农杆菌介导高羊茅遗传转化体系的建立及CBF耐逆相关基因的导入
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高羊茅是目前正在国内外广泛应用的主要冷季型草坪草之一,利用基因工程技术改良其耐逆性对保持草坪四季常绿,节约水资源,扩大建植区域,尤其是对改善我国西部地区的生态环境具有十分重要的意义。本论文在对高羊茅胚性愈伤组织植株再生与农杆菌介导遗传转化的多种影响因素进行系统研究的基础上,将组成型表达启动子CaMV 35S引导的耐逆相关CBF1基因导入该草种的基因组,获得耐逆性增强的转基因植株。主要研究结果如下:
     (1)通过对成熟种子愈伤组织诱导、胚性愈伤组织继代发生和分化的多种影响因素的研究,建立了高羊茅胚性愈伤组织植株再生体系。研究表明,高羊茅成熟种子愈伤组织诱导需要较高浓度的2,4-D,以8mg/L 2,4-D与2mg/L ABA配合能获得最佳的诱导效果;种子灭菌后纵切或切胚,可使出愈率成倍提高;采用MS基本培养基和在培养基中添加0.5g/L的水解酪蛋白与谷氨酰胺也有助于提高出愈率;低剂量(10Gy)γ射线辐照处理对成熟种子愈伤组织尤其是胚性愈伤组织形成有一定的刺激效应。在继代培养基中添加0.1~0.2mg/L BAP或2.5mg/L硫酸铜,或将继代培养基中蔗糖浓度提高到60g/L能促进胚性愈伤组织发生,提高胚性愈伤组织频率。高羊茅胚性愈伤组织分化时,BAP的作用要比KT大,但2mg/L BAP与0.5mg/L KT配合可获得更佳的效果;在该细胞分裂素水平下,生长素NAA用0.5mg/L,愈伤组织再生率最高;胚性愈伤组织先在含60g/L蔗糖的分化培养基上高渗预分化,以及经高渗预分化后的致密愈伤组织在琼脂浓度为10g/L的分化培养基上分化,能明显促进愈伤组织的植株再生;在分化培养基中添加脯氨酸导致愈伤组织再生率下降,但同时有减少白化苗再生的趋势。试验还发现,高羊茅成熟种子愈伤组织诱导特别是胚性愈伤组织发生及植株再生存在明显的品种间差异,说明对品种进行选择是必要的。
     (2)以gus基因瞬时表达频率为指标,研究确定农杆菌介导高羊茅胚性愈伤组织转化的适宜条件为:预培养培养基中添加较高浓度(0.5mg/L)的BAP和NAA,预培养时间3~5d;农杆菌悬浮液OD_(600)值0.5~0.7,感染时间10~20min;共培养基pH值5.2~5.6,共培养温度23~25℃,共培养时间3d;农杆菌预培养基和悬浮培养基以及共培养基中均添加100μmol/L的乙酰丁香酮。试验表明,在
    
    农杆菌介导高羊茅遗传转化中,抑菌剂宜选用梭节青霉素;以潮霉素作为选择剂
    时,采用低浓度(50一15om留L)连续筛选的方式比较合适,在该方式下,获得
    的转基因植株较多。通过以上研究,建立起了农杆菌介导高羊茅胚性愈伤组织遗
    传转化体系。
     (3)采用所建立的农杆菌介导转化体系在世界上首次将耐逆相关CBFI基
    因导入4个供试高羊茅品种的基因组,经PCR检测、GUS组织化学染色、离体
    叶片潮霉素抗性鉴定和Sotlthem杂交分析,共获得112株独立来源的转基因植株,
    平均转化频率为1.7%(按GUS+愈伤组织数计算)和1.9%(按再生转基因植株
    数计算),但不同品种间存在明显差异。
     (4)整株存活试验表明,在相同的高盐与高渗胁迫下,转基因植株具有明
    显的生长优势,植株存活率分别达65.7%和71.4%,高于非转化对照植株的28.6%
    和42.9%。经低温、高温、干旱和高盐等逆境胁迫处理后的叶片相对电导率测定
    结果显示,转基因植株的相对电导率平均较非转化对照植株低20%一30%。这些
    事实说明,CBFI基因的组成型表达使高羊茅转基因植株的耐逆性得到了增强。
    考察表明,在正常环境条件下,转基因植株的生长受到了一定抑制。对1个Tl
    代转基因株系进行PCR检测后发现,外源基因已传递至后代,但发生了严重的
    偏分离。
     (5)作为本论文的相关研究内容,从高羊茅基因组中克隆出1个608bP的
    C刀尸同源基因片段,该片段与3个拟南芥 CBF基因的核昔酸及其推导氨基酸序
    列分别具有81%一84%和75%一79%的同源性,而且推导氨基酸序列中包含有同源
    性更高的APZ DNA结合域以及为CBF蛋白独有的两段特征序列
    PKK/RRAGRxKFxETRHP和DSAWR。
Tall fescue (Festuca arundinacea Schreb.) is one of the major cool-season turfgrasses widely utilized at home and abroad, and improvement of its stress tolerances by genetic engineering is of momentous significance to maintaining of perennial evergreen turf, saving of water resource, enlargement of establishment area, and especially, to melioration of ecological environments in western regions of China. In this dissertation, influences of various factors on plant regeneration and Agrobacterium-mediated transformation of tall fescue embryogenic calli were systematically studied, and thereafter, stress tolerance-related CBF1 gene guided by constituent promoter CaMV 35S was incorporated into genome of this grass to obtain transgenic plants with increased stress tolerances. The main results are as follows:
    (1) Plant regeneration system of tall fescue embryogenic calli was established according to studies on impacts of manifold factors on callus induction from mature seeds and subculture production and differentiation of embryogenic calli. The results showed that high concentration of 2,4-D was required for callus induction from mature seeds of tall fescue, and combination of 8mg/L 2,4-D with 2mg/L ABA gave best induction effects. By slicing sterilized seeds longitudinally or cutting embryos, callus induction frequency was profoundly increased over intact seeds from one and half to eight times. Adoption of MS basal medium and supplementation of 0.5g/L casamino acids and 0.5g/L glutamine in medium were found to help to facilitate callus induction. It was also noted that irradiation treatment with low dose (10Gy) of y rays exerted slight stimulating effects on callus induction and formation of embryogenic calli in particular. Production of embryogenic calli was obviously promoted by addition of 0.1~0.2mg/L BAP or
     2.5mg/L CuSO4 5H2O, or enhancement of sucrose concentration to 60g/L in subculture medium. BAP performed more important function than KT in differentiation of tall fescue embryogenic calli, but better results could be achieved with combination of 2mg/L BAP and 0.5mg/L KT. At this cytokinin level, 0.5mg/L NAA was recommended to obtain the highest callus regeneration frequency. Plant regeneration could be evidently boosted when embryogenic calli were pre-differentiated on high-osmoticum medium with 60g/L sucrose, and/or when the pre-differentiated compact calli were differentiated on differentiation medium solidified with l0g/L agar. Callus regeneration frequency was decreased but numbers of regenerated albino plantlets slightly reduced on differentiation medium supplemented with L-proline. In addition, it was observed that distinct differences in culture response existed among the tested cultivars, indicating the necessity of cultivar selection.
    (2) Based on transient expression of gus gene, the optimal conditions for Agrobacterium-mediated transformation of tall fescue embryogenic calli were determined as follows: addition of 0.5mg/L BAP and 0.5mg/L NAA to callus pre-culture medium, pre-culture time of 3~5d, bacterial suspension OD600 of 0.5-0.7, infection time of 10~20min, co-culture medium pH of 5.2-5.6, co-culture temperature
    
    
    
    of 23-25 , co-culture time of 3d, and supplementation of 100 mol/L acetosyringone to Agrobacterium pre-cultivation and suspension media and co-culture medium. The results also revealed that it was a reasonable choice to use carbenicillin as the antibiotics of inhibiting growth of remnant Agrobacterium after co-culture, and when hygromycin was used as the selective agent, continuous selection at low concentrations (50~150mg/L) produced the highest numbers of transgenic plants without escapes. On the basis of the above studies, Agrobacterium-mediated transformation system of tall fescue embryogenic calli has been set up.
    (3) By adopting the established Agrobacterium-mediated transformation system, stress tolerance-related CBF1 gene was incorporated into genomes of four tall fescue cultivars for the first time in the world and 112 independent transgenic plants were obtaine
引文
1 于晓红,朱祯,付志明等。提高小麦愈伤组织分化频率的因素。植物生理学报,1999,25:388~394
    2 马智宏,李征,王北洪等。冷季型草坪草耐旱及耐寒性比较。草地学报,2002,10(4):318~321
    3 王家银,向跃武,张安中等。辐照对不同类型水稻离体培养的效应。核农学通报,1989,10(3):104~108
    4 王海波。组织培养中细胞状态的调控。作物杂志,1991,(3):3~6
    5 王茅雁,张建华,邵世勤等。饲用玉米抗旱性生理生化指标的研究。内蒙古农牧学院学报,1996,17(3):71~76
    6 王关林,方宏筠。植物基因工程原理与技术。北京:科学出版社,1998
    7 王世全,李平,刘熔山。农杆菌介导的水稻基因转化。西南农业学报,1999,12(高新专辑):86~90
    8 王景雪,孙毅。农杆菌介导的植物基因转化研究进展。生物技术通报,1999,(1):7~13
    9 王慧中,黄大年,鲁瑞芳等。转mtlD/gutD双价基因水稻的耐盐性。科学通报,2000,45(7):724~729
    10 王淑芳,王峻岭,赵彦修等。胆碱脱氢酶基因的转化及转基因番茄耐盐性的鉴定。植物生理学报,2001,27(3):248~252
    11 王自章,张树珍,杨本鹏等。甘蔗根癌农杆菌介导转化海藻糖合酶基因获得抗渗透胁迫能力增强植株。中国农业科学,2003,36(2):140~146
    12 邓江明,简令成。植物抗冻机理研究新进展:抗冻基因表达及其功能。植物学通报,2001,18(5):521~530
    13 卢扬江,郑康乐。提取水稻DNA的一种简易方法。中国水稻科学,1992,6(1):47~48
    14 闫新甫主编。转基因植物。北京:科学出版社,2003
    15 朱常香,宋云枝,亓苏伟等。农杆菌介导水稻幼胚转化获转基因植株。山东农业大学学报(自然科学版),2000,31(1):1~7
    16 刘宝,许耀奎。辐射处理小麦干种子对其成熟胚离体培养的影响。核农学通报,1989,10(3):109~111
    17 刘强,赵南明,Yamaguchi-Shinozaki K等。DREB转录因子在提高植物耐逆性中的作用。科学通报,2000a,45(1):11~16
    18 刘强,张贵友,陈受宜。植物转录因子的结构与调控作用。科学通报,2000b,45(14):1465~1474
    19 刘自学主编。草皮生产技术。北京:中国林业出版社,2001
    20 刘自学主编。草坪草品种指南。北京:中国农业出版社,2002
    21 刘巧泉,陈秀花,王兴稳等。一种快速检测转基因水稻中潮霉素抗性的简易方法。农业生物技术学报,2001,9(3):264,268
    
    
    22 刘斌,李红双,王其会等。反义磷脂酶Dγ基因转化毛白杨的研究。遗传,2002,24(1):40~44
    23 孙本信,尹公,张绵主编。草坪植物种植技术。北京:中国林业出版社,2001
    24 孙彦,杨青川,张英华。不同草坪草种及品种苗期抗旱性比较。草地学报,2001,9(1):16~20
    25 许东晖,李宝健,刘煜等。对根癌农杆菌Vir区基因具诱导作用的水稻信号分子的分离和确定。中国科学(C辑),1996,26(6):535~541
    26 许耀,贾敬芬,郑国锠。酚类化合物促进根癌农杆菌对植物离体外植体的高效转化。科学通报,1988,33(22):1745~1748
    27 许耀,施骏,李宝健。单、双子叶植物的代谢调节物调节农杆菌Vir区基因表达的研究。遗传学报,1993,20(1):59~67
    28 何亚丽,王惠林,沈剑等。冷地型草坪草耐热机理的研究。Ⅱ.5种冷地型草坪草离体叶片在骤然高温、干旱下细胞膜透性的变化及其抗性鉴定。上海农学院学报,1997,15(3):209~214
    29 何培民,张大兵,梁婉琪等。细菌乙酰胆碱氧化酶基因(codA)在烟草的表达与抗盐能力的分析。生物化学与生物物理学报,2001,33(5):519~524
    30 陈思学,李洪泉。农杆菌介导的单子叶植物遗传转化研究进展。生物技术,1993,3(3):1~5
    31 陈善福,舒庆尧。植物耐干旱胁迫的生物学机理及其基因工程研究进展。植物学通报,1999,16(5):555~560
    32 苏金,吴瑞。水稻中转基因表达的“位置效应”初报。农业生物技术学报,1999,7(4):311~315
    33 苏金,朱汝财。渗透胁迫调节的转基因表达对植物抗旱耐盐性的影响。植物学通报,2001,18(2):129~136
    34 吴刚,夏英武。植物转基因沉默及对策。生物技术,2000,10(2):27~32
    35 吴乃虎。基因工程原理(下)。北京:科学出版社,2001
    36 杨剑波,许智宏,卫志明。几种禾谷类作物诱导农杆菌Vir区基因活性的酚类物质分析。植物生理学报,1992,18:179~182
    37 杨跃生,简玉瑜。脱水处理对水稻组织培养植株再生的高效调控作用。农业科学集刊第二集(农作物原生质体培养专辑)。北京:农业出版社,1995.39~46
    38 杨跃生,简玉瑜,郑迎冬。铜在水稻愈伤组织培养再生植株中的促进作用(英文)。中国水稻科学,1999,13(2):95~98
    39 杨爱芳,赵仕兰,朱丽萍等。利用转基因技术创造甜菜耐盐新种质。山东农业科学,2002,(2):3~6,9
    40 余舜武,朱永生,余毓君等。快速建立胚性细胞悬浮系的培养程序初探。华中农业大学学报,2001,20(4):325~328
    41 李春兰,侯全民,曾令和等。辐射诱变与组织培养相结合诱导小麦耐盐细胞系初探。核农学通报,1990,11(1):8~12
    
    
    42 李宝健,欧阳学智,许耀。应用农杆菌Ti质粒系统将外源基因转入籼稻细胞研究。中国科学(B辑),1990,2:144~149
    43 李洪清,李美茹。影响农杆菌介导植物基因转化的因素问题。植物生理学通讯,1999,35(2):145~151
    44 李卫,郭光沁,郑国锠。根癌农杆菌介导遗传转化研究的若干新进展。科学通报,2000,45(8):798~807
    45 李红,吴丽芳,余增亮。离子注入水稻愈伤组织提高农杆菌转化效率的初步研究。激光生物学报,2000,9(1):19~22
    46 李晚忱,付凤玲,袁佐清。玉米苗期耐旱性鉴定方法研究。西南农业学报,2001,14(3):29~32
    47 李永春。利用 Cry1Ac和CpTI双价基因及组织特异启动子增强转基因水稻对螟虫的抗性。浙江大学博士学位论文,2002
    48 李荣田,张忠明,张启发。RHL基因对粳稻的转化及转基因植株的耐盐性。科学通报,2002,47(8):613~617
    49 张宪政主编。作物生理研究法。北京:农业出版社,1992.197~198
    50 张晓东,林廷安。γ射线对苜蓿离体培养与植株再生的影响。核农学报,1992,6(3):139~146
    51 张荃,王淑芳,赵彦修等。HAL1基因转化番茄及耐盐转基因番茄的鉴定。生物工程学报,2001,17(6):658~662
    52 张明洲。农杆菌介导高梁转化体系的建立与Bt(Bacillus thuringiensis)抗虫基因的导入。浙江大学博士学位论文,2002
    53 张艳敏,郭北海,蒋春志等。转甜菜碱醛脱氢酶(BADH)基因小麦的耐盐耐旱性。华北农学报,2003,18(1):29~32
    54 林廷安,李春兰,曾令和等。γ射线与咖啡因对小麦幼穗离体培养的效应。核农学报,1991,5(3):185~188
    55 易自力,曹守云,王力等。提高农杆菌转化水稻频率的研究。遗传学报,2001,28(4):352~358
    56 明小天,苑华毅,王莉江等。通过基因枪提高根癌土壤杆菌转化水稻的效率。植物学报,2001,43(1):72~76
    57 周丽英,杨丽涛,郑坚瑜。植物抗寒冻基因工程研究进展。植物学通报,2001,18(3):325~331
    58 项友斌,梁竹青,高明尉等。农杆菌介导的苏云金杆菌抗虫基因cry1A(6)和cry1A(c)在水稻中的遗传转化及蛋白表达。生物工程学报,1999,15(4):494~500
    59 贺晨霞,夏光敏。农杆菌介导单子叶植物基因转化研究进展。植物学通报,1999,16(5):567~573
    60 胡凤仙,何龙飞,易小平等。根癌农杆菌介导水稻基因转化研究进展。广西农业生物科学,2001,20(2):137~140
    61 胡张华,陈火庆,吴关庭等。百慕大成熟胚的组织培养及植株再生。草业学报,2003,12(1):85~89
    
    
    62 洪月云,卢川北,郑芥丹等。牧草蔗新品系的抗寒与抗旱性生理鉴定。福建农业学报,1998,13(3):1~4
    63 郭殿京,张丽明,孙勇如。禾谷类作物基因工程新进展。农业生物技术学报,1997,5(4):360~365
    64 郭发华,李碧秋,李美茹。6个玉米品种幼苗耐冷力鉴定。广东农业科学,1998,(6):8~9
    65 徐子勤。重要禾谷类植物转基因研究。生物工程进展,2001,21(1):59~74
    66 钱海丰,薛庆中。激素对高羊茅愈伤组织诱导及其分化的影响。中国草地,2002,24(1):46~49,60
    67 凌定厚,吉田昌一。影响籼稻体细胞胚胎发生几个因素的研究。植物学报,1987,29(1):1~8
    68 柴明良。草坪草转基因研究进展。科技通报,2002,18(1):67~72
    69 章冰,卫志明。根癌农杆菌介导的水稻转化及转基因R_1代植株表型特征。植物生理学报,1999,25(4):313~320
    70 黄复瑞,刘祖祺主编。现代草坪建植与管理技术。北京:中国农业出版社,1999
    71 黄健秋,卫志明,安海龙等。根癌土壤杆菌介导的水稻高效转化和转基因植株的高频再生。植物学报,2000,42(11):1172~1178
    72 黄璐,卫志明。不同玉米基因型的再生能力和胚性与非胚性愈伤组织DNA的差异。植物生理学报,1999,25(4):332~338
    73 韩烈保,杨碚,邓菊芬主编。草坪草种及其品种。北京:中国林业出版社,1999
    74 翟文学,李晓兵,田文忠等。由农杆菌介导将白叶枯病抗性基因Xa21转入我国5个水稻品种。中国科学(C辑),2000,30(2):200~206
    75 谭振波,刘昕,曹鸣庆。玉米遗传转化的研究进展。生物技术通报,2000,(6):9~13
    76 颜秋生,张雪琴,滕胜等。水稻原生质体培养技术体系的建立。农业科学集刊第二集(农作物原生质体培养专辑)。北京:农业出版社,1995.20~26
    77 樊治成,贾洪玉,郭洪芸等。西葫芦耐冷性生理指标研究。园艺学报,1999,26(5):309~313
    78 戴秀玉,王忆琴,杨波等。大肠杆菌海藻糖合成酶基因对提高烟草抗逆性能的研究。微生物学报,2001,41(4):427~431
    79 Alberdi M, Corcuers LJ, Maldonado C, et al. Cold acclimation in cultivars of Avena sativa. Phytochemistry, 1993, 33:57~60
    80 Aldemita RR, Hodges TK. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta, 1996, 199:612~617
    81 Allen MD, Yamasaki K, Ohme-Takagi M, et al. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J, 1998, 17 (18): 5484~5496
    82 Altpeter F, Xu J. Rapid production of transgenic turfgrass (Festuca rubra L.) plants. J Plant Physiol, 2000, 157:441~448
    
    
    83 Arencibia AD, Carmona E, Tellez P, et al. An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res, 1998, 7: 213~222
    84 Artus NN, Uemura M, Steponkus PL, et al. Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA, 1996, 93:13404~13409
    85 Atkin RK, Barton GE. The establishment of tissue cultures of temperate grasses. J Exp Bot, 1973, 24:689~699
    86 Bai Y, Qu R. An evalution of callus induction and plant regeneration in twenty-five turf-type tall fescue (Festuca arundinacea Schreb.) cultivars. Grass and Forage Sci, 2000, 55 (4): 326~330
    87 Bai Y, Qu R. Factors influencing tissue culture responses of mature seeds and immature embryos in turf-type tall fescue. Plant Breed, 2001, 120 (3): 239~242
    88 Baker SS, Wilhelm KS, Thomashow MF. The 5'-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol, 1994, 24:701~713
    89 Ballas N, Citovsky V. Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA, 1997, 94: 10723~10728
    90 Barnes RF. Importance and problems of tall fescue. In: Kasperbauer MJ (ed). Biotechnology in tall fescue improvement. CRC Press, 1990.2~12
    91 Bettany AJE, Dalton SJ, Timms E, et al. Stability of transgene expression during vegetative propagation of protoplast-derived tall fescue (Festuca arundinacea Schreb.) plants. J Exp Bot, 1998, 49:1797~1804
    92 Bettany AJE, Dalton SJ, Timms E, et al. Effect of selectable gene to reporter gene ratio on the frequency of co-transformation and co-expression of uidA and hpt transgenes in protoplast-derived plants of tall fescue. Plant Cell Tiss Org Cult, 2002, 68: 177~186
    93 Bettany AJE, Dalton SJ, Timms E, et al. Agrobacterium tumefaciens-mediated transformation of Festuca arundinacea (Schreb.) and Lolium multiflorum (Lam.). Plant Cell Rep, 2003, 21:437~444
    94 Bidney D, Scelonge C, Martich J, et al. Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Mol Biol, 1992, 18: 301~313
    95 Bravo-Angel AM, Gloeckler V, Hohn B, et al. Bacterial conjugation protein MobA mediates integration of complex DNA structures into plant cells. J Bacteriol, 1999, 181:5758~5765
    96 Bray EA. Plant responses to water deficit. Trends in Plant Science, 1997, 2:48~54
    97 Bytebier BF, Deboeck F, Greve HD, et al. T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis. Proc Natl Acad Sci USA, 1987, 84:5345~5349
    98 Carcia-Sogo B, Roig LA, Moreno V. Enhancement of morphogenetic response in
    
    cotyledon-derived explants of Cucumis melo induced by copper ions. Acta Hortic, 1991,289: 229~230
    99 Carpenter JF, Crowe JH. The mechanism of cryoprotection of proteins by solutes. Cryobiology, 1988, 25:244~255
    100 Casas AM, Kononowicz AK, Hann TG, et al. Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell Dev Biol Plant, 1997, 33:92~100
    101 Chai B, Sticklen MB. Application of biotechnology in turfgrass genetic improvement. Crop Sci, 1998, 38:1320~1338
    102 Chai ML, Senthil K, Mo SY, et al. Embryogenic callus induction and Agrobacterium-mediated transformation in bentgrass (Agrostis spp.). Journal of the Korean Society for Horticultural Science, 2000, 41 (5): 450~454
    103 Chai ML, Kim DH. Agrobacterium-mediated transformation of Korean lawngrass (Zoysia japonica). Journal of the Korean Society for Horticultural Science, 2000, 41 (5): 455~458
    104 Chan MT, Lee TM, Chang HH. Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiol, 1992, 33 (5): 577~583
    105 Chan MT, Chang HH, Ho SL, et al. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric alpha-amylase promoter/beta-glucuronidase gene. Plant Mol Biol, 1993, 22 (3): 491~506
    106 Cheng M, Fry JE, Pang SZ, et al. Genetic transformation of wheat mediated by Agrobacteriurn tumefaciens. Plant Physiol, 1997, 115:971~980
    107 Cheng X, Sardana R, Kaplan H, et al. Agrobacterium-transformed rice plants expressing synthetic cry1A(b) and cry1A(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci USA, 1998, 95 (6): 2767~2772
    108 Cho M-J, Jiang W, Lemaux PG. Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism. Plant Sci, 1998, 138:229~244
    109 Cho M-J, Jiang W, Lemaux PG. High-frequency transformation of oat via microprojectile bombardment of seed-derived highly regenerative cultures. Plant Sci, 1999, 148:9~17
    110 Cho M-J, Ha CD, Lemaux PG. Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues. Plant Cell Rep, 2000, 19:1084~1089
    111 Choi DW, Close TJ. Rice (Oryza sativa, cv. Somegawa) DRE/CRT binding factor (CBF). NCBI GenBank accession number AF243384 (http://www.ncbi.nlm.nih.gov), 2000a
    112 Choi DW, Close TJ. Isolation of CBF1-like mRNA (BCBF1) from Barley (Hordeum vulgare, cv. Morex). NCBI GenBank accession number AF298230 (http://www.ncbi.nlm.nih.gov), 2000b
    113 Christow P. Strategies for variety-independent genetic transformation of important cereals. Euphytica, 1995, 85:13~17
    114 Chu CC. The N_6 medium and its applications to anther culture of cereal crops. In: Proceedings of symposium on plant tissue culture. Beijing: Science Press, 1978.43~50
    
    
    115 Ciceri P, Gianazza E, Lazzari B, et al. Phosphorylation of Opaque 2 changes diurnally and impacts its DNA binding activity. Plant Cell, 1997, 9:97~108
    116 Conger BV, Carabia JV, Lowe KW. Comparison of 2, 4-D and 2, 4, 5-T on callus induction and growth in three Gramineae species. Environ Exp Bot, 1978, 18:163~168
    117 Dahleen LS, Eizenga GC. Meiotic and isozymic characterization of plants regenerated from euploid and selfed monosomic tall fescue embryos. Theor Appl Genet, 1990, 79:39~44
    118 Dahleen LS. Improved plant regeneration from barley callus cultures by increased copper levels. Plant Cell Tiss Org Cult, 1995, 43:267~269
    119 Dale PJ. Meristem tip culture in Lolium, Festuca, Phleum, and Dactylis. Plant Sci Lett, 1977, 9:333~338
    120 Dale PJ, Dalton SJ. Immature inflorescence culture in Lolium, Festuca, Phloem, and Dactylis. Z Pflanzenphysiol, 1983, 111:39~45
    121 Dalton SJ. Plant regeneration from cell suspension protoplasts of Festuca arundinacea Schreb., Lolium perenne L. and L. multiflorum LAM.. Plant Cell Tiss Org Cult, 1988a, 12: 137~140
    122 Dalton SJ. Plant regeneration from cell suspension protoplasts of Festuca arundinacea Schreb. (tall fescue) and Lolium perenne L. (perennial ryegrass). J Plant Physiol, 1988b, 132: 170~175
    123 Dalton SJ, Bettany AJE, Timms E, et al. The effect of selection pressure on transformation frequency and copy number in transgenic plants of tall fescue (Festuca arundinacea Schreb.). Plant Sci, 1995, 108:63~70
    124 Dalton SJ, Bettany AJE, Timms E, et al. Transgenic plants of Lolium multiflorum, Loliuln perenne, Festuca arundinacea and Agrostis stolonifera by silicon carbide fibre-mediated transformation of cell suspension cultures. Plant Sci, 1998, 132:31~43
    125 Datta K, Oliva N, Torrizo L, et al. Genetic transformation of indica and japonica rice by Agrobacterium tumefaciens. Rice Genetics Newsletter, 1996, 13: 136~139
    126 Déjardin A, Sokolov LN, Kleczkowski LA. Sugar-osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem J, 1999, 344:503~509
    127 Deng WY, Chen LH, Wood DW, et al. Agrobacterium VirD2 protein interacts with plant host cyclophilins. Proc Natl Acad Sci USA, 1998, 95 (12): 7040~7045
    128 Deng W, Chen L, Liang X, et al. VirE1 is a specific molecular chaperone for the exported single-stranded-DNA-binding protein VirE2 in Agrobacterium. Mol Microbiol, 1999, 31 (6): 1795~1807
    129 Dong J, Teng W, Buchholz WG, et al. Agrobacterium-mediated transformation of Javanica rice. Mol Breed, 1996, 2:267~276
    130 Dure L, Crouch M, Harada J, et al. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol, 1989, 12:475~486
    131 Eady CC, Lister CE, Suo Y, et al. Transient expression of uidA constructs in in vitro onion (Allium cepa L.) cultures following particle bombardment and Agrobacterium-mediated DNA
    
    delivery. Plant Cell Rep, 1996, 15 (12): 958~962
    132 Eizenga GC. Cytogenetic and isozymic characterization of anther-panicle culture derived tall fescue aneuploids. Euphytica, 1987, 36:175~179
    133 Eizenga GC, Dahleen LS. Callus production, regeneration and evalution of plants from cultured inflorescence of tall fescue (Festuca arundinacea Schreb.). Plant Cell Tiss Org Cult, 1990, 22:7~15
    134 Elliott AR, Campbell JA, Brettell RIS, et al. Agrobacterium-mediated transformation of sugarcane using GFP as a screenable marker. Aust J Plant Physiol, 1998, 25:739~743
    135 Emani C, Sunilkumar G, Rathore KS. Transgene silencing and reactivation in sorghum. Plant Sci, 2002, 162:181~192
    136 Enriquez-Obregon GA, Vazquez-Padron RI, Prieto-Samsonov DL, et al. Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta, 1998, 206 (1): 20~27
    137 Finnegan J, McElroy D. Transgenic inactivation: Plants fight back! Bio/Teclmology, 1994, 12: 883~888
    138 Fullner KJ, Lara JC, Nester EW. Pilus assembly by Agrobacterium T-DNA transfer genes. Science, 1996, 273:1107~1109
    139 Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res, 1968, 50:151~158
    140 Gelvin SB. Agrobacterium VirE2 proteins can form a complex T strands in the plant cytoplasm. J Bacteriol, 1998, 180 (16): 4300~4302
    141 Gilmour SJ, Artus NN, Thomashow MF. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol Biol, 1992, 18:13~21
    142 Gilmour SJ, Zarka DG, Stockinger EJ, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J, 1998, 16 (4): 433~442
    143 Gilmour SJ, Sebolt AM, Salazar MP, et al. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 124 (4): 1854~1865
    144 Godwin I, Chickwamba R. Transformation of grain sorghum (Sorghum bicolor) plants via Agrobacterium. In: Henry RJ, Ronald JA (eds). Improvement of Cereal Quality by Genetic Engineering. New York: Plerum Press, 1994.47~53
    145 Gould J, Devey ME, Hasegawa O, et al. Transformation of Zea mays L. using Agrobacterium tumefaciens and shoot apex. Plant Physiol, 1991, 95:426~434
    146 Graves ACF, Goldman SL. The transformation of Zea mays seedlings with Agrobacterium tumefaciens, Plant Mol Biol, 1986, 7:43~50
    147 Grimsley NH, Hohn T, Davies JW, et al. Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature, 1987, 325:177~179
    148 Grimsley NH, Ramos G, Hein T, et al. Meristematic tissues of maize plant are most
    
    susceptible to agroinfection with maize streak virus. Bio/Technology, 1988, 6:185~189
    149 Gubba S, Xie YH, Das A. Regulation of Agrobacterium tumefaciens virulence gene expression: isolation of a mutation that restores virGD52E function. Molecular Plant-Microbe Interactions, 1995, 8 (5): 788~791
    150 Guo GQ, Maiwald F, Lorenzen P, et al. Factors influencing T-DNA transfer into wheat and barley cells by Agrobacterium tumefaciens. Cereal Res Commun, 1998, 26 (1): 15~22
    151 Guy CL, Huber JLA, Huber SC. Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiol, 1992, 100:502~508
    152 Ha SB, Wu FS, Thorne TK. Transgenic turf-type tall fescue (Festuca arundinacea Schreb.) plants regenerated from protoplasts. Plant Cell Rep, 1992, 11:601~604
    153 Hamilton CM, Frary A, Lewis C, et al. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA, 1996, 93:9975~9979
    154 Hamilton CM. A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene, 1997, 200:107~116
    155 Hansen G, Das A, Chilton MD. Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc Natl Acad Sci USA, 1994, 91: 7603~7607
    156 Hansen G, Chilton MD. "Agrolistic" transformation of plant cells: Integration of T-strands generated in planta. Proc Natl Acad Sci USA, 1996, 93:14978~14983
    157 Hansen G, Shillito RD, Chilton MD. T-strand integration in maize protoplasts after co-delivery of a T-DNA substrate and virulence genes. Proc Natl Acad Sci USA, 1997, 94: 11726~11730
    158 Hernalsteens JR, Thia-Toong L, Schall J, et al. An Agrobacterium-transformed cell culture from the monocot Asparagus officinalis. EMBO J, 1984, 13:3039~3042
    159 Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994, 6: 271~282
    160 Hiei Y, Komari T, Kubo T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol, 1997, 35:205~218
    161 Hooykaas PJJ, Schilperoort RA. Agrobacterium and plant genetic engineering. Plant Mol Biol, 1992, 19:15~38
    162 Hooykaas PJJ, Beijersbergen AGM. The virulence system of Agrobacterium tumefaciens. Annu Rev Phytopathol, 1994, 32:157~179
    163 Hooykaas-Van Slogteren GMS, Hooykaas PJJ, Schilperoort RA. Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Nature, 1984, 311 : 763~764
    164 Horn ME, Shillito RD, Conger BV, et al. Transgenic plants of orchardgrass (Dactylis glomerata L.) from protoplasts. Plant Cell Rep, 1988, 7:469~472
    165 Houde M, Danyluk J, Laliberte JF, et al. Cloning, characterization, and expression of a cDNA
    
    encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiol, 1992, 99:1381~1387
    166 Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47:377~403
    167 Ishida Y, Saito H, Ohta S, et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotech, 1996, 14 (6): 745~750
    168 Ishige T. Agrobacterium-mediated gene transformation in maize. Maize Genetics Cooperation Newsletter, 1996, 70:63
    169 Ishitani M, Xiong L, Lee H, et al. HOSl, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell, 1998, 10:1151~1161
    170 Iwasaki T, Kiyosue T, Yamaguchi-Shinozaki K, et al. The dehydration-inducible rd17 (cor47) gene and its promoter region in Arabidopsis thaliana. Plant Physiol, 1997, 115:1287
    171 Iyer LM, Kumpatla SP, Chandrasekharan MB, et al. Transgene silencing in monocots. Plant Mol Biol, 2000, 43:323~346
    172 Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, et al. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280:104~106
    173 Jaglo KR, Kleff S, Amundsen KL, et al. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol, 2001, 127 (3): 910~917
    174 Jauhar PP. Cytogenetics of the Festuca-Lolium complex. In: Frankel R, Grossman M, Linskens HF, Maliga P, and Riley R (eds). Monographs on Theoretical and Applied Genetics, Vol. 18. Springer Verlag, 1993
    175 Jiang C, Iu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol, 1996, 30:679~684
    176 Kanaya E, Nakajima N, Morikawa K, et al. Characterization of the transcriptional activator CBF1 from Arabidopsis thaliana: evidence for cold denaturation in regions outside of the DNA binding domain. Biol Chem, 1999, 274 (23): 16068~16076
    177 Kartha KK. Advances in the cryopreservation technology of plant cells and organs. In: Green CE, Somers DA, Hackett WP, et al (eds). Plant Tissue and Cell Culture. AR Liss, New York, 1987. 447~458
    178 Kasperbauer MJ, Buckner RC, Bush LP. Tissue culture of annual ryegrass × tall fescue F_1 hybrids: callus establishment and plant regeneration. Crop Sci, 1979, 19:457~460
    179 Kasperbauer MJ, Buckner RC, Springer WD. Haploid plants by anther-panicle culture of tall fescue. Crop Sci, 1980, 20:103~107
    180 Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotech, 1999, 17:287~291
    181 Kaul K. Potential biotechnological approaches. In: Kasperbauer MJ (ed). Biotechnology in tall fescue improvement. CRC Press, 1990.13~23
    182 Khanna HK, Raina SK. Agrobacterium-mediated transformation of indica rice cultivars using
    
    binary and superbinary vectors. Aust J Plant Physiol, 1999, 26:311~324
    183 Klimczak LJ, Collinge MA, Farini D, et al. Reconstitution of Arabidopsis casein kinase Ⅱ from recombinant subunits and phosphorylation of transcription factor GBF1. Plant Cell, 1995, 7:105~115
    184 Komari T, Hiei Y, Saito Y, et al. Vectors carrying two separate T-DNA for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J, 1996, 10 (1): 165~174
    185 Koster KK, Lynch DV. Solute accumulation and compartmentation during the cold acclimation of pumarye. Plant Physiol, 1992, 98:108~113
    186 Kuai BK, Morris P. The physiological state of suspension cultured cells affects the expression of the β-glucuronidase gene following transformation of tall fescue (Festuca arundinacea) protoplasts. Plant Sci, 1995, 110:235~247
    187 Kuai BK, Morris P. Screening for stable transformants and stability of β-glucuronidase gene expression in suspension cultured cells of tall fescue (Festuca arundinacea). Plant Cell Rep, 1996, 15:804~808
    188 Kuai BK, Dalton SJ, Bettany AJE, et al. Regeneration of fertile transgenic tall fescue plants with a stable highly expressed foreign gene. Plant Cell Tiss Org Cult, 1999, 58:149~154
    189 Kumpatla SP, Teng W, Buchholz WC, et al. Epigenetic transcriptional silencing and 5-azacytidine-mediated reactivation of a complex transgene in rice. Plant Physiol, 1997, 115: 361~373
    190 Kumpatla SP, Hall TC. Recurrent onset of epigenetic silencing in rice harboring multi-copy transgene. Plant J, 1998, 14:129~135
    191 Kurkela S, Franck M. Cloning and characterization of a cold- and ABA-inducible Arabidopsis gene. Plant Mol Biol, 1990, 15:137~144
    192 Labra M, Savini C, Bracale M, et al. Genomic changes in transgenic rice (Oryza sativa L.) plants produced by infecting calli with Agrobacterium tumefaciens. Plant Cell Rep, 2001, 20: 325~330
    193 Lakkaraju S, Pitcher LH, Wang XL, et al. Agrobacterium-mediated transformation of turfgrasses. Proceedings of the Tenth Anniversary Rutgers Turfgrass Symposium, Cook College, Rutgers University, 2001.20
    194 Last DI, Brettell RIS, Chamberlain DA, et al. pEmu: an improved promoter for gene expression in cereal cells. Theor Appl Genet, 1991, 81 (5): 581~588
    195 Lee L. Turfgrass biotechnology. Plant Sci, 1996, 115:1~8
    196 Lee LY, Gelvin SB, Kado CI. pSa causes oncogenic suppression of Agrobacterium by inhibiting VirE2 protein export. J Bacteriol, 1999, 181 (1): 186~196
    197 Lee H, Xiong L, Gong Z, et al. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes & Dev, 2001, 15 (7): 912~924
    198 Lemaux PG, Cho M-J, Zhang S, et al. Transgenic cereals: Hordeum vulgare (barley). In: Vasil IK (ed). Molecular improvement of cereal crops. Kluwer, Dordrecht, 1999. 255~316
    
    
    199 Levitt J. Responses of plants to environmental stresses: chilling, freezing and high temperature stresses. New York: Academic Press, 1980
    200 Li QL, Liu DW, Gao XR, et al. Cloning of cDNA encoding choline monooxygenase from Suaeda liaotungensis and salt tolerance of transgenic tobacco. Acta Botanica Sinica, 2003, 45 (2): 242~247
    201 Lin C, Thomashow MF. DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR15 polypeptide. Plant Physiol, 1992, 99:519~525
    202 Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10 (8): 1391~1406
    203 Liu YG, Shirano Y, Fukaki H, et al. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci USA, 1999, 96:6535~6540
    204 Lowe KW, Conger BV. Root and shoot formation from callus cultures of tall fescue. Crop Sci, 1979, 19:397~400
    205 Lupotto E, Reali A, Passera S, et al. Maize transformation with Agrobacterium tumefaciens. Maize Genetics Cooperation Newsletter, 1998, 72:20~22
    206 Mayerhofer R, Koncz-Kalman Z, Nawrath C, et al. T-DNA integration: a model of illegitimate recombination in plants. EMBO J, 1991, 10 (3): 679~704
    207 McKown R, Kuroki G, Warren G. Cold responses of Arabidopsis mutants impaired in freezing tolerance. J Exp Bot, 1996, 47:1919~1925
    208 McLean BG, Greene EA, Zambryski PC. Mutants of Agrobacterium VirA that activates vir gene expression in the absence of the inducer acetosyringone. J Biol Chem, 1994, 269 (4): 2645~2651
    209 Medina J, Bargues M, Terol J, et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol, 1999, 119 (2): 463~470
    210 Meyer P. Understanding and controlling transgene expression. Trends in B iotechnology, 1995, 13:332~337
    211 Mooney PA, Goodwin PB, Dennis ES, et al. Agrobacterium tumefaciens-gene transfer into wheat tissues. Plant Cell Tiss Org Cult, 1991, 25:209~218
    212 Muller AJ, Grafe R. Isolation and characterization of cell lines of Nicotiana tabacum lacking nitrate reductase. Mol Gen Genet, 1978, 161:67~76
    213 Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant, 1962, 15:473~497
    214 Nadolska-Orczyk A, Orczyk W, Przetakiewicz A. Agrobacterium-mediated transformation of cereals - from technique development to application. Acta Physiol Plant, 2000, 22:77~88
    215 Nam J, Mysore KS, Zheng C, et al. Identification of T-DNA tagged Arabidopsis mutants that
    
    are resistant to transformation by Agrobacterium. Mol Gen Genet, 1999, 261 (3): 429~438
    216 Nanjo T, Kobayashi M, Yoshiba Y, et al. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett, 1999, 461: 205~210
    217 Narasimhulu SB, Dang XB, Sarria R, et al. Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell, 1996, 8:873~886
    218 Nordin K, Vahala T, Palva ET. Differential expression of two related low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol, 1993, 21: 641~653
    219 Okamuro JK, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA, 1997, 94: 7076~7081
    220 Orlikowska TK, Cranston HJ, Dyer WE. Factors influencing Agrobacterium tumefaciens-mediated transformation and regeneration of the safflower cultivar 'Centennial'. Plant Cell Tiss Org Cult, 1995, 40:85~91
    221 Orr W, Iu B, White TC, et al. Complementary DNA sequence of a low temperature-induced Brassica napus gene with homology to the Arabidopsis thaliana kinl gene. Plant Physiol, 1992, 98:1532~1534
    222 Ouellet F, Houde M, Sarhan F. Purification, characterization and cDNA cloning of the 200 kDa protein induced by cold acclimation in wheat. Plant Cell Physiol, 1993, 34:59~65
    223 Ouellet F, Vazquez-Tello A, Sarhan F. The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Lett, 1998, 423:324~328
    224 Park SH, Pinson SRM, Smith RH. T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. Plant Mol Biol, 1996, 32:1135~1148
    225 Pawlowski WP, Somers DA. Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc Natl Acad Sci USA, 1998, 95:12106~12110
    226 Potrykus I. Gene transfer to plants: An assessment. Bio/Technology, 1990, 8:535~542
    227 Preuss SB, Jiang CZ, Baik HK, et al. Radiation-sensitive Arabidopsis mutants are proficient for T-DNA transformation. Mol Gen Genet, 1999, 261 (4-5): 623~626
    228 Purnhauser L, Gyulai G. Effect of copper on shoot and root regeneration in wheat, triticale, rape and tobacco tissue cultures. Plant Cell Tiss Org Cult, 1993, 35:131~139
    229 Raineri DM, Bottino P, Gordon MP, et al. Agrobacterium-mediated transformation of rice (Oryza sativa L.). Bio/Technology, 1990, 8:33~38
    230 Rajoelina SR, Alibert G, Planchon C. Continuous plant regeneration from established embryogenic cell suspension cultures of Italian ryegrass and tall fescue. Plant Breed, 1990, 104:265~271
    231 Rapella MA. Organogenesis and somatic embryogenesis in tissue culture of Argentine maize (Zea mays L.). J Plant Physiol, 1985, 121:119~122
    232 Rashid H, Yokoi S, Toriyama K, et al. Transgenic plant production mediated by
    
    Agrobacterium in indica rice. Plant Cell Rep, 1996, 15 (10): 727~730
    233 Reed JN, Conger BV. Meiotic analysis of tall fescue plants regenerated from callus cultures. Environ Exp Bot, 1985, 25:277~284
    234 Riechmann JL, Meyerowitz EM. The AP2/EREBP family of plant transcription factors. Biol Chem, 1998, 379:633~646
    235 Riechmann JL, Heard J, Martin G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290:2105~2110
    236 Rose JB, Dunwell JM, Sunderland N. Anther culture of Lolium temulentum, Festuca pretensis and Lolium × Festuca hybrids. Ⅱ. Anther and pollen development in vivo and in vitro. Ann Bot, 1987, 60:213~214
    237 Rudolph AS, Crowe JH. Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology, 1985, 22:367~377
    238 Rueb S, Hensgens LAM. Improved histochemical staining for β-D-glucuronidase activity in monocotyledonous plants. Rice Genet Newsl, 1989, 6:168~169
    239 Sahi SV, Chilton MD, Chilton WS. Corn metabolites affect growth and virulence of Agrobacterium tumefaciens. Proc Natl Acad Sci USA, 1990, 87:3879~3883
    240 Sakai A, Larcher W. Frost survival of plants. In: Responses and adaptation to freezing stress. Springer-Verlag, New York, 1987
    241 Sambrook J,Fritsch EF,Maniatis T。分子克隆实验指南(第二版)。金冬雁,黎孟枫等译,侯云德等校。北京:科学出版社,1995
    242 Shen W, Escudero J, Schlappi M, et al. T-DNA transfer to maize cells: histochemical investigation of β-glucuronidase activity in maize tissues. Proc Natl Acad Sci USA, 1993, 90:1488~1492
    243 Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to drought and cold stress. Curr Opin Biotechnol, 1996, 7:161~167
    244 Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol, 1997, 115:327~334
    245 Shinwari ZK, Nakashima K, Miura S, et al. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun, 1998, 250 (1): 161~170
    246 Smith RH, Hood E. Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci, 1995, 35 (2): 301~309
    247 Spangenberg G, Wang ZY, Nagel J, et al. Protoplast culture and generation of transgenic plants in red fescue (Festuca rubra L.). Plant Sci, 1994a, 97:83~94
    248 Spangenberg G, Vallés MP, Wang ZY, et al. Asymmetric somatic hybridization between tall fescue (Festuca arundinacea Schreb.) and irradiated Italian ryegrass (Lolium multiflorum Lam.) protoplasts. Theor Appl Genet, 1994b, 88:509~519
    249 Spangenberg G, Wang ZY, Legris G, et al. Intergeneric symmetric and asymmetric somatic hybridization in Festuca and Lolium. Euphytica, 1995a, 85:235~245
    
    
    250 Spangenberg G, Wang ZY, Wu XL, et al. Transgenic tall fescue (Festuca arundinacea) and red fescue (F. rubra) plants from microprojectile bombardment of embryogenic suspension cells. J Plant Physiol, 1995b, 145:693-701
    251 Stachel SE, Messens E, Montagu MV, et al. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature, 1985, 318:624~629
    252 Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 1997, 94:1035~1040
    253 Stoger E, Williams S, Keen D, et al. Molecular characteristics of transgenic wheat and the effect on transgene expression. Transgenic Res, 1998, 7:463~471
    254 Strand A, Hurry V, Gustafsson P, et al. Development of Arabidopsis thaliana leaves at low temperatures releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates. Plant J, 1997, 12:605~614
    255 Strauss G, Hauser H. Stabilization of lipid bilayer vesicles by sucrose during freezing. Proc Natl Acad Sci USA, 1986, 83:2422~2426
    256 Strizhov N, brahám E, krész L, et al. Differential expression of two P5CS genes controlling proline accumulation during salt-stress required ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J, 1997, 12:557~569
    257 Sundberg C, Meek L, Carroll K, et al. VirE1 protein mediates export of the single-stranded DNA-binding protein VirE2 from Agrobacterium tumefaciens into plant cells. J Bacteriol, 1996, 178 (4): 1207~1212
    258 Sundberg CD, Rean W. The Agrobacterium tumefaciens chaperone-like protein, VirE1, interacts with VirE2 at domains required for single-stranded DNA binding and cooperative interaction. J Bacteriol, 1999, 181 (21): 6850~6855
    259 Takamizo T, Suginobu K-I, Ohsugi R. Plant regeneration from suspension culture derived protoplasts of tall fescue (Festuca arundinacea Schreb.) of a single genotype. Plant Sci, 1990, 72:125~131
    260 Takamizo T, Spangenberg G, Suginobu K-I, et al. Intergeneric somatic hybridization in Gramineae: somatic hybrid plants between tall fescue (Festuca arundinacea Schreb.) and Italian ryegrass (Lolium multiflorum Lam.). Mol Gen Genet, 1991, 231:1~6
    261 Takamizo T, Spangenberg G. Somatic hybridization in Festuca and Lolium. In: Bajaj YPS (ed). Biotechnology in Agriculture and Forestry, Vol. 17: Somatic hybridization in crop improvement. Springer Verlag, Berlin, Heidelberg, 1994. 112~131
    262 Thomashow MF. Molecular genetics of cold acclimation in higher plants. Adv Genet, 1990, 28:99~131
    263 Thomashow MF. Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. In: Meyerowitz E, Somerville C (eds). Arabidopsis. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994. 807~834
    
    
    264 Thomashow MF. Role of cold-responsive genes in plant freezing tolerance. Plant Physiol, 1998, 118:1~7
    265 Thomashow MF. So what's new in the field of plant cold acclimation? lots! Plant Physiol, 2001, 125 (1): 89~93
    266 Thomashow MF, Gilmour SJ, Stockinger EJ, et al. Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Physiol Plant, 2001, 112:171~175
    267 Tingay S, McElroy D, Kalla R., et al. Agrobacterium tumefaciens-mediated barley transformation. Plant J, 1997:11 (6): 1369~1376
    268 Toki S. Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol Biol Rep, 1997, 15 (1): 16~21
    269 Torello WA, Symington AG, Rufner R. Callus initiation, plant regeneration, and evidence of somatic embryogenesis in red fescue. Crop Sci, 1984, 24:1037~1040
    270 Torello WA, Rufner R, Symington AG. The ontogeny of somatic embryos from long-term callus cultures of red fescue. HortScience, 1985, 20 (5): 938~942
    271 Trick HN, Finer JJ. SAAT: sonication assisted Agrobacterium-mediated transformation. Transgenic Res, 1997, 6 (5): 329~336
    272 Trifonova A, Madsen S, Olesen A. Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci, 2001, 162: 871~880
    273 Trukahara M, Hirosawa T. Simple dehydration treatment promotes plantlet regeneration of rice (Oryza sativa L.) callus. Plant Cell Rep, 1992, 11:550~553
    274 Ulian EC, Magill JM, Smith RH. Expression and inheritance pattern of two foreign genes in petunia. Theor Appl Genet, 1994, 88:433~440
    275 Vain P, De Buyser J, Bui Trang V, et al. Foreign gene delivery into monocotyledonous species. Biotech Adv, 1995, 13 (4): 653~671
    276 Vallés MP, Wang ZY, Montavon P, et al. Analysis of genetic stability of plants regenerated from suspension cultures and protoplasts of meadow fescue (Festuca pratensis Huds.). Plant Cell Rep, 1993, 12:101~106
    277 Vasil IK. Progress in the regeneration and genetic manipulation of cereal crops. Bio/Technology, 1988, 6:397~402
    278 Vazquez-Tello A, Ouellet F, Sarhan F. Low temperature-stimulated phosphorylation regulates the binding of nuclear factors to the promoter of wcs120, a cold-specific gene in wheat. Mol Gen Genet, 1998, 257:157~166
    279 Vuke TM, Mott RL. Growth of lobolly pine callus on a variety of carbohydrate sources. Plant Cell Rep, 1987, 6:153~156
    280 Wang ZY, Takamizo T, Iglesias VA, et al. Transgenic plants of tall fescue (Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts. Bio/Technology, 1992, 10:691~696
    281 Wang ZY, Vallés MP, Montavon P, et al. Fertile plant regeneration from protoplasts of
    
    meadow fescue (Festuca pratensis Huds.). Plant Cell Rep, 1993, 12:95~100
    282 Wang ZY, Legris G, Nagel J, et al. Cryopreservation of embryogenic cell suspensions in Festuca and Lolium species. Plant Sci, 1994, 103:93~106
    283 Wang ZY, Ye XD, Nagel J, et al. Expression of a sulphur-rich sunflower albumin gene in transgenic tall fescue (Festuca arundinacea Schreb.) plants. Plant Cell Rep, 2001, 20: 213~219
    284 Wang H, Datla R, Georges F, et al. Promoters from Kinl and cor 6.6, two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA osmoticum and dehydration. Plant Mol Biol, 1995, 28:605~617
    285 Wanner LA, Junttila O. Cold-induced freezing tolerance in Arabidopsis. Plant Physiol, 1999, 120:391~400
    286 Watschke TL, Schmidt RE. Ecological aspects of turfgrass communities. In: Waddington DV et al (eds). Turfgrass Agron Monogr 32. ASA, CSSA, SSSA Madison, Wisconsin, USA, 1992. 129~174
    287 Wenck A, Coako M, Kanevski I, et al. Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium - mediated transformation. Plant Mol Biol, 1997, 34:913~922
    288 Wenzel G, Frei U, Jahoor A, et al. Haploids - An integral part of applied and basic research. In: Terzi M et al (eds). Current issues in plant molecular and cellular biology. Kluwer Academic Publ, Hingham, MA, 1995. 127~135
    289 Weretilnyk E, Orr W, White TC, et al. Characterization of three related low-temperature-regulated cDNAs from winter Brassica napus. Plant Physiol, 1993, 101: 171~177
    290 Winter H, Huber SC. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Plant Sci, 2000, 19:31~67
    291 Withers LA. Cryopreservation of cultured plant cells and protoplasts. In: Kartha KK (ed). Cryopreservation of Plant Cells and Organs. CRC Press, Boca Raton FL, 1985. 243~267
    292 Xin Z, Browse J. eskimol mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci USA, 1998, 95:7799~7804
    293 Yamaguchi-Shinozaki K, Shinozaki K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet, 1993, 236:331~340
    294 Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994, 6:251~264
    295 Yin Z, Wang GL. Evidence of multiple complex patterns of T-DNA integration into the rice genome. Theor Appl Genet, 2000, 100:461~470
    296 Yokoi S, Tsuchiya T, Toriyama K, et al. Tapetum-specific expression of the Osg6B promoter-β-glucuronidase gene in transgenic rice. Plant Cell Rep, 1997, 16 (6): 363~367
    297 Yokoi S, Higashi S-I, Kishitani S, et al. Introduction of the cDNA for Arabidopsis
    
    glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice. Mol Breed, 1998, 4 (3): 269~275
    298 Yu TT, Skinner DZ, Liang GH, et al. Agrobacterium-mediated transformation of creeping bentgrass using GFP as a reporter gene. Hereditas, 2000, 133 (3): 229~233
    299 Zaghmout OMF, Torello WA. Enhanced regeneration in long-term callus cultures of red fescue by pretreatment with activated charcoal. HortScience, 1988, 23 (3): 615~616
    300 Zaghmout OMF, Torello WA. Somatic embryogenesis and plant regeneration from suspension cultures of red fescue. Crop Sci, 1989, 29:815~817
    301 Zaghmout OMF, Torello WA. Restoration of regeneration potential of long-term cultures of red fescue (Festuca rubra L.) by elevated sucrose levels. Plant Cell Rep, 1992, 11:142~145
    302 Zambryski P, Joss H, Genetello C, et al. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regulation capacity. EMBO J, 1983, 2: 2143~2150
    303 Zambryski P, Tempe J, Schell J. Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell, 1989, 56:193~201
    304 Zambryski P. Chronicles from the Agrobacterium - plant cell DNA transfer story. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43:465~490
    305 Zhang S, Warkentin D, Sun B, et al. Variation in the inheritance of expression among subclones for unselected (uidA) and selected (bar) transgenes in maize (Zea mays L.). Theor Appl Genet, 1996, 92:752~761
    306 Zhang J, Xu RJ, Elliott MC, et al. Agrobacterium-mediated transformation of elite indica and japonica rice cultivars. Mol Biotechnol, 1997, 8 (3): 223~231
    307 Zhao Z, Cai T, Tagliani L, et al. Agrobacterium-mediated sorghum transformation. Plant Mol Biol, 2000, 44:789~798
    308 Zhao FY, Guo SL, Wang ZL, et al. Recent advances in study on transgenic plants for salt tolerance. J Plant Physiol Mol Biol, 2003, 29 (3): 171~178
    309 Zhou N, Wu G, Gao YP, et al. Molecular cloning of a cDNA encoding dehydration responsive element (DRE) binding protein in Brassiea napus. NCBI GenBank accession number AF084185 (http://www.ncbi.nlm.nih.gov), 1998
    310 Zhu H, Muthukrishana S, Krishnaveni S, et al. Biolistic transformation of sorghum using a rice chitinase gene. J Genet Breed, 1998, 52:243~252
    311 Zupan JR, Zambryski P. Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol, 1995, 107:1041~1047

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700