基于空气、水、冰电容差异的冰层厚度测量系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来极地冰川和内陆高原冰川消融幅度比较大,另外,我国北方地区的大河、大江都存在着不同程度的凌汛问题。要了解冰川融化和冰凌的发生,就离不开对冰层厚度的测量。鉴于此本文提出了利用空气、冰、水的电容差异测量冰层厚度的新方法。通过大量的实验结果分析发现三者电容值存在数量级上的差异,可以将测得的电容值转化为频率或者数字信号,由于电容值存在数量级上的差异,那么在传感器逐点测量中,如果有频率或者数字信号的跳变,就说明是测量的介质由一种变为了另外一种。只要测出两次这样的跳变,那么就可以分辨出冰层的上界面和下界面了,上下界面之差就是冰层厚度了。以下简要介绍了整个系统的设计。
     在本文中主要介绍了测量冰厚的电容传感器的结构,电容转换为频率或者数字信号的信号调理电路,数据处理电路及上位机的显示与处理。电容传感器结构是由按照等间隔排列的多组平板电容组成,内部设计了每个电容的选通电路。信号调理电路设计了三种调理方式:一种是采用专用芯片AD7745实现电容直接转换为24位数字信号;另外两种采用了不同的振荡电路实现电容向频率的转换。在信号调理电路中还完成了接受采集指令进行数据采集以及向数据处理电路发送采集数据。数据处理电路是以单片机为核心包括时钟、存储、通讯等的电路。时钟电路不仅提供了测量的实时时间,而且产生一分钟一次的中断信号用于单片机向信号调理电路发采集指令。由于在数据传送中有可能会丢失或者传输错误,也有可能上位机没有实时的接收数据,所以设计了存储数据电路以便日后补测数据。上位机的显示与处理程序中包括了数据存储、数据分析处理及显示实验数据得出冰层厚度。
     通讯主要有三种方式:第一种方式是利用串口与上位机通讯,适合近距离的数据传输;第二种方式是利用RS232转CAN总线实现数据远传和多个传感器的联网控制;第三种方式是通过GPRS/GSM模块实现数据的远传。
In recent years, extent of the polar glacier and the inland plateau glacier melt is comparatively big , great river , great river all exist ice run problem in north area of our country besides. Essential acquaintance glacier thawing and occurrence of icicle will be not to get away to measure thickness of ice layer. According to this ,the new method of measuring ice layer thickness has been put forward on the base of the difference of air、ice、water capacitance in this thesis. All that Capacitance values of three medium exist difference of order of magnitude were discovered by the fact that large amount of experiment result analysis, capacitance value measured can be changed into digital signal or frequency that the single chip may measure, since capacitance value exists upper difference of order of magnitude, when the sensor is measured point-by-point ,show being that the measuring medium has become another one kind from one kind if frequency sprung, As long as Change is measured out twice such springing, so (we) can resolve upper and down interface of ice layer, difference of interface is thickness of ice layer. The following will introduce entire systematic design concretely.
     (We) have introduced the structure of capacitance sensor of measuring the ice thickness mainly in the main body of the thesis, the adjusting circuit of frequency or digital signal changed by capacitance, data handling circuit and display and process of upper machine. Capacitance sensor structure is composed of the multiunit flat capacitance arranged according to the same gap, design selection circuit of every capacitance inside. Signal adjusted circuit has designed three kinds of adjusting way: One kind is that the reality of changing capacitance into frequency adopt special chip AD7745; adopt the different oscillating circuit to realize capacitance changing into frequency besides two kinds. It completes acquisition direction and runs to collect data in signal adjusting circuit and sends collecting data to the circuit of data process. The data handling circuit is the circuit taking single chip as core including clock、memory, communication etc. Not only clock circuit provides ' the real time for measurement, but also the interruption signal producing one time of a minute is used to be that single chip sends the collection instruction to signal adjusting circuit. Since data transfer can have a mistake or possibly be lost in sending data, also possibility upper machine does not accepting data in real time, therefore the data circuit having designed memory can be used to make up data in the future. The displaying and disposing program of upper machine is composed of data memory、data analysis and process and display of reaching the ice layer thickness according to experiment data.
     Communication has three kinds way mainly: The first kind of way is the communication making use of serial port and upper machine, is suitable to the close quarter data transmission; second kind of way is Be that making use of RS232 to CAN bus realizes distant transmission of data and many sensor networking control; Third kind of way is that the distant sending data is realized by the GPRS/GSM module.
引文
[1] 秦建敏,郭宏亮,程鹏等,基于空气、冰、水电容差异的冰层厚度检测系统研究,中国水利学会水利量测技术专业委员会,黄河研究会,水利量测技术论文选集,黄河水利出版社,2006.9,18~23
    [2] 刘国庆,邹广德,徐芳芳等,黄河冰层厚度测量仪的研制,山东理工大学学报(自然科学版),2005年,Vol.19(No.5),23~26
    [3] Worby, A. P., Griffin, P. W., Lytle, V.I., Massom, R.A., On the use of electromagnetic induction sounding to determine winter and spring sea ice thickness in the Antarctic. Cold Regions Science and Technology, 1999, 29(1): 49-58
    [4] Yu, Y., Rothrock, D.A., Thin ice thickness from satellite thermal imagery. Journal of Geophysical Research, 1996, 101(C11), 25753-25766
    [5] 常晓敏,窦银科,马福昌等,冰层厚度自动化观测系统的试验研究,太原理工大学学报,2005年,Vol.36(No.5),519~521
    [6] 张晓,史丽萍,基于电容感应元的多层液位传感器的研究,仪表技术与传感器,2003,09,5~7
    [7] Sodhi, D.S., Nonsimultaneous crushing during edge indentation of freshwater ice sheets.Cold Regions Science and Technology, 1998,27(3): 179-195
    [8] Dempsey, J. P., Research trends in ice mechanics. International Journal of Solids and Structures, 2000,37(1-2): 131-153
    [9] Multala, J., Hautaniemi, H., Oksama, M., et al, An airborne electromagnetic system on a fixed Wing aircraft for sea ice thickness mapping. Cold Regions Science and Technology, 1996, 24(4): 355-373
    [10] Li Zhijun, Sui Jixue, Yan Decheng, Meng Guanglin. Temperature, salinity, and density profiles in a fast ice sheet in Liao Dong Bay. POAC'89, 1989, 1: 218-224
    [11] Li Zhijun, Yan Decheng, Meng Guanglin, Zhang Mingyuan.Relation of thermal conductivity coefficient with temperature of sea ice in Bohai Sea OMAE'92, 1992,4:329-333
    [12] 陈力,陈仁文,AD7745在微机械电容式传感器测量电路中的应用,仪器仪表用户,2006年,第04期,35~37
    [13] MICROCHIP company, PIC 16F690 datasheet, http://www.microchip.com/
    [14] 洪权,林凌,李刚等,ADG663的CAN总线网络扩展方案设计,今日电子,2005.7
    [15] 石文星,赵庆珠,李立一等,基于RC振荡电路的冰层厚度测量装置,暖通空调,2005年,Vol.35(No.6),65~69
    [16] 赵雪英,郭雨梅,一种小电容检测方法——充放电法,沈阳工业大学学报,2003,Vol.25(No.1),55~57
    [17] 彭树生,庄志洪,赵惠昌,PIC单片机原理及应用,机械工业出版社,2002.1
    [18] 张杏珍,孙健,IC卡芯片AT45DB041的原理及应用,现代电子技术,2005,第十期,17~19
    [19] 张道明,郝继飞,谭国俊,实时时钟ISL1208原理与应用,微计算机信息,2006.11,Vol.22,224~226
    [20] MICROCHIP company, MCP2551 datasheet, http://www.microchip.com/
    [21] 郭瑞,基于GPRS方式的远程工业监测系统,[学位论文],太原,太原科技大学电子系,2006
    [22] 俸皓,罗蕾,用GPRS实现远程环保监测,成都信息工程学院学报,2005,第一期,88~91
    [23] Bates R. J.(Bud)著,朱洪波,沈越泓等译,通用分组无线业务(GPRS)技术与应用,人民邮电出版社,2004.2
    [24] 吕捷,GPRS技术,北京邮电大学出版社,2001.8
    [25] Sebastien Lesrel. AT Commands for GPRS (versiont. 3), 2000. 11.
    [26] 卢新波,侯思祖,基于GPRS的配网自动化系统性能分析,电力系统通信,2006年,Vol.27(No.159),25~28
    [27] 钟章队,李红君,GPRS技术讲座第4讲GPRS的无线空中接口,中国新通信,2002年,第07期,86~90
    [28] 谢希仁译,ForouzanBehrouzA, SophiaChungFegan.TCP/IP协议族,北京,清华大学出版社,2003
    [29] 杜壶,李波,内置TCP/IP协议的GPRS模块的应用,单片机与嵌入式系统应用,2006年,第10期,41~43
    [30] 张杏珍,孙健,汤钰鹏,AT45DB041及在铁路语音提示系统中的应用,广东自动化与信息工程,2004年,第4期,31~33
    [31] 何立民,I2C总线应用设计,北京,北京航空航天大学出版社,1995
    [32] 黄再银,宗建华,利用VB6.0实现PIC单片机与PC串行通信,电子产品世界,2002年,第16期,79~80
    [33] 于万民,王哈力,郑洪平,PC机与PIC单片机串行通讯的实现,现代电子技术,2003年,第18期,26~28
    [34] 余金仑,赵元黎,郑国恒等,GSM/GPRS模块SIMl00-E在无线抄表系统中的应用,电子工程师,2006年,Vol.32(No.10),21~23
    [35] GSM 0360, Digital Cellular Telecommunications System(Phase 2+),GPRS Service Description, Stage 2 (version 7.3.1), 2000.7
    [36] SIMCOM company, SIM300C datasheet, http://www.sim.com/
    [37] 仵浩,齐燕杰,Visual Basic串口通信工程开发实例导航,北京,人民邮电出版社,2003.
    [38] 曾彦超,基于SMS的地下水水位远程自动化测报系统,[学位论文],太原,太原理工大学测控所,2005
    [39] 陈国先,PIC单片机应用系统可靠性技术研究,山东交通学院学报,2005年,Vol.13(No.3),74~76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700