M, Abramson R. D, Watson R, et al. Detection of specific polymerase chain reaction products by utilizing 5'-3'exonuclease activity of thermus aquaticus DNA polymerase[J]. Proc Natl Acad Sci USA, 1991, 88:7276~7280.
    157. Hortensteiner S. Chlorophyll degradation during senescence[J]. Annu. Rev Plant Biol, 2006, 57: 55~77.
    158. Hosticka L. P, HansonM R. Induction of plastid mutations in tomatoes by nitrosomethylurea[J]. Journal of Heredity, 1984, 75( 4) : 242~246.
    159. Huong L. V, Serge. T, Huan H. N, et al. A method for quantification of absolute amounts of nucleic acids by (RT)–PCR and a new mathematical model for data analysis[J]. Nucleic Acids Research,2000, 28(7): e18.
    160. Ilag L. L, Kumar A. M, Soll D. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis[J]. Plant Cell, 1994, 6 (2):265~275.
    161. Inham D, Beer S, Money S, et al. Quantitative real-time PCR assay for determining transgene copy number in transformed plants[J]. Biotechniques, 2001, 31:132~140.
    162. Jacob-Wilk D, Holland D, Goldschmidt E E et al. Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylene-treated Citrus fruit and its regulation during development[J]. The Plant Journal, 1999, 20 (6): 653~661.
    163. Jeffrey R.N and Griffith R. B. Changes in the chlorophyll and carotene contents of curing burley tobacco cut at different stages of maturity[J]. Plant Physiology, 1945, 6: 34~41.
    164. Jensen P. E, Willows R. D, Petersen B. L, et al. Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g and-h[J]. Mol. Gen. Genet, 1996, 250(4): 383~394.
    165. Jung K. H, Hur J, Ryu C. H, et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system[J]. Plant Cell Physiology, 2003, 44(5): 463~472.
    166. Kaboev O. K, Luchkina L .A, Tretiakov A. N, et al. PCR hot start using primers with the structure of molecular beacons( hairpin-like structure) [J]. Nucleic Acids Research, 2000, 28: 94.
    167. Kaneko. H. Tobacco leaf components and tobacco flavoring[J]. Tobacco Research, 1980, 128: 309~316.
    168. Kaneko.H, Harada. M. 4-Hydroxy-β-damascome and 4-Hydroxy-dihydro-β-damascome from Cigar tobacco[J]. Agricultural Biology Chemistry, 1972, 36(10): 168~171.
    169. Kaosamphan, A. Yamauchi, N. Srilaong V, et al. Involvement of chlorophyllase on chlorophyll degradation in stored broccoli florets and its control by UV treatment[J]. Acta Horticulturae, 2010, 875: 111~118.
    170. Kariyazono H, Ohno T, Ihara K, et al. Rapid detection of the 22q11.2 deletion with quantitative real-time PCR[J]. Molecular and Cellular Probes, 2001, 15:71~73.
    171. Lamondia J. A. Genetics of burley and flue-cured tobacco resistance to Globodera tabacum[J].Journal of Nematology, 2002, 34 (1): 34~37.
    172. Leafingwell J. C. Chemical and sensory aspects of tobacco flavor. Recent Advance of Tobacco[J]. Science, 1988, (14):169~218.
    173. Livak K. J and Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCtmethod[J]. Methods, 2001, 25(4): 402~408.
    174. Lloyd R.A, Miller C.W, Robert D.L, et al. Flue-cured tobacco flavor I. essence and essential oil components[J]. Tobacco Science, 1976, 54: 40~48.
    175. Luigi. S, Felice. P, Cristina. B, et al. Aphid control on Burley and Flue-cured tobacco with foliar insecticides[J]. Tobacco, 2000, 8:25~30.
    176. Mackown C. T, Crafts-brandner S. J, Sutton. T. G. Relationships among soil nitrate, leaf nitrate, and leaf yield of Burley tobacco: Effects of nitrogen management[J]. Agronomy Journal, 1999, 91(4): 613~621.
    177. Mangas J. J, Gonzalez M. P, Rodriguez R, et al. Solid-phase extraction and determination of trace aroma and flavor components in cider by GC-MS[J]. Chromatographia, 1996, 42: 101~105.
    178. Maria G. T, Giuseppe. I, Romolo. C, et al. Color changes in burley tobacco curing as affected by N fertilization[J]. Tobacco, 2001, 9: 47~49.
    179. Maria I. S. Quality characteristics of Burley tobacco irrigated with saline water[J]. Field Crops Research, 2005, 92 (1):75~84.
    180. Martinez G.A, Civello P.M, Chaves A.R, et al. Partial characterization of chlorophyllase from strawberry fruit (Fragaria ananassa, Duch.) [J]. Journal of Food Biochemistry, 1995, 18(4): 213~226.
    181. Masuda T. Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls[J]. Photosynthesis Ressearch, 2008, 96(2): 121~143.
    182. Mathew C. G. P. Detection of specific DNA sequences-the southern blot[C]. In: Walker JM, Gaastra W, eds. Techniques in molecular biology. London,Canberra: Croom Helm, 1983: 273.
    183. Matile P and Hortensteiner S. Chlorophyll degradation[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 67~95.
    184. Matsushima S. Relationship between composition of tobacco essential oil and its aroma[J]. Nippo Nogelkagaku Kaishi, 1980, 54(12): 1027~1035.
    185. Mccabe M. S, Power J. B, de Laat A. M. M, et al. Detection of single-copy genes in DNA from transgenic plants by nonradioactive southern blot analysis[J]. Molecular Biotechnology, 1997, 7(1): 79~84.
    186. Menser H. A and Hodges G. H. Effects of air pollutants on Burley tobacco cultivars[J]. Agronomy Journal, 1969, 62 (2): 265~269.
    187. Mosquera M. I, Rojas B. G, Guerrero I. G. Chlorophyllase activity in olive fruit (Olea europaea) [J]. J. Biochem, 1994, 116 (2): 263~268.
    188. Nagata N, Tanaka R, Satoh S, et al. Identification of a vinyl reductase gene for chlorophyllsynthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species[J]. Plant Cell, 2005, 17:233~240.
    189. Niesters H. G. M. Quantitation of viral load using real-time amplification techniques[J]. Methods, 2001, 25: 419~429.
    190. Nigro J. M Takahashi M. A, Ginzinger D. G, et al. Detection of 1p and 19q loss in oligodendroglioma by quantitative microsatellite analysis, a real-time quantitative assay[J]. American Journal of Pathology, 2001, 158:1253~1262.
    191. Nishi. T,Tajima. T,Noguchi S et al. Identification of DNA markers of tobacco linked to bacterial wilt resistance[J]. Theo. Appl. Genet, 2003, 106: 765~770.
    192. Park S. Y, Yu J. W,Park J. S, et al. The senescence-induced staygreen protein regulates chlorophyll degradation[J]. Plant Cell, 2007, 19 (5):1649~1664.
    193. Parks B. M, Quail P H. Phytochrome-deficient hy1 and hy2 long hypocotyls mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis[J]. Plant Cell, 1991, 3: 1177~1186.
    194. Pierce L K, Wehner T C. Review of genes and linkage group s in cucumber[J]. Hort Science, 1990, 25 ( 6) : 605~615.
    195. Rebeiz C. A, Mattheis J. L, Smith B. B, et al. Chloroplast biosynthesis and accumulation of protochlorophyll by isolated etioplasts and developing chloroplasts[J]. Arch. Biochcm. Biophys, 1975, 171: 549~567.
    196. Reinbothe S, Reinbo C.Regulation of chlorophyll biosynthesis in angiosperms[J]. Plant Physiology, 1996, 111(1):1~7.
    197. Rissler H. M, Collakova. E, Dellapenna D, et al. Chlorophyll biosynthesis: Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis[J]. Plant Physiology, 2002, 128 (2): 770~779.
    198. Roberts D. L, Rode W. A. Isolation and identification of flavor components of burley tobacco[J]. Tobacco Science, 1972, (16):107~112.
    199. Roberts D. L, Rodeo W A. Isolation and identification of flavor components of burley tobacco[J]. Tobacco Science, 1972, 16: 107~112.
    200. Rodoni S, Schellenberg M, Matile P. Chloroplast breakdown in seneseing barley leaves as correlated with phaeophorbidea and oxygenase activity[J]. Plant Physiology, 1998, 152: 139~144.
    201. Rutledge R. G,Cote C. Mathematics of quantitative kinetic PCR and the application of standard curves[J]. Nucleic Acids Research, 2003, 31(16): e93.
    202. Rzeznicka K, Walker C. J, Westergren T, et al. Xantha-l encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis[J]. Proc Natl Acad Sci USA, 2005, 102(16): 5886~5891.
    203. Sambrook J, Russell D. W,黄培堂主译.分子克隆实验指南(第3版) [M].北京:科学出版社, 2002, pp: 48~515.
    204. Sarala.K and Rao R.S.V. Genetic diversity in Indian FCV and burley tobacco cultivars[J]. Journal of Genetics, 2008, 87(2):159~163.
    205. Sawers R. J, Viney J, Farmer P. R, et al. The maize Oil yellow1(Oy1)gene encodes the I subunit of magnesium chelatase[J]. Plant Mol. Biol, 2006, 60(1): 95~106.
    206. Schmittgen T. D. Real-time quantitative PCR[J]. Methods, 2001, 25: 383~385.
    207. Schumacher J. N. Flavor composition of Maryland, USA, tobacco[M]. Bert. Tabakforsch Int,1984,12(5):279~284.
    208. Severson R. F. Isolation and characterization of the sucrose esters of the cuticular waxes of green tobacco leaf[J]. J Agric Food Chem, 1985, 33: 870~873.
    209. Severson R. F. Quantitation of the major cuticular components from green leaf of different tobacco type[J]. J. Agric Food Chem, 1984, 32: 566~568.
    210. Singh U. P, Prithiviraj B, Sarma B. K. Development of Erysiphe pisi(powdery mildew)on normal and albino mutants of pea(Pisum sativum L.) [J]. Journal of Phytopathology, 2000, 148(12): 591~595.
    211. Souichi M and Hyengil C. Application of the real-time PCR for the detection of airborne microbial pathogens in reference to the anthrax spores[J]. Journal of Microbiological Methods, 2003, 53(2): 141~147.
    212. Southern E M. Detection of specific sequences among DNA fragments separated by gel electrophoresis[J]. J Mol. Biol, 1975, 98: 503~517.
    213. Stedman R. L. The chemical composition of tobacco and tobacco smoke[J]. Chem. Rev, 1968, 68: 153~207.
    214. Swan D. C, Tucker R. A, Holloway B. P, et al. A sensitive, type- specific, fluorogenic probe assay for detection of human papilloma virus DNA[J]. Journal of Clinical Microbiology, 1997, 35(4): 886~891.
    215. Takamiya K, Tsuchiya T, Ohta H. Degradation pathway(s) of chlorophyll: what has gene cloning revealed? [J]. Trends in Plant Science, 2000, 5(10):426~431.
    216. Tanaka K, Kakuno T, Yamashita J, et al. Purification and properties of chlorophyllase from greened rye seedlings[J]. Journal of Biochemistry, 1982, 92: 1763~1767.
    217. Tanaka R and Tanaka A. Tetrapyrrole biosynthesis in higher plants[J]. Annu. Rev.vPlant Biol, 2007, 58:321~346.
    218. Terry M. J, Kendrick R. E. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato[J]. Plant Physio1ogy, 1999, 1l9: l43~l52.
    219. Tottey S, Block M. A, Allen M, et al.Arabidopsis CHL27 located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide[J]. Proc Natl Acad Sci USA, 2003, 100(26): 16119~16124.
    220. Tso T. C. Physiology and biochemistry of tobacco plants[M]. Stroudsburg, Pa. Dowden, Hutchinson & Ross, 1972: 209~217.
    221. Tsuchiya T, Ohta H, Okawa K, et al. Cloning of chlorophyllase,the key enzyme in chlorophyll degradation: Finding of a lipase motif and induction by methyl jasmonate[J]. Plant Biology. 1999, 96(26): 15362~15367.
    222. Ulrike M S, Bettina B, Stephanie W, et al. Rapid and reliable method for cytochromeP450 2D6 genotyping[J]. Clinical Chemistry, 2002, 48:1412~1417.
    223. Vandenplas S, Wiid I, Grobler-Rabie A, et al. Blot hybridisation analysis of genomic DNA[J]. Journal of Medical Genetics, 1984, 21: 164~172.
    224. Wahlberg I, Kerstin K, Austin D J. Effects of flue-curing and ageing on the volatile,neutral and acidic constituents of Virginia tobacco[J]. Pyhtochemistry, 1977, 16: 1217~1231
    225. Week W. W. Chemistry of tobacco constituents influencing flavor and aroma[J]. Recent Advance of Tobacco Science, 1985, (11): 175~200.
    226. Weybrew J. A. Estimation of the plastid pigments in tobacco[J]. Tobacco Science, 1957, 1:1~5.
    227. Whelan E. D. P, Chubey. B. Chlorophyll content of new cotyledon mutants of cucumber[J]. Hort Science, 1973, 8 ( 1) : 30~32.
    228. Willstatter R and Stoll A. Untersuchen uber chlorophyll: methoden und ergebniss[M]. Kessinger publication, 2009, pp: 5.
    229. Wu D. X, Shu Q. Y, Xia Y. W. In vitro mutagenesis induced novel thermo/photoperiod- sensitive genic male sterilein-dicarice with green-revertible xanthan leaf color marker[J]. Euphytica, 2002, 123:195~202.
    230. Yin J. L, Shackel N. A, Zekry A, et al. Real-time reverse-tanscriptase polymerase chain reaction (RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I[J]. Immunology and Cell Biology, 2001, 79: 213~221.
    231. Zhang H, Li J, Yoo J. H, et al. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase,a key enzyme for chlorophyll synthesis and chloroplast development[J]. Plant Mol. Biol, 2006, 62 (3): 325~337. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700