四个栽培棉种间的种间杂交及其遗传与系统发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉属有四个栽培种,其中亚洲棉(G.arboreum L)和草棉(herbacium L)为二倍体棉种、陆地棉(G.hirsutum L)和海岛棉(G.barbadense L)为异源四倍体棉种。棉花栽培种是棉花遗传育种最重要的种质资源,对于四个栽培棉种的种间杂交及其相关研究,不仅可提供丰富的中间优良育种材料,并可阐明棉花的遗传进化和遗传亲缘关系,对于棉花遗传改良具有重要的理论和实践意义。本研究以陆地棉、海岛棉、亚洲棉和草棉等四个棉属栽培种为材料进行种间杂交,对种间杂种及其亲本进行形态学、细胞遗传学、生理生化、荧光原位杂交和分子标记等研究,以明确四个栽培棉种及其种间杂种的遗传特点,进一步了解四个栽培棉种之间的亲缘关系和进化关系,为棉花种质资源的研究和利用提供科学依据。主要研究结果如下:
     1.四个栽培棉种及其种问杂种F_1的形态学和细胞遗传学观察 四个栽培棉种的植株、叶片、茎杆以及花器等器官都有明显的差异;叶片、茎杆以及叶柄的横切面结构观察结果表明,两个二倍体栽培棉种的叶片横切面构造为等面叶,两个四倍体栽培棉种却均为背腹叶;(亚洲棉×草棉)F_1正反交的叶片也为等面叶,(陆地棉×海岛棉)F_1正反交F_1仍为背腹叶,而它们的四元杂交种均为等面叶;四个栽培棉种的叶柄和茎的横切面结构基本一致,只是直径形状和和维管束多少的不同,四元杂种的叶柄和茎的横切面结构的差异不明显。四个栽培棉种间杂交种F_1的细胞学观察结果表明,(亚洲棉×草棉)F_1减数分裂中期Ⅰ,形成一个环状四价体,直接证明了亚洲棉与草棉之间存在一对相互易位;(陆地棉×海岛棉)F_1减数分裂中期Ⅰ联会基本正常,主要形成二价体,偶尔出现一些单价体和多价体,以及染色体桥。两个二倍体棉种以及两个四倍体棉种间的杂种F_1植株生长和结实正常,但花粉半不育,说明亚洲棉和草棉之间以及陆地棉和海岛棉之间的亲缘关系很近,它们之间主要是由于染色体结构变异而形成生殖隔离,最后形成不同的物种。而四个栽培棉种相互杂交形成的四元杂种在减数分裂中期Ⅰ联会极不正常,其染色体构型为2n=52=5.14Ⅰ+14.69Ⅱ+2.46Ⅲ+1.50Ⅳ+0.70Ⅴ+0.15Ⅵ,减数分裂后出现大量的多分体,最终导致花粉不育,这是四元杂种F_1不育的细胞学原因,同时也说明四倍体栽培棉种的A染色体组与二倍体棉种的A染色体组并不是完全同源的,四倍体棉A染色体组的供体种仍需进一步研究。
     2.四个栽培棉种及种间杂种染色体荧光原位杂交研究 通过对栽培棉种的rDNA-FISH结果进行分析,草棉的2对随体都是c型的,亚洲棉的随体为b,c型的,陆地棉为c,a,a型,而海岛
    
    棉的2对随体分别为ca型,可以推断草棉是最原始的棉种。此外,染色体核型分析结果表明,
    两个二倍体栽培棉种的染色体多为比较对称的In和S。类型,只是在染色体的长度上有差异,而两
    个四倍体栽培棉种的核型差异较大。四个栽培棉种的随体染色体数目和染色体类型的明显差异暗
    示了海岛棉和陆地棉在美洲有着不同的变异中心,四倍体棉种可能是多系统发育起源。
     栽培棉种间杂种的体细胞和花粉母细胞的减数分裂染色体的gONA一FlsH的检测结果表明,两
    个二倍体棉种或两个四倍体棉种之间的杂种各染色体几乎均有亲本杂交信号,进一步证明它们之
    间的同源性。
    3.四个栽培棉种及种间杂种F;的生理生化分析四个栽培棉种及其种间杂种Fl的POD和
    SOD活性和同卫酶谱带进行结果表明,四个栽培棉种间的POD同工酶活性是有差异的,二元杂种
     (亚洲棉X草棉)Fl的POO同工酶活性介于两亲本之间,(陆地棉x海岛棉)Fl的POD同工酶活
    性要高于两亲本,表现一定的优势。不同的四元杂种FI的POD同工酶活性也是不同的,其中以草
    棉为母本的四元杂种F,几乎检测不到PoD酶活。对POD同工酶谱的分析结果表明四个栽培棉种
    间的POD同工酶谱有一条很宽的相同条带,(亚洲棉X草棉)Fl有一条区分于亲本的POD同工酶
    谱带,(陆地棉x海岛棉)Fl的POD同工酶谱带和母本的POD同工酶谱带相同的较多。不同组合
    的四元杂种F,的POD同工酶是不同的,其中有3个组合兼有四个亲本的特征谱带,l个组合没有
    POD同工酶谱带,为特殊的资源材料。
     栽培棉种间的SOD活性也不同,二倍体棉种的SOD活性基本相同,但四倍体棉种间的SOD
    活性相差较大,且种内不同品种的SOD酶活也有较大的差异。栽培棉种间二元杂种的SOD酶活
    性均介于两个亲本之间;四元杂种SOD酶活性同样也是介于四个亲本之间的。栽培棉种及其杂交
    种SOD同工酶谱分析结果表明,各个栽培棉种间的SOD同工酶差别不大,亚洲棉、草棉、陆地
    棉和海岛棉各有3、3、5、5条SOD同工酶谱带,其区别只是条带亮度的不同。栽培棉种间杂交
    种F,的同工酶存在着一定的差别,其中(亚洲棉X草棉)Fl的SOD同工酶谱带较其亲本的条带细
    而淡,并缺失双亲的另一条酶带;陆地棉和海岛棉杂交种SOD同工酶谱带与亲本相似,但酶谱带
    亮度不同。四个四元杂种组合的SOD同工酶谱带较弱。因此,SOD同工酶谱带很难鉴别物种之间
    的差异。
    4.四个栽培棉种及种间杂种杂种F:SSR分子标记多态性分析以四个栽培棉种及其种间杂种
    Fl为研究材料,进行ssR分子标记多态性分析。结果?
Cotton (Gossypium sps) being the world's major fiber crop, it has been growing in more than 80 countries. It has four cultivated species namely G. arborewn, G. herbarium which are diploids and G. hirsutum, G. barbadense which are allotetraploids. These species have been the important source of the germplasm for cotton inheritance and breeding programmes, and these species are valuable in the cotton genetic improvement research. Studies on the interspecific crossing among the four species and their relationships not only provides enough intermediate quality materials, but also explains their genetics, evolution and phylogenetic relationships, which will be significant for the theory and practice. The characteristics of the karyotype, chromosomes, the relationships and evolution among the four species and their hybrids (F1) were studied by using the morphology, cytogenetics, physiological-biochemical characteristics, fluorescent in-situ hybridization (FISH) and molecular markers and so on. Results of all these
     studies are as follows and they would provide the scientific evidence for the resources of the cotton germplasm. 1. Study on the morphology and cytogenetics among the four cultivated cotton species
    and their hybrids (F1).
    The characteristics of the plants, leaves, stems and floral tissues between the four cultivated cottons were found to be significantly different. The leaves of the G. arborewn and G. herbarium were isobilateral leaves, and those of G.hirsutum and G. barbadense were dorsiventral leaves. The reciprocal F] of cross G. arborewn x G. herbarium were also isobilateral leaves, while reciprocal F1 cross of G.hirsutum x G. barbadense were also dorsiventral leaves. The quadrispecific hybrids F1 were isobilateral leaves, regardless of their cytoplasms. The structures of the leaf stalks and the stems were analogous to each other among the four cultivated cotton species except their diameters varied with species.
    The cytogenetics of interspecific hybrids (F1) among the four cultivated cotton species were studied in this paper and results are as follows: The diploid interspecific hybrid (G arborewn XG. herbarium) F1had a four-chromosome-ring at the meiotic metakinesis. The synapses of tetraploid hybrid (G. hirsutum x G. barbadense) F1 was found to be regular, which mainly formed bivalents, sometimes some univalents, multivalents and chromosome bridge. The diploid interspecific hybrid and the tetraploid hybrid grown and fruited regularly, but the pollen were semisterile. All these showed that the relationship was close between G. arborewn, G herbarium, and between the G. hirsutum and G. barbadense. The meiosis of the quadrispecific hybrid (F1) was abnormal, The chromosome configuration
    
    
    
    of the quadrispecific hybrid (F,) 2n=52=5.141+14.69 II+2.46 III+1.50 IV+0.70V+0.15VI. There were lots of multiad at the anaphase, which resulted pollen sterility which were the reason for sterility of the quadrispecific hybrid F1. These showed that the A-sub-genome of the tetraploid cultivated cotton species were homologous incompletely with the diploid A genome of the cultivated cotton species. The donor of A-sub-genome for tetraploid cultivated cottons were still studied on.
    2. Study on the FISH of the four cultivated cotton species and their hybrids.
    We concluded the results from the analysis of the rDNA-FISH for the four cultivated cotton species: 2 pairs of satellites of G herbarium were 'c', those of G. arboreum were 'b' and 'c', G.hirsutum were 'c', 'a', 'a' , G barbadense were 'c' and 'a'. So we could infer that G herbarium was the original cotton species and the donor species of A-sub-genome of two allotetraploids. In addition, the results of the karyotype showed that chromosomes of G. arboreum and G herbarium were symmetrical, except that the chromosome length was different. Different numbers and types of satellites of G.hirsutum and G barbadense showed that G.hirsutum and G barbadense had different center of variation. The developmental origin of the tetraploid cultivated cotton species could be
引文
1.陈松,黄骏麒,倪万潮,等.棉花种子超氧物歧化酶同工酶的研究.江苏农业科学,1993,6,15-16
    2.陈竹君,吴定华,番茄远缘杂种F_1及其双亲花粉萌发力的研究.中国蔬菜,1988,27(1):12-17
    3.陈瑞阳.陆地棉(Gossypium hirsutum)染色体组型的研究.植物学报,1982,24(1):94-97
    4.Clark MS主编,瞿礼嘉主译.植物分子生物学—实验手册,北京:高等教育出版社,1998,4-7
    5.高燕会,祝水金,季道藩.四种栽培棉种合成的四元杂种F_1细胞遗传学研究.棉花学报,2003,15(5):259-263
    6.葛秀春,宋风鸣,郑重.膜脂过氧化物酶与水稻对瘟病抗性的关系.浙江大学学报(自然科学版),2000,26(3):254-258
    7.郭旺珍,王凯,张天真,等.利用SSR标记技术研究棉属A、D染色体组的进化.遗传学报,2003,30(2):183-188
    8.郭旺珍,张天真,潘家驹,等.我国棉花主栽品种的RAPD指纹图谱研究.农业生物技术学报,1996,4(2):129-134
    9.黄滋康主编.中国棉花品种及其系谱.北京:中同农业出版社,1996
    10.贾东亮,舒理慧,宋运淳,等.栽培稻与疣粒野生稻杂种F_1代的基因组原位杂交鉴定.武汉植物学研究,2001,19(3):177-180
    11.李懋学,张赞平编著.作物染色体及其研究技术.北京:中国农业出版社,1996,p190~203
    12.李懋学,张赞平编著.作物染色体及其研究技术.中国农业出版社,1996,63-66
    13.刘芳,孙根楼,顾济,等.普通小麦和华山新麦草及其属间杂种F_1同工酶分析.作物学报,1992,(3):169-175.
    14.刘金兰,黄观武.棉花洞A型雄性不育完全保持系MB在不同地区气候条件下育性变化研究.棉花学报,1994,6(1):16-22
    15.罗广华,邵从本,王爱国,等.大豆和花生种子超氧化物歧化酶的同工酶研究.植物生理学报,1984,10(2):175-179
    16.Nicoi,E.M.戴光辉,Geiher J P.多酚类物持和过氧化物酶在陆地棉抗角斑病中的组织化学、生物化学及电子显微研究.植物病理学报.1997,27(1):84
    17.聂汝芝,李懋学.棉属植物核型研究.北京:科学出版社,1993
    18.聂汝芝,李懋学.三个野生和四个栽培棉种核型研究.植物学报,1985,27(2):113-121.
    19.宁顺斌,王玲,宁运淳.玉米(Zea mays L.)过氧化物酥编码基因px和冷调控蛋白编码基因cld的物理定位.遗传学报,2000,27(8):719-724
    20.潘家驹主编.棉花育种.北京:中国:中国农业出版社,1998
    21.钱思颖,黄骏骐,彭跃进,等.陆地棉与异常棉种间杂种的研究及其在育种上的应用.中国农业科学,1992,25(6):44-51
    22.邱竟,刑以华,张久绪,等.棉花杂交种过氧化物酶同工酶和腺苷酸含量的研究,棉花学报,1990,2(2):45-51
    23.区炳庆,任吉君,何丽烂.不同品种南瓜POD及PPO同工酶的比较研究.武汉植物学研究,2003,21(1):77-80
    
    
    24.芮菊生,杜懋琴,陈海明,等.组织切片技术.高等教育出版社,1980,98-110
    25.沈新莲,袁有禄,郭旺珍,等.棉花高强纤维主效QTL的遗传稳定性及它的分子标记辅助选择效果.高技术通讯,2001,10:13-16
    26.孙黛珍,高培芳,王曙光,等.棉花四元杂种F_1不育性的研究.西北农业大学学报,2000,28(2):103-107
    27.孙允东,王建民,郝静,等.AFLP和SSR技术简介及比较.山东畜牧兽医,2002,32-33
    28.宋国立,张金发.澳洲棉遗传多样性的RAPD分析.棉花学报,1999,11(2):65-69
    29.宋国立,崔荣霞.改良CTAB法提取棉花DNA.棉花学报,1998,10(5):273-27.
    30.宋平,季道藩,许复华.二倍体栽培棉种草棉和亚洲棉的核型比较.作物学报,1991,17(2):102~106
    31.唐尚格.陆地棉染色体组型模型.中国棉花,1983,4:9-11
    32.唐尚格.海岛棉染色体组型模型.中国棉花,1984.2:30-32
    33.唐荣华,张君诚,吴为人.SSR分子标记的开发技术研究进展.西南农业学报,2002,15(4):106-109
    34.王春英,王坤波,宋国立,等.棉花体细胞染色体rDNA-FISH技术.棉花学报,2001,13(2):75-77
    35.王春英,王坤波,王文奎,等.棉花gONA体细胞染色体FISH技术.棉花学报,1999,11(2):79-83
    36.王春英,王坤波,宋国立,等.棉花gONA体细胞染色体FISH技术.棉花学报,1999,11(2):79-83
    37.王坤波,李懋学.棉属D染色体组的核型变异和进化.作物学报,1990,16(3):200-207
    38.王坤波,宋国立,黎绍惠,等.陆地棉的核型模式.遗传,1995,17(6):1-3
    39.王坤波,王文奎,王春英,等.海岛棉原位杂交及核型比较.遗传学报,2001,28(1):69-75
    40.王玲,宁顺斌,宁过淳,等.荧光原位杂交技术的发展与应用.植物学报,2000,42(11):1101-1107
    41.王铨茂,许红.玉米对玉米小斑病的抗病性与过氧化物酶活力关系的研究初报.植物病理学报,1988,18(3):60-62
    42.王心宇,郭旺珍,等.我国短季棉品种的RAPD指纹图谱分析.作物学报,1997,23(6):669-676
    43.王志龙,姜茹琴,何鉴星,等.棉属海岛棉X拟似棉F_1不育性研究.遗传学报,1997,24(4):368-372
    44.王志宁,季道藩,许复华.栽培棉种间二、三、四元杂种的研究(Ⅱ杂种F_1减数分裂的染色体行为和花粉萌发率).浙江农业大学学报,1990,16(4):369-374
    45.王志宁,季道藩,许复华.棉属四个栽培棉种的核型比较研究.浙江农业学报,1997,9(3):135-139
    46.王志宁.栽培棉种间四元杂种F_1及其回交后代的形态学和细胞遗传学研究.博士学位论文
    47.吴安仁,张进仁,用过氧化物酶同工酶对柑桔分类的探讨.园艺学报,1985,12(2):80-87
    48.吴一民,陈建民.中棉染色体组型的分析研究.中国棉花,1984,1:41-43
    49.吴岳轩,曾富华.杂交稻抗感白叶枯病与活性氧伤害及防御酶系统的关系.热带亚热带植物学报,1995,3(3):69-73
    
    
    50.武耀廷,张天真,殷剑美.利用分子标记和形态学性状检测的陆地棉栽培品种遗传多样性.遗传学报,28(11):2001,1040-1050
    51.武耀廷,张天真,郭旺珍,等.陆地棉品种SSR标记的多态性及用于杂交种纯度检测的研究.棉花学报,2001,13(3):131-133
    52.薛俊杰,张震去,弓春瑞,等.几种木本豆科植物的过氧化物酶和多酚氧化酶同工酶研究.山西农业大学学报,2000,20(1):55-58
    53.叶寅,王苏燕,田波主编.核酸序列测定——实验指南.科学出版社,1995
    54.殷剑美,武耀廷,张军,等.陆地棉产量性状QTLs的分子标记及定位.生物工程学报,2002,18(2):162-166
    55.易成新,张天真.分子标记用于棉花杂交种纯度测验的初步研究.棉花学报,1999,11(6):318-320
    56.余舜武,张瑞品,宋运淳.基因组原位杂交的新进展及其在植物中的应用.武汉植物学研究,2001,19(3):248-254
    57.袁力行,傅骏骅,Warburton M,等.利用RFLP、SSR、AFLP和RAPD标记分析玉米自交系遗传多样性的比较研究.遗传学报,2000,27(8):725—733
    58.袁有禄,张天真,郭旺珍,等.棉花高品质纤维性状QTLs的分子标记筛选及其定位.遗传学报,2001,28(12):1151-1161
    59.赵扬,刘慧英,苏琴.南瓜不同种及品种间过氧化物同工酶分析.石河子农学院学报,1989,37(增刊):13-16
    60.张秉贤,王国祥.彩色棉与白色棉之间的DNA分子标记研究.中国棉花,2001,28(2):16-17
    61.张国欣.四种叶菜衰老期间呼吸、乙烯产生、IAA和过氧化物酶的变化及其相互关系.植物生理学报,1998,14(1):81-87
    62.张军,武耀廷,郭旺珍,等.棉花微卫星标记的PAGE/银染快速检测.棉花学报,2000,12(5):267-269
    63.郑冬官,方其英,蔡水立,等.高温对棉花花粉活力的影响.棉花学报,1995,7(1):31-32
    64.钟秀芬,张立彬,于风鸣.中国李品种过氧化物酶同工酶研究.园艺学报,1992,19(2):123-128
    65.周宝良,彭跃进,黄骏麒,等.海岛棉与旱地棉、雷蒙德氏棉和拟似棉的F_1杂种细胞学研究.江苏农业学报,1991,7(2):15-21
    66.周宝良,黄骏麒,沈新莲,等.试论我国棉花育种现状、问题与发展对策.江苏农业科学,1998,1:26-29
    67.周楠,奚元龄.关于棉属四倍体种起源问题的过氧化物酶同工酶研究.遗传学报,1990,17(4):294~300
    68.朱立武.植物同工酶研究与应用现状.安徽农学院学报,1990,(1):57-62
    69.邹美娟,宋国立.棉花原位杂交研究进展.棉花学报,2002,14(1):52-56
    70.左开井,孙济中,张金发,等.世界棉花分子生物学研究进展.棉花学报,1998,10(1):1-5
    71.左开井,孙济中,张献龙,等.利用RFLP、SSR和RAPD标记构建陆地棉分子标记连锁图.华中农业大学学报,2000,19(3):190-193
    72. Abdalla AM, Reddy OUK, El-Zik KM, et al., Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theoretical and applied genetics, 2001, 102:22-229
    
    
    73. Akkaya MS., Bhagwat AA., Cregan PB., Length polymorphisms of simple sequence repeat DNA in soybean. Genetics, 1992, 132:1131-1139
    74. Alesia JR., Dong JM, Curt LB et al., A detailed RFLP map of cotton Gossypium hirsutum×G barbadense." chromosome organization and evolution in a disomic polypolid genome. Genetics of America, 1994, 138:829-847
    75. Baap AK. Advances in fluorescence in situ hybridization. Mutat Res,1998,400:287-298
    76. Beauchhamp CD, Fridovich I., Isozymes of Superoxide dismutase from wheat germ. Biochem. Biophy. Acta, 1973, 317:50-64
    77. Bereey DR et al. In Situ Hybridization of biotinylated DNA probes to cotton meiotic chromosomes. Stain Tech. 1989,64:25-37
    78. Brubaker CL, Paterson AH, Wendel JF. Comparative genetic mapping of alloteraploid cotton and its diploid progenitors. Genome, 1999b, 2: 84-203.
    79. Charters, YM, Robertson A., et al., PCR analysis of cultivars (Brassica napus L. ssp. Oleifera(L.) Moench. Theor. Appl. Genet. 1996, 93: 190-198
    80. Chen X, Temnykh S, Xu Y et al., Development of a microsatellite framework map providing genome-wide coverage in rice( Oryza sativa L.), Theor Appl Genet, 1997, 95:553-567
    81. Choi Young Tao, R. Yonemori, K. Sugiura, A. Multi-culor genomic in situ hybridization identifies paretal chromosomes in somatic hybrids of Diospyros kaki and D.glandulosa. Hortscience.2002, 37(1):184-186
    82. Cipriani G, Marrazzo MT, Marconi R. Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor Appl Genet, 2002, 104:223-228
    83. Condit R, Hubbell S. Abundance and DNA sequence of two-base repeat regions in tropical tree genomes. Genome, 1991,34:66-71
    84. Crane CF, Hanson RE, Raska WA, et al. Development and use of chromosomally unbalanced cytogenetic stocks for physical chromosome mapping in cotton(Gossypium hirstatum L.). Plant Genome Ⅱ Conference Abstract, Town & Country Conference Center, San Diego, CA, January, 1994
    85. Crane CF. Identification of a homologous chromosome pair by in situ hybridization to ribosomal RNA loci in meiotic chromosomes of cotton(Gossypium hirsutum L.). Genome, 1993,36:1015-1022
    86. Cunningham D, Xiao QA., Chatterjee A, et al., Exam: an X-linked insertional mutation that disrupts forebrain and eye development. Mammalian Genome.2002,13(4): 179-185
    87. Dane F, Cucurbita A. In: Tanksly SD, Orton TJ. Isozymes in Plant Genetics and Breeding. Part B Amsterdam: Elsevier Science Publisher BV. 1983, 369-390
    88. Davila JA, Loarce Y, Ramsay L, et al, Compararision of RAMP and SSR markers for the study of wild barley genetic diversity. Heredities, 1999, 131: 5-13
    89. De Jong H J, Fransz P, Zabel P. High resolution FISH in plants techniques and applications. Trends Plant Sci. 1999,4:258-263
    90. Dietrick WF, Miller J, Stenn R, et al. A comprehensive genetic map of the mouse genome. Nature, 1996, 380:149-152
    
    
    91. Dulley JW. Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop sci. 1993, 33:660-668
    92. Edwards GA. The karyotype of Gossypium herbaceum L. Caryoloia, 1979, 30(3): 369-374
    93. Endrizzi J E. The diploid-like cytological behavior tetraploid cotton. Evolution. 1962,16:325-329
    94. Endrizzi J E. genetics cytology and evolution of Gossypium. Advances in genetics, 1985, 23: 271-375
    95. Fahima T, Roder MS, Wendehake K, et al. Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides in Israel. Theor Appl Genet, 2002, 104:17-29
    96. Fedak G. Molecular aids for integration of alien chromatin through wide crosses. Genome, 1999, 42: 584-591
    97. Feldman M, Liu B, Segal G, et al. Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics, 1997, 147:1381-1387
    98. Fransz PF, Alonso-Blanco C, Liharska TB et al. High resolution physical mapping in Arobidopsis thaliana and tomato by fluorescene in situ hybridization to extended DNA fibers. Plant J, 1996, 9: 421-430
    99. Fryxell PA. A revised taxonomic interpretation of Gossypium L. (Malvacese). Rheedea, 1992, 2(2): 108-165
    100. Galau GA, Wilkins TA. Ahoplasomic male sterility in AD allotetraploid Gossypium upon replacement of its resident A cytoplasm with that of D species(G, harknessii)., TAG, 1989, 78:23-31
    101. Gerstel DU, Phillips LL. Segregation of synthetic amphiploids in Gossypium and Nicotiana. Quantity biology, 1958, 23:225-237
    102. Gerstel DU. Chromosomal translocations in interspecific hybrids of the genus Gossypium. Evolution, 1953, 7:234~244
    103. Gmenen MAM, Cheng HH. Bumstead N, et al. A consensus linkage map of the chicken genome. Genome Res, 2000,10:137-147
    104. Gomez Fabre PM, Helouk, Stahl F, Predictions based on the rat-mouse comparative map provide mapping information on over 6000 new rat genes, Marnm Genome. 2002, 13(4): 189-193
    105. Guo WZ(郭旺珍), Zhang TZ(张天真), PAN JJ(潘家驹), A preliminary study on genetic diversity of upland cotton cultivars in China., Cotton Science(棉花学报), 1997, 9(5): 242-247
    106. Gupta M, Chyi YS, RomeN J, et al. Amplification of DNA markers from evolutionary diverse genomes using single primers of simple sequence repeats. Theor Appl Genet, 1994, 89: 998-1006
    107. Gupta PK, Vamboey RK, Sharma PC et al., Molecular markers and their application in wheat breeding. Plant breeding, 1999, 112:369-390
    108. Gupta PK, Varshney RK. The development and use of microsatellite markers for genetic analysis and plant breedjng with emphasis on bread wheat. Euphytjca, 2000, 113:163-185
    109. Haaf T, Ward DC. High resolution ordering of YAC contigs using extended chromatin and chromosomes. Hum Mol Genet, 1994,3:629-633
    110. Hamada SR. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA. 1982, 79, 6465-6469
    
    
    111. Hanson R E. Evolution of interspersed repetitive elements in Gossypium (Malvaceae). American journal of botany, 1998, 85:1364-1368
    112. Hanson M. Nurul Islam-Faridi, et al. Distribution of 5S and 18S-28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L. ) and its putative diploid ancestors, chromosoma, 1996, 105:55-61
    113. Hanson RE, Zhao Xinping, Paterson AH, et al. FISH indicates a dispersed repetitive element highly represented in the gossypium hirsumtum L. D-subgenome is absent from its putative ancestral diploid donor (Gossypium raimondii U.). Plant & Animal Genome Ⅶ Abstract. Town & Country Hotel, San Diego, CA, January 9-12. 1999
    114. Hanson RE, Zwick MS., Choi SD, et al. Fluorescent in situ hybridization of a bacterial artificial chromosome. Genome, 1995, 38:646-651
    115. Heiskanen M, Karhu R, Hellsten E, et al. High resolution mapping using fluorescence in situ hybridization to extended DNA fibers prepared from agarose-embeded cells. Bio Techniques, 1994,17:928-933
    116. Heng HHQ, Squire J, Tsui LC. High resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc Notl Acid Sci USA, 1992, 89: 9509-9513
    117. Hormaza JI. Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theor Appl Genet, 2002, 104:321-328
    118. Huang WM, Gibson SJ, Facer P. et al. Improved section adhesion for immuno-histochemistry using high molecular weight polymers of L-Lysine as a slide coating. Histochemistry, 1983, 77:275-279
    119. Hutchison JB, Silow RA, stephens SG. The evolution of Gossypium and the differentiation of the Cultivated cotton. Oxford University Press, New York. 1947.
    120. Iqbal MJ. Genetic diversity evolution of some elite cotton varieties by RAPD analysis. Theor Allo. Genet., 1997, 94:139-144
    121. Jackson SA, Dong F. Jiang J. Digital mapping of baterial artificial chromosome by flurescence in situ hybridization. The Plant Journal. 1999, 17(5): 581-587
    122. Jackson SA, Wang M L, Goodman H M, et al. Application of fiber-FISH in physicial mapping of Arobidopsis thaliana. Genome. 1998.41:566-572
    123. Y.F.Ji Raska WA, Donato MD, et al. Identification and distinction among segmental duplication-deficiencies by fluorescence in situ hybridization (FISH)-adorned multivalent analysis. Genome, 1999,42:763-771
    124. Ji Yuan Fu, Raska W A, Mcknight TD, et al. Construction of a physical map of major and minor rDNA sites in (Gossypium hirstatum L.). Plant Genome Ⅳ Conference Abstract, Town & Country Conference Center, San Diego, CA, January, 1995
    125. Ji Yuan Fu, Raska WA, Mcknight TD. Use of meitic FISH for identification of a new monosome in Gossypium hirsutum L. Genome, 1999,40:34-40
    126. Jiang CX, Wright RJ, EI-Zik K M, et al., Polyploid formation created unique avenues for response to selection in gossypium. Pro.Natl Acad Sci,USA, 1998, 95(8): 4419-4424
    127. Jiang J. and Gill BS. Sequential chromosome banding and in situ hybridization analysis. Genome 1993, 36:792-795
    
    
    128. Jiang J. Interphase fluorescene in situ hybridization mapping: a physical mapping strategy for plant species with large complex genomes. Mol.Gen. Genet. 1996,252:497-502
    129. Jonathan F, Wendel. Genome evolution in polyploids. Plant molecular biology, 2000, 42:225-249
    130. Kashkush K, Feldman M, Levy AA. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics, 2002, 160:1651-1659
    131. Kieth L. Adams, Richard Cronn, et al. Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. PNAS, 2003, 100(8): 4 649-4 654
    132. Kim NS, Armstrong KC, Fedak G, et al. A microsatellite sequence from the rice blast fungus(Magnap or the grisea) distinguishes between the centromeres of Hordeum Vulgate and H. bulbosum in hybrid plants, Genome,2002,45(1): 165-174
    133. Ko JM, Do Geumsook, Suh Duck Yong, et al., Identification and chromosomal organization of two rye genome-specific RAPD products useful as introgression markers in wheat. Genome.2002,45(1): 157-164
    134. Kohel R J, Yu J, Park YH, et al., The eighteen inter genetics congress, Beijing: 1998. 257
    135. Kresovich S, Szewe-McFadden AK., Blick SM et al. Abundance and characterization of simple-sequence repeats isolated from a size-fracionated genomic library of Brassica napus L. Thoeor Appl Genet, 1995, 91:206-211
    136. Kruglyak S, Durrett RT. Schug MD, et al. Equilibrium distributionsof microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci USA, 1998,95:10 774-10 778
    137. Kulnane, L.S. Lehman, E.J.H. Hock,et al., Rapid and efficient detedtion of transgene homozygosity by FISH of mouse fibroblasts, Mammalian Genome.2002,13(4):223-226
    138. Leith AR, Schwarzacher T, Jacson D, et al. In situ hybridization: a practical guide. RMS microscopy Handbooks, 1994, No 27. Bios Scientific Publishers Ltd, Oxordmanuelids L, In situ dection of DNA sequences using biotinylated. Probes. 1985, 7:4-8
    139. Martin B, Friedrich UH, Melchinger AE. Genetic similarities among winter wheat cultivar determined on the basis of RFLPs, AFLPs and SSRs and their use for predicting progeny variance, Crop Sci,1999, 39:228-237
    140. Meredith WR., Use of molecular markers in cotton breeding. In constrable GA, Forrester NW. (Eds) Challenging the future: Proceedings of the World Cotton Research Conference-1, Brishane, Australia: CSIRO. Melboume. 1994. 303-308
    141. Mesbah M. Eden JW, De Jong H. FISH to mitomic chromosome and extended DNA fibers of beta procumbens in a series of monosomic addition to beet( B. rulgaris). Chromosome research, 1997, 8: 285-293
    142. Mouras A, Gene targeting in plant metaphase chromosomes by in situ hybridization with tritiated probe DNA. In: Negrutiu I, Gharti-Chhetri (eds) A laboratory guide for cellular and molecular plant biology. Birkhauser, Berlin, 1991, pp 296-309
    143. Mukai Y, Nakahara Y, Yarnamoto M, Simultaneous discrimination of the three genomes in hexaploid wheat by multicolour fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome, 1993b, 36:489-494
    
    
    144. Mukai Y, Friebe B, Hatchett JH, et al. Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma. 1993a, 102:88-95
    145. Mukai Y. Simultaneous discrimination of the three genome in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome, 1993,36:489-494
    146. Mullenders L, Brookes S, Hoovers JM, et al. High resolution in situ hybridization using DNA halo Preparations. Hum Mol Genet, 1992,1:587-591
    147. Multani DS, ILyon BR. Genetic fingerprinting of Australian cotton cultivars with RAPD markers. Genome, 1995, 38:1005-1008
    148. Ning ShB, Wang L, Song YCh. Identification of programmed cell death in situ in individual plant cells in vivi using a chromosome preparation technique. Journal of experimental botany, 2002,53(369): 651-658
    149. Ozkan H, Levy AA, Feldman M. Allopoyloid-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell, 2001, 13:1735-1747
    150. Panaud O, Chen X, Jack P I. Ferquency of microsatellite sequences in rice(Oryza sativa L). Thero Appl Genet, 1995, 87:782-788
    151. Panaud O, Chen X, McCouch SR. Development of microsatellite markers and characterization of simple sequence length polymorphism(SSLP) in rice (Oryza sativa L). Mol Gen Genet, 1996, 252: 597-607
    152. Parks CR. the application of flavnoid distribution to taxonomic problems in the genus Gossypium. Bulletin of the Torrey Botanical Club, 1975, 102:350-361
    153. Pater AH. DNA markers in plant improvement. Adv Agon. 1991, 46:39-60
    154. PejicI, Aimone-Manan P, Morgante M, et al. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, SSRs and AFLPs. Theor Appl Genet, 1998,(97): 1248-1255
    155. Pinkel D, T Straume, Gray J W. Cytogenetic analysis using quantitative, high sensitivity flurescence hybridization. Proc NatnAcadSci USA, 1986, 83:2 934-2 938
    156. Powell W, Morgante M, Andre C, et al.The compasison of RFLP, RAPD, AFLP and SSR (micmsatellite) markers for germplasm analysism. Molecular Breeding, 1996,(2): 225-238
    157. Provan J, Powell W, Waugh R, Microsatellite analysis of relationships within cultivated patato (Solanum tuberosum). Thero Appl Genet, 1996, 92:1087-1084
    158. Rafalski JA, Vogel JM, Morgante M. et al. Generating and using DNA markers in plants. Birren B, Lai E. Nonmammalian genomic analysis. Apractical guide. San Diego: Academic Press, 1996. p75-134
    159. Rayburn AL, and Gill, BS. Use of the biotin-labelled probes to map scientific DNA sequences on wheat chromosomes. J. hered., 1985, 79:78-85
    160. Reinisch A, Dong J M, Brubaker C L, et al. A detailed RFLP map of cotton, Gossypium hirsutum×Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics, 1994, 138:829-847
    161. Reyes-Valdes MH, Ji YF, Crane CF, et al. ISH-faciliated analysis of meistic bivalent pairing.
    
    Genome, 1996,39:794-796.
    162. Richard C. Cronn, Randall L. et al., Duplicated genes evolve independently after polyploid formation in cotton. PNAS, 1999, 96(25): 14 406-14 411
    163. Richardson T, Cato S, Ramser J, et al. Hybridization of microsatellite to RAPD: A new source of polymorphic markers. Nucleic Acids Res, 1995, 23(18): 3798-3799
    164. Roder MS., Plaschke J, Kong SU, et al., Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet, 1995, 246:327-333
    165. Saha S, Zipf A., Genetic diversity and phylogenetic relationships in cotton based on isozyme markers, Crop production, 1998, 1: 79-93
    166. Schwarzacher T, Leitch AR, Bennett MD, et al., In situ localization of parental genomes in a wide hybrid. Ann Bot, 1989, 64:315-324
    167. Senior ML., Murphy JP., Goodman MM, et al. Utility of SSR for determing genetic similarities and relationships in maize using and agarose gel system. Crop Sci, 1998, 38:1088-1098
    168. Shaked H, Kashkush K, Ozkan H, et al., Sequence elimination and cytosine methylation are rapid and reproducible response of the genome to wide hybridization and allopolyploid in theat. Plant Cell, 2001, 13:1749-1759
    169. Shapply ZW, Jenkins JN, Waston CE. Establishment of molecular markers and linkage groups in two F_2 populations of upland cotton. Theor Appl Genet, 1996, 92:915-919
    170. Shapply ZW, Jenkins JN, Zhu J, et al. Quantitative trait loci associated eith agronomic and fiber traits of upland cotton. Journal of cotton science, 1998, 2:153-163
    171. Shapply ZW, Jenkins JN, Zhu J, et al. An RFLP linkage map of upland cotton, Gossypium hirsutum L. Theor Appl Genet, 1998, 97:756-761
    172. Skinner DM, Beattie WG, Blatter FR, et al. The repeat sequence of a hermit crab satellite deoxyribonucleic acid is (T-A-G-G)n·(A-T-C-C)n. Biochemistry, 1974, 13:3930-3937
    173. Skovsted A. Cytological studies in cotton Ⅱ. Two interspecific hybrids between Asiatic and new wild cottons. J Genet. 1934, 28:407~428
    174. Smulders MJ, Bredemeijer G, Rus-Ko-rtekaas W, et al. Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor, 1997, 97:264-272
    175. Snowdon RJ. Friedrich T. Friedt, et al. Identifying the chromosomes of the A-and C-genome diploid Brassica species B. rapa(syn. Camperstris) and B.oleracea in their amphidiploid B. napus, Theoretical & applied genetics. 2002, 104(4): 533-538
    176. Srebniak M, RasmussenO, Maluszynska J, et al., Cytogenetic analysis of an asymmetric potato hybrid. Journal of applied genetics. 2002, 43(1): 19-31
    177. Stelly DM, Crane CF, Hodnett GL, et al. Polyploidization and repetitive elements in genome evolution. Plant & Animal Genome Ⅶ Abstract. Town & Country Hotel,San Diego, CA, January 9-12. 1999
    178. Tatineni V, Cantrell RG., Davis DD. Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPDs. Crop. Sci. 1996, 36:186-190
    179. Tautz D. Hypervariability of simple sequences as a general source of polymorphic DNA markers.
    
    Nucleic Res, 1989. 17:6463-6471
    180. Tautz. D. and Renz, Simple sequence repeats are ubiquitous repetitive components of eukarytoic genomes. Nucleic Acids Res. 1984, 12, 4127-4138
    183. Trask BJ. Fluorescene in situ hybridization: applications in cytogenetics and gene mapping. Trends Genet. 1999, 7:149-154
    184. Uchiumi T, Kuwashiro R, Miyamoto J. Detection of the leghemoglobin gene on two chromosomes of Phaseolus vulgaris by in situ PCR linked-fluorescent in situ hybridization(FISH). Plant Cell Physiology, 1998, 39(7): 790-794
    185. Mauricio Ulloa and William R. Meredith Jr. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. Journal of cotton science, 2000, 4:161-170
    186. Umesh K, Reddy, Alan E, et al. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research, the Journal of cotton science. 2001, 5:103-113
    187. Valdes AM, Slatkin M, Freimer NB. Allele frequencies at microsatelliteloci: the stepvise mutation model revisited. Genetics, 1993, 133:737-749
    188. Virk PS, zhu J, Newbury HJ, et al. Effectiveness of different classes of molecudar marker for classifying and revealing variation in rice germplasm. Euphytica. 2000, 112(3): 275-284
    189. Wajahatullah MK. Use of RAPD markers to analyze genomic affinity among Australian Gossypium Species. Proceeding of 1997 cotton research meeting, 1997:150-152
    190. Walter L, Stark S, Helou K, et al., Identification, characterization and cytogenetic mapping of a yeast Vps54 homologous in rat and mouse. Gene.2002, 285(1/2): 213-220
    191. Wang Z. Suvey of plant short tandem DNA repeats, Theor. Appl. Genet. 1994, 88:1-6
    192. Wang G. Mahalingam R, Khap HT. (C-A)and(G-A)anchored simple sequence repeats (ASS85) generated polymophism in soybean.TheorAppl Genet, 1998, 96(8): 1086-1096
    193. Wang KB, Li MX, Song GL, et al. Identification of the karyotype of Gossypium bickii Prokh, 1994, 299-302
    194. Wang Z, Weber JL, zhong G, et al. Survey of plant short andem DNA repeats. Theor Appl Genet, 1994, 88:1-6
    195. Weber, J. and May PE. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction, Am. J. Genet. 1989, 44:388-396
    196. Weier HUG, Wang M, Mullikin JC, et al., Quantitative DNA fiber mapping. Hum Mol Genet, 1995, 4:1903-1910
    197. Weissenbach J, Gyapay G, Djb C, et al. A second-generation linkagemap of the human genome, Nature, 1992, 359:794-801
    198. Wendel JF. New world tetraploid cottons cotain old world cytoplasm. Proceedings of the national academy sciences USA, 1989, 86:4132-4236
    199. Wendel JE Stewart JM, Rettig JH. Molecular evidence for homoploid reticulate evolution among Australian species of Gossypium. Evolution, 1991, 45(3): 694-711
    200. Wilikins TA, Wan CY, Lu CC. Ancient origin of the vocular H+—ATPase 69-kilodaton catalytic subunit superfamily. TAG, 1994, 89:514-524
    201. Wu KS, Abundance. polymorphism and genetic mapping of microsatellite in rice. Mol. Gen. Genet,
    
    1993, 241:225-235
    202. Wu KS, Tanksley SD. Abundance, polymorphism and genetic mapping of mocrosateilites in rice. Mol Gen Genet, 1993, 241:225-235
    203. YU J, Kobel RJ. Mapping cotton genome with molecular markers. Beltwide Cotton Conferences. 1997.447.
    204. Yu KF, Park SJ, Poysa V. Abubdance and variation of microsatellite DNA sequences in beans (Phaseolus and Vigna). Genome, 1999, 42:27-34
    205. Zhao Q, Zhang Y, Cheng ZhK, et al. A fine physical map of the rice chromosome 4, Genome Research, 2002,12(5): 817-823
    206. Zhao XP and Kochert G. Characterization and genetic mapping of a short, highly repeated. Interspersed DNA sequence from rice(Oryza sativa L.). Mol. Gen. Genet. 1992, 231:353-359
    207. Zhao XP, Si-Y, Hanson RE, et al., Dispersed repetitive DNA has spread to new genome since polyploid formation in cotton. Genome research, 1998, 8(5): 479-492
    208. Zhao XP, Wing RA, Paterson AH, Cloning and characterization of the majority of repetitive DNA in cotton (Gossypium L.). Genome, 1995,38:1177-1188
    209. Zhong XB, Fransz PF, Eden JW, et al., FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato. The Plant Journal, 1998, 13(4): 507-517
    210. Ziolkowski PA, Sadowski J. FISH-mapping rDNAs and Arabidopsis BACs on pachytene complements of selected Brassicas. Genome. 2002,45(1): 189-197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700