超支化聚合物的改性及其在纺织印染中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超支化聚合物是一类具有准球形结构的高度支化大分子,含有大量的端基官能团,分子内部存在空腔,表现出高溶解性、低粘度、高化学反应活性等特点。由于超支化聚合物独特的结构和性能特征,目前它已成为高分子领域研究的热点。经过二十多年的发展和探索,超支化聚合物的合成方法已经趋于全面和成熟。加强改性研究,实现超支化聚合物的功能多样化,成为研究的一个新方向。
     超支化聚合物种类众多,其中超支化聚酯已实现商业化,是目前研究较为成熟的一类超支化聚合物,其分子末端为活性较强的羟基,容易进行功能化改性。季铵盐类表面活性剂在纺织印染中的优势明显,应用广泛。本论文旨在探索超支化聚酯的季铵化改性,研究季铵化改性产物的结构与性能,探讨超支化聚酯季铵盐在涤纶碱减量、印染废水处理及其固色方面的应用。具体研究内容和结果如下:
     1.超支化聚酯季铵盐的合成、表征及其性能
     以环氧丙基三烷基氯化铵为阳离子改性剂,对超支化聚酯Boltorn H20和H30进行改性,利用H20和H30端羟基的活性和环氧基反应得到H20和H30的季铵盐衍生物。
     以环氧丙基三甲基氯化铵(GTA)和超支化聚酯H20的合成为例,研究了超支化聚酯与环氧丙基三烷基氯化铵的反应条件,探讨了溶剂、催化剂种类(NaOH、Ba(OH)2、三乙胺、吡啶等)、反应物摩尔比、温度、时间等因素对反应产率的影响,找到一种切实可行的反应条件。结果表明,当n(H20)/n(GTA)=1:16, n(NaOH)/n(H20-OH)=0.5,反应温度为50℃的条件下反应24h,反应产率最高为61.1%。采用FTIR、1HNMR、13CNMR、元素分析(EA)等手段对产物的结构与性能进行表征。研究发现,增加催化剂的用量,升高反应温度和延长反应时间,均可提高反应产率,但过量的催化剂,过高的温度和过长的反应时间却可能导致GTA水解或使副反应加剧,使得反应产率有所下降。
     为了得到具有更广泛用途的季铵盐类表面活性剂,在上述研究的基础上,选用两步法合成了端基含不同长链烷基的超支化聚酯季铵盐QHPE (H20CxN和H30CxN。其中x=8,12,14,16和18,为季铵盐改性端基中除环氧丙基和二甲基后烷基链的长度)。首先以环氧氯丙烷和多种长链叔胺(C8,C12,C14,C16和C18)为原料,得到了一系列含不同长链烷基的缩水甘油三烷基氯化铵(EDAC);然后以DMF为溶剂,在NaOH催化条件下,将得到的EDAC作为阳离子醚化剂对超支化聚酯进行改性,调节反应物的投料比合成了一系列水溶性的端基含长链的QHPE。采用FTIR、1HNMR、13CNMR、EA、TG等手段对产物结构进行表征,并探讨了其溶解性、热性能及水溶液性能等。
     研究发现,超支化聚酯季铵盐在极性溶剂(如H2O、甲醇、乙醇、DMF、DMSO等)中溶解性很好,但在一些非极性溶剂和弱极性溶剂(如丙酮、THF、乙醚等)中溶解性较差。相同改性程度下,随着碳链的增长,聚合物在多数溶剂(如丙酮、THF等)中的溶解度逐渐增加,但由于长烷基链本身的疏水性质,碳链长度超过16后,溶解性能下降。此外,改性程度的差异也会影响聚合物的溶解性,一般随着反应物摩尔比的增加,季铵含量增加,在极性溶剂中的溶解性能增强。
     与原料超支化聚酯相比,改性后QHPE的热性能发生了很大的变化,由于季铵盐的引入,所有改性产物的热分解温度均有所下降,其中H30C1N和H30C12N的初始分解温度在230℃左右,H30C16N和H30C18N的初始分解温度在175℃左右,均能满足纺织加工的要求。
     季铵盐端基含长烷基链的QHPE水溶液具有表面活性,随着改性端基烷基链的增长,临界胶束浓度(CMC)迅速下降,其变化规律与常规季铵盐类表面活性剂相同。
     2.超支化聚酯季铵盐在涤纶碱减量中的应用
     碱减量(或称“仿真丝”)处理是改善涤纶织物吸湿性、舒适性,获得柔软手感的重要方法。因此研究了四种自制的季铵盐端基含不同长度碳链的QHPE (H30C8N、H30C12N、H30C16N和H30C18N)对涤纶碱减量处理的促进作用,分析了超支化促进剂的结构对涤纶织物碱减量的影响,并对影响碱减量的各种因素进行了探讨。
     研究表明,促进剂QHPE对碱减量处理的促进作用与其季铵盐端基的碳链长度有关,其中季铵盐端基含8个碳的QHPE的促进效果不明显,而碳链长度超过12以后,促进作用迅速增加。减量率随促进剂浓度的增加而增大,碱减量达到平衡时,三种促进剂的浓度顺序为H30C18N     比较了碳链长度相同的超支化聚酯季铵盐(H30C16N)与常规季铵盐表面活性剂(十六烷基三甲基溴化铵)对碱减量促进作用的差异。结果显示,在促进剂浓度相同时,H30C16N的减量率大于十六烷基三甲基溴化铵。这主要基于以下两个原因:一是促进剂H30C16N是聚阳离子化合物,含有多个季铵阳离子,相互间存在协同作用,对溶液中OH-的吸引力更大;二是H30C16N的季铵离子体积大,与所携带的OH-的结合力较弱,OH-更裸露,因而亲核性更强;两者均使OH-更容易进攻酯羰基使酯键水解。
     此外,超支化聚酯季铵盐作为碱减量促进剂,对织物白度影响较小,强力损失率比常规季铵盐类阳离子表面活性剂略低,是一种新型高效的碱减量促进剂。
     3.超支化聚酯季铵盐对染料的絮凝脱色作用研究
     印染废水是目前我国主要有害、难处理的工业废水之一,其特点是排放量大、色度深、有机污染物含量高、水质变化频率大,其中尤以染料的污染最为严重。本文合成得到的QHPE是一种聚阳离子高分子,具有良好的稳定性,分子结构中含有多种官能团,预计在水溶液中有很好的絮凝和螯合等作用。因此,研究了4种不同结构的QHPE (H20C1N-8、H20C1N、H30C1N和H20C12N)对以酸性黑24和酸性蓝80为代表的阴离子染料和以分散红73和分散蓝60为代表的非离子染料的絮凝脱色,探讨了影响絮凝效果的主要因素,初步分析了絮凝脱色效果与染料结构的关系以及超支化絮凝剂的絮凝机理。并在此基础上,研究了超支化絮凝剂QHPE对二元混合染料的脱色作用。
     研究了絮凝剂的结构与浓度浓度、pH值以及染料初始浓度对脱色率的影响。结果表明,这四种絮凝剂对阴离子染料和非离子染料都有一定的絮凝性能。脱色效果与絮凝剂的结构有关,相同核心的QHPE,季铵盐取代程度越高,絮凝效果越好,即H2OC1N-8     系统地研究了絮凝剂H20C1N和H20C12N对分散、酸性、直接和活性四类八种染料的絮凝脱色性能。结果表明:脱色效果与染料的分子结构密切相关,絮凝剂对分子结构较小且呈线性的染料有较好的絮凝效果。
     通过研究絮凝剂浓度、染液pH值以及絮凝剂和染料的结构与脱色率的关系可知,超支化絮凝剂与染料之间的相互作用主要包括静电中和、氢键、架桥连接以及包覆作用。
     在二元酸性(酸性黑24和酸性蓝80)和二元分散(分散红73和分散蓝60)混合染料的絮凝脱色体系中,通过测定混合体系各组分的脱色率,发现絮凝过程中存在协同效应,即二元混合染料的脱色率比单染料存在时更高。由于絮凝剂与染料之间的结合力不同,混合染料的脱色还存在不同步现象,酸性黑24优先于酸性蓝80絮凝,分散红73优先于分散蓝60絮凝。
     4.超支化聚酯季铵盐对直接染料的固色性能研究
     超支化聚酯季铵盐QHPE与阴离子染料之间存在较强烈的相互作用(如静电、包覆等),预计能与染料形成不溶性盐,降低染料的水溶性,从而提高染色织物的色牢度。本文初步探讨了超支化聚酯季铵盐(H30C1N和H30C16N)对直接染料的固色性能。结果表明,超支化固色剂对直接染料具有较好的固色效果,其中H30C16N的固色增深作用比H30C1N强,即改性端基的碳链越长,固色性能越好,这种差异主要表现在皂洗牢度上。两者均能使湿摩擦牢度提高1级,但H30C1N对染色织物的皂洗牢度影响不大,而H30C16N能使沾色和褪色牢度分别提高1级和0.5级。
     总之,本研究对超支化聚酯进行季铵盐改性,改性产物结合了超支化聚合物和季铵盐类化合物的优点,在印染领域显示了巨大的应用前景,拓宽了超支化聚酯的应用领域,同时也为其他超支化聚合物的功能化改性和应用提供了一种新的研究思路。
Hyperbranched polymers are torispherical irregular macromolecules with highly branched architecture, a large number of terminal functional groups and inner cavities, showing low viscosity, high solubility and chemical reactivity. Due to their unique chemical and physical properties, interest in hyperbranched polymers is growing rapidly. A great progress has been made in the synthesis and characterization methods during the past two decades. Investigations on the modification of hyperbranched polymers to obtain various functional materials become a new research direction.
     A number of hyperbranched polymers have been synthesized, among which hyperbranched polyester is commercially available. Hyperbranched polyester is one of the most widely used hyperbranched polymers because of the activity of the terminal hydroxyl groups. Quaternary ammonium surfactants are widely used in dyeing and finishing of textiles because of their excellent performance. In this dissertation, a series of quaternary ammonium functionalized hyperbranched polyesters (QHPEs) with different lengths of the alkyl chain were synthesized. In addition, the applications of QHPEs on the alkaline hydrolysis of polyethylene terephthalate (PET) fabrics, dye wastewater treatment and color fixing effectiveness on direct-dyed cotton fabrics were studied. The details and key conclusions are described as follows:
     1. Synthesis, characterization and properties of QHPEs
     A novel kind of macromolecule, QHPE was synthesized by the reaction of hyperbranched polyester (HPE) and 2,3-epoxypropyl alkyl dimethyl ammonium chloride. Aliphatic hyperbranched polyester Boltorn H20 or H30 was chosen in this study. After modification, the hydroxyl terminal group of hyperbranched polyester was converted into ammonium functional group.
     The optimum reaction conditions of the synthesis of QHPE were determined by the reaction of H20 and (2,3-epoxypropyl)trimethyl ammonium chloride (GTA). The reaction conditions, such as the solvent, catalyst, the molar ratio of the reactants, and reaction time and temperature were investigated, and feasible conditions were indicated for the synthesis of QHPE. FTIR,1H NMR,13C NMR, and elemental analysis (EA) were used to characterize the products. The results showed that under the conditions of n(H20)/n(GTA)=1:16, n(NaOH)/n(H20-OH)=0.5, reaction temperature 50℃and reaction time 24 h, the product was obtained in yield of 61.11%.
     In order to obtain a novel kind of quaternary ammonium surfactant, a series of amphiphilic QHPEs with different lengths of the alkyl chain was synthesized. The synthesis of QHPE was carried out in two steps. In the first step, long chain alkyl epoxypropyl dimethyl ammonium chloride (EDAC) was prepared by the reaction between epichlorohydrin and long-chain alkyl dimethyl tertiary amine (C8, C12, C14, C16 and C18). In the second step, HPE (H20 or H30) was modified by EDAC to transfer the hydroxyl terminals to the ammonium functional groups. A series of water-soluble QHPEs was obtained by adjusting the molar ratio of EDAC to HPE. QHPEs were written as H20CxN or H30CxN, where x= 8,12,14,16, and 18, is the lengths of the alkyl chain in the quaternary ammonium groups. All compounds were characterized and confirmed by FTIR,1H NMR,13C NMR, EA, and TG
     The results showed that all of the QHPEs were soluble in common polar solvents like water with poor solubility in non-polar or weak polar solvents. With increasing length of the alkyl groups in the quaternary ammonium salt part, the solubility of the QHPEs increased at first, and then decreased because of the hydrophobicity of the long alkyl chain. In addition, with increasing molar ratio of EDAC to HPE, QHPEs showed better solubility in polar solvents.
     The thermal degradation properties of QHPEs were changed after modification because of the introduction of the quaternary ammonium groups. We have noted indeed that all of the QHPEs began to degrade at 175-230℃, whereas the unmodified hyperbranched polyester had high degradation temperature.
     The foaming properties of QHPE solutions indicated surface activity. The surface activity of QHPE was evaluated by critical micelle concentration (CMC). As expected, a decrease in the CMC values was observed with increasing length of the alkyl chain modified on HPE (H20 or H30).
     2. Application of QHPEs on the alkaline hydrolysis of PET fabrics
     Alkaline hydrolysis (or "silk-like") treatment is an important method for modifying chemical and physical properties of PET fabrics. It improves the handling, wettability, resistance to abrasion damage, and soil resistant properties of the fabrics. A series of QHPEs with different lengths of the alkyl chain (H30C8N, H30C12N, H30C16N and H30C18N) was used as the polycationic accelerator for the alkaline hydrolysis of PET fabrics to impart silk-like handling.
     The effects of the structure and concentration of the accelerator QHPE, NaOH concentration, and hydrolysis time and temperature on the weight loss of PET fabrics were discussed. The results indicated that the length of the alkyl chain of the accelerators influenced their catalytic performance. Accelerators with longer lengths of the alkyl chain showed higher hydrolysis rates. With increasing length of the alkyl chain, the reduction of the surface tension became greater, the accelerators were more easily absorbed onto the fiber surface, and the hydrolysis reaction occurred more rapidly. The equilibrium concentration of the accelerator was on the order of H30C18N< H30C16N< H30C12N.
     Satisfactory linear relationship was obtained between the weight loss and the hydrolysis time. The presence of the accelerators changes the activation energy (Ea). Ea= 52.98 kJ/mol for the system without accelerators. For the system containing 8 g/L NaOH and 0.16 g/L accelerators (H30C12N, H30C16N, and H30C18N), Ea was 84.43,58.78, and 69.96 kJ/mol, respectively. Moreover, SEM images indicated that the addition of accelerator did not change the basic mechanism of the hydrolysis reaction of PET fabrics in alkaline solution.
     The catalytic ability of alkaline hydrolysis between hyperbranched polyester quaternary ammonium salt (H30C16N) and cetyltrimethylammonium bromide (HTAB) were compared. The results showed QHPE has greater effectiveness for alkaline hydrolysis of PET fabrics compared with conventional ammonium compound with the same alkyl chain length. There were two possible reasons. First, the synergistic effect of multiple quaternary ammonium groups in the polycationic compound H30C16N showed greater electrostatic attractions to OH-in solution than HTAB. Second, compared with HTAB, H30C16N had a stronger affinity with PET fabrics because of its high film-forming properties and weaker interaction with combined OH- on the surface of the fiber because of its bigger molecular volume.
     As a result, QHPE was demonstrated as a kind of novel efficient accelerator for alkaline hydrolysis of PET fabric.
     3. Study on the flocculability of the dye wastewater with QHPEs
     Dye wastewater is one of the most difficult constituents in textile wastewater to treat. Large quantities of dye effluents are discharged from the dyeing process with strong high chroma value that is environmentally unfriendly. The application of QHPEs (H20C1N-8, H20C1N, H30C1N and H20C12N) as novel flocculants for single and binary system dye removal was investigated. Acid Black 24 and Acid Blue 80 were used as model acid dyes and Disperse Red 73 and Disperse Blue 60 were used as model disperse dyes.
     The effects of the treatment conditions, such as QHPE concentration, pH value and initial dye concentration were discussed. The result showed that QHPEs are good flocculants to remove dyes in dye wastewater efficiently. The dye removal enhanced with increasing flocculant dosage in the case of flocculants with short carbon chain (H20C1N-8, H20C1N, and H30C1N). However, a restabilized phenomenon was observed in the case of flocculants with long carbon chain (H20C12N), that is, dye removal increased at first and then reduced, with increasing flocculant dosage. pH value of the dye solution had a major impact on the flocculation of dyes. The decolorization under the acidic or neutral conditions was better than the alkaline condition. With the increase of the initial dye concentration, the combining weight of flocculant and dye increased at first and then decreased.
     The flocculability was also influenced by the structures of the flocculants and dyes. Dye removal of the four flocculants was in the order of H20C1N-8< H20C1N < H30C1N< H20C12N. The results indicated that the higher the modification substitution is, the better the flocculation ability is; dye removal of three-generation H30C1N is higher than that of two-generation H20C1N; moreover, dye removal increased with the increasing length of the alkyl chain of QHPE. In addition, the decolorization behavior of the four kinds of eight dyes, including disperse, acid, direct and reactive dyes was compared. The results showed that dye structure had a major impact on the flocculation and flocculant QHPE had a better effect on dyes with small size and linear molecular structure.
     The results indicated that QHPEs had a good potential application for treating dye wastewater. The flocculation mechanism may be due to the theory of electrostatic neutralization, hydrogen bonding, trestle bridge, and encapsulation.
     The flocculation behavior of binary mixtures of acid dyes (Acid Black 24 and Acid Blue 80) and disperse dyes (Disperse Red 73 and Disperse Blue 60) by flocculant H20C1N and H20C12N was investigated. A synergistic effect for decolorization in binary dyes was observed where the decolorization efficiencies of binary dyes were greater than those in single dye wastewater samples. Moreover, the flocculation curves were different for each other because of the difference in the interaction between dye and flocculant.
     4. Color fixing properties of QHPEs on direct-dyed cotton facrics
     QHPEs (H30C1N and H30C16N) were used as color fixatives to improve the wash and crock fastness of the direct-dyed cotton fabrics. Direct dyes, containing sulphonic groups, were electrostatically attracted by the ammonium groups of QHPEs, forming insoluble salts, reducing the solubility of the water-soluble dyes, therefore, improving the color fastness of the dyed fabrics. The results indicated that QHPE with longer carbon chain (H30C16N) had better fixing effectiveness, especially in improving wash fastness. The crock fastness was 1 class improved by both H30C1N and H30C16N. The best improvement in wash fastness was 1 class when fixing agent H30C16N was applied and little change occurred in the case of H30C1N.
     As a whole, hyperbranched polyester with hydroxyl end groups is converted into ammonium functionalities, and the product shows a great potential application on dyeing and finishing of textiles. And these studies may widen the application fields of the hyperbranched polyester and provide a new idea for the functional modification of other hyperbranched polymers.
引文
[1]Gao C., Yan D. Hyperbranched polymers:from synthesis to applications [J]. Prog. Polym. Sci.,2004,29(3):183-275.
    [2]徐友勇,高超,王寿柏,颜德岳.柱状树枝化聚合物的合成、性质及应用[J].化学通报,2004,67(3):1-8.
    [3]Flory P. J. Molecular size distribution in three dimensional polymers. Ⅵ. Branched polymers containing A-R-Bf-1 type units [J]. J. Am. Chem. Soc.,1952, 74(11):2718-2723.
    [4]Buhleier E., Wehner W., Vogtle F. Cascade-chain-like and nonskid-chain-like syntheses of molecular cavity topologies [J]. Synthesis,1978,55(2),155-158.
    [5]Tomalia D. A., Baker H., Dewald J., Hall M., Kallos G., Martin S., Roeck J., Ryder J., Smith P. A new class of polymers:Starburst-dendritic macromolecules [J]. Polym. J.,1985,17,117-132.
    [6]Newkome G. R., Yao Z. Q., Baker G. R., Gupta V. K. Cascade molecules:A new approach to micelles. A [27]-arborol [J]. J. Org. Chem.,1985,50(11),2003-2004.
    [7]Kim Y. H., Webster O. W. Hyperbranched polyphenylenes [J]. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.),1988,29(2):310-311.
    [8]Kim Y. H., Webster O. W. Hyperbranched polyphenylenes [J]. Macromolecules, 1992,25(21):5561-5572.
    [9]Kim Y. H., Webster O. W. Water soluble hyperbranched polyphenylene:"A unimolecular micelle?" [J]. J. Am. Chem. Soc.,1990,112(11):4592-4593.
    [10]Hawker C. J., Lee R., Frechet J. M. J. One-step synthesis of hyperbranched dendritic polyesters [J]. J. Am. Chem. Soc.,1991,113(12):4583-4588.
    [11]刘翠华.超支化聚合物的合成及其超支化封装和超分子自组装研究[D].上海:上海交通大学,2007.
    [12]Hawker C. J., Lee R., Frechet J. M. J. One-step synthesis of hyperbranched dendritic polyesters [J]. J. Am. Chem. Soc.,1991,113(12):4583-4588.
    [13]Jia Z. F., Chen H., Zhu X. Y, Yan D. Y Backbone-thermo responsive hyperbranched polyethers [J]. J. Am. Chem. Soc.,2006,128(25):8144-8145.
    [14]Kambouris P., Hawker C. J. A versatile new method for structure determination in hyperbranched macromolecules [J]. J. Chem. Soc., Perkin Trans.1,1993, (22): 2717-2721.
    [15]Kim Y. H. Hyperbranched polymers 10 years after [J]. J. Polym. Sci. Pol. Chem., 1998,36(11):1685-1698.
    [16]Feast W. J., Hamilton L. M., Rannard S. The influence of laser power on the observed MALDI-TOF mass spectra of poly(diethyl 3-hydroxyglutarate), an AB2 hyperbranched aliphatic polyester; Mn from MALDI-TOF MS?, Caveat emptor [J]. Polym. Bull.,1997,39(3):347-352.
    [17]Gooden J. K., Gross M. L., Mueller A., Stefanescu A. D., Wooley K. L. Cyclization in hyperbranched polymer syntheses:Characterization by MALDI-TOF mass spectrometry [J]. J. Am. Chem. Soc.,1998,120(39): 10180-10186.
    [18]Frechet J. M. J., Hawker C. J., Gitsov I., Leon J. W. Dendrimers and hyperbranched polymers:Two families of three-dimensional macromolecules with similar but clearly distinct properties [J]. J. Macromol. Sci.-Pure Appl. Chem.,1996,A33(10):1399-1425.
    [19]Frechet J. M. J., Hawker C. J. Hyperbranched polyphenylene and hyperbranched polyesters:New soluble, three-dimensional, reactive polymers [J]. React. Funct. Polym.,1995,26(1-3):127-136.
    [20]张永文.超支化聚酰胺胺的合成及其功能化研究[D].上海:上海交通大学,2008.
    [21]van Benthem R. A. T. M. Novel hyperbranched resins for coating applications [J]. Prog. Org. Coat.,2000,40(1-4):203-214.
    [22]Johansson M., Malmstom E., Jansson A., Hult A. Novel concept for low temperature curing powder coatings based on hyperbranched polyesters [J]. J. Coat. Technol.,2000,72(906):49-54.
    [23]Asif A., Huang C. Y., Shi W. F. Structure-coproperty study of waterborne, polyurethane acrylate dispersions based on hyperbranched aliphatic polyester for UV-curable coatings [J]. Colloid Polym. Sci.,2004,283(2):200-208.
    [24]施文芳.可光固化星形超支化聚酯的合成与表征[J].高分子学报,1997(5):549-554.
    [25]Percec V., Kawasumi M. Synthesis and characterization of a thermotropic nematic liquid crystalline dendrimeric polymer [J]. Macromolecules,1992, 25(15):3843-3850.
    [26]Sunder A., Quincy M. F., Mulhaupt R., Frey H. Hyperbranched polyether polyols with liquid crystalline properties [J]. Angew. Chem.-Int. Edit.,1999,38(19): 2928-2930.
    [27]Choi S. H., Lee N. H., Cha S. W., Jin J. I. Hyperbranched thermotropic liquid crystalline polyesters composed of aromatic ester type mesogens and polymethylene spacers [J]. Macromolecules,2001,34(7):2138-2147.
    [28]Sato M., Matsuoka Y., Yamaguchi I. Preparation and properties of novel thermotropic liquid crystalline hyperbranched polyesters composed of five-membered heterocyclic mesogen by A2+B3 approach [J]. J. Polym. Sci. Pol. Chem.,2007,45(14):2998-3008.
    [29]Chen Y, Shen Z., Gehringer L., Frey H., Stiriba S. E. Supramolecular thermotropic liquid crystalline materials with nematic mesophase based on methylated hyperbranched polyethylenimine and mesogenic carboxylic acid [J]. Macromol. Rapid Commun.,2006,27(1):69-75.
    [30]Zou J. H., Shi W. F., Wang J., Jun B. Encapsulation and controlled release of a hydrophobic drug using a novel nanoparticle-forming hyperbranched polyester [J]. Macromol. Biosci.,2005,5(7):662-668.
    [31]Patri A. K., Majoros I. J., Baker J. R. Dendritic polymer macromolecular carriers for drug delivery [J]. Curr. Opin. Chem. Biol.,2002,6(4):466-471.
    [32]Liu M. J., Kono K., Frechet J. M. J. Water-soluble dendritic unimolecular micelles:Their potential as drug delivery agents [J]. J. Control. Release,2000, 65(1-2):121-131.
    [33]Hong Y., Cooper-White J. J., Mackay M. E., Hawker C. J., Malmstrom E., Rehnberg N. A novel processing aid for polymer extrusion:Rheology and processing of polyethylene and hyperbranched polymer blends [J]. J. Rheol., 1999,43(3):781-793.
    [34]Hong Y., Coombs S. J., Cooper-White J. J., Mackay M. E., Hawker C. J., Malmstrom E., Rehnberg N. Film blowing of linear low-density polyethylene blended with a novel hyperbranched polymer processing aid [J]. Polymer,2000, 41(21):7705-7713.
    [35]Nunez C. M., Chiou B. S., Andrady A. L., Khan S. A. Solution rheology of hyperbranched polyesters and their blends with linear polymers [J]. Macromolecules,2000,33(5):1720-1726.
    [36]Yates C. R., Hayes W. Synthesis and applications of hyperbranched polymers [J]. Eur. Polym. J.,2004,40(7):1257-1281.
    [37]Maciejewski, M. Concepts of trapping topologically by shell molecules. J. Macromol. Sci.-Chem. A,1982,17(4),689-703.
    [38]George R. Newkome, Yao Z. Q, Gregory R. B, Mary J S. Cascade molecules: Synthesis and characterization of a benzene [9]3-arborol [J]. J. Am. Chem. Soc., 1986,108(4):849-85.
    [39]Jansen J. F. G. A., de Brabander-van den Berg E. M. M., Meijer E. W. Encapsulation of guest molecules into a dendritic box [J]. Science,1994, 266(5188):1226-1229.
    [40]Jansen J. F. G. A., Meijer E. W., de Brabander-van den Berg E. M. M. The dendritic box:Shape-selective liberation of encapsulated guests [J]. J. Am. Chem. Soc.,1995,117(15):4417-4418.
    [41]Stevelmans S., van Hest J. C. M., Jansen J. F. G. A., van Boxtel D. A. F. J., de Brabander-van den Berg E. M. M., Meijer E. W. Synthesis, characterization, and guest-host properties of inverted unimolecular dendritic micelles [J]. J. Am. Chem. Soc.,1996,118(31):7398-7399.
    [42]Baars M. W. P. L., Froehling P. E., Meijer E. W. Liquid-liquid extractions using poly(propylene imine) dendrimers with an apolar periphery [J]. Chem. Commun., 1997,(20):1959-1960.
    [43]Froehling P. E. Dendrimers and dyes-a review [J]. Dyes Pigment.,2001,48(3): 187-195.
    [44]李正雄,邢彦军,戴瑾瑾.树枝形聚合物及其在印染中的应用[J].印染,2008,34(6):41-45.
    [45]Sunder A., Kramer M., Hanselmann R., Mulhaupt R., Frey H. Molecular nanocapsules based on amphiphilic hyperbranched polyglycerols [J]. Angew. Chem.-Int. Edit.,1999,38(23):3552-3555.
    [46]Kramer M., Stumbe J. F., Turk H., Krause S., Komp A., Delineau L., Prokhorova S., Kautz H., Haag R. pH-responsive molecular nanocarriers based on dendritic core-shell architectures [J]. Angew. Chem.-Int. Edit.,2002,41(22):4252-4256.
    [47]Garcia-Bernabe A., Kramer M., Olah B., Haag R. Syntheses and phase-transfer properties of dendritic nanocarriers that contain perfluorinated shell structures [J]. Chem.-Eur. J.,2004,10(11):2822-2830.
    [48]Sunder A., Hanselmann R., Frey H., Mulhaupt R. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization [J]. Macromolecules,1999,32(13):4240-4246.
    [49]Satoh T., Tamaki M., Kitajyo Y., Maeda T., Ishihara H., Imai T., Kaga H., Kakuchi T. Synthesis of unimolecular reversed micelle consisting of a poly(L-lactide) shell and hyperbranched D-mannan core [J]. J. Polym. Sci. Pol. Chem.,2006,44(1):406-413.
    [50]Adeli M., Haag R. Multiarm star nanocarriers containing a poly(ethylene imine) core and polylactide arms [J]. J. Polym. Sci. Pol. Chem.,2006,44(19): 5740-5749.
    [51]Liu H. J., Chen Y, Zhu D. D., Shen Z., Stiriba S. E. Hyperbranched polyethylenimines as versatile precursors for the preparation of different type of unimolecular micelles [J]. React. Funct. Polym.,2007,67(5):383-395.
    [52]Chen Y, Shen Z., Pastor-Perez L., Frey H., Stiriba S. E. Role of topology and amphiphilicity for guest encapsulation in functionalized hyperbranched poly(ethylenimine)s [J]. Macromolecules,2005,38(2):227-229.
    [53]Mansfield M. L. Molecular weight distributions of imperfect dendrimers [J]. Macromolecules,1993,26(15):3811-3814.
    [54]Zagar E., Zigon M. Characterization of a commercial hyperbranched aliphatic polyester based on 2,2-bis(methylol)propionic acid [J]. Macromolecules,2002, 35(27):9913-9925.
    [55]Seiler M. Hyperbranched polymers:Phase behavior and new applications in the field of chemical engineering [J]. Fluid Phase Equilib.,2006,241(1-2):155-174.
    [56]Leach W. T., Simpson D. T., Val T. N., Yu Z. S., Lim K. T., Park E. J., Williams R. O., Johnston K. P. Encapsulation of protein nanoparticles into uniform-sized microspheres formed in a spinning oil film [J]. AAPS PharmSciTech,2005,6, E605-E617.
    [57]Berchane N. S., Carson K. H., Rice-Ficht A. C., Andrews M. J. Effect of mean diameter and polydispersity of PLG microspheres on drug release:Experiment and theory [J]. Int. J. Pharm.,2007,337(1-2):118-126.
    [58]Irfan M., Seiler M. Encapsulation Using Hyperbranched Polymers:From Research and Technologies to Emerging Applications [J]. Ind. Eng. Chem. Res., 2010,49(3):1169-1196.
    [59]Chechik V., Zhao M., Crooks R. M. Self-assembled inverted micelles prepared from a dendrimer template:Phase transfer of encapsulated guests [J]. J. Am. Chem. Soc.,1999,121(20):4910-4911.
    [60]Teobaldi G., Zerbetto F. Molecular dynamics of a dendrimer-dye guest-host system [J]. J. Am. Chem. Soc.,2003,125(24):7388-7393.
    [61]Chen Y., Shen Z., Frey H., Perez-Prieto J., Stiriba S. E. Synergistic assembly of hyperbranched polyethylenimine and fatty acids leading to unusual supramolecular nanocapsules [J]. Chem. Commun.,2005, (6):755-757.
    [62]Santra S., Kumar A. Facile synthesis of aliphatic hyperbranched polyesters based on diethyl malonate and their irreversible molecular encapsulation [J]. Chem. Commun.,2004, (18):2126-2127.
    [63]Wan D. C., Yuan J. J., Pu H. T. Macromolecular nanocapsule derived from hyperbranched polyethylenimine (HPEI):Mechanism of guest encapsulation versus molecular parameters [J]. Macromolecules,2009,42(5):1533-1540.
    [64]陈金平,游长江,刘白宁,李嫕,杨国强.树枝形聚合物在光化学中的研究进展[J].化学进展,2005,(4):722-731.
    [65]Bar-Haim A., Klafter J. Geometric versus energetic competition in light harvesting by dendrimers [J]. J. Phys. Chem. B,1998,102(10):1662-1664.
    [66]Adronov A., Gilat S. L., Frechet J. M. J., Ohta K., Neuwahl F. V. R., Fleming G. R. Light harvesting and energy transfer in laser-dye-labeled poly(aryl ether) dendrimers [J]. J. Am. Chem. Soc.,2000,122(6):1175-1185.
    [67]Gilat S. L., Adronov A., Frechet J. M. J. Modular approach to the accelerated convergent growth of laser dye-labeled poly(aryl ether) dendrimers using a novel hypermonomer [J]. J. Org. Chem.,1999,64(20):7474-7484.
    [68]Gilat S. L., Adronov A., Frechet J. M. J. Light harvesting and energy transfer in novel convergently constructed dendrimers [J]. Angew. Chem.-Int. Edit.,1999, 38(10):1422-1427.
    [69]Pirrung F. O. H., Loen E. M., Noordam A. Hyperbranched polymers as a novel class of pigment dispersants [J]. Macromol. Symp.,2002,187:683-693.
    [70]Chisholm G., Vincent J. M., Vincent M. J. Pigment compositions [P]. EP882772, 1998-12-09.
    [71]Bruchmann B., Koenemann M., Hees U., Konemann M. Use of modified hyperbranched polyurethanes as polymeric dispersant additives for pigments, especially in lacquers [P]. WO200281071-A,2002-10-10.
    [72]孟庆华,黄德音.以超支化聚合物为核的有机颜料及其制备方法[P].CN03128922.3,2003-11-19.
    [73]孙妍,黄静红,房宽峻.水性超支化聚(酰胺-酯)分散剂在颜料分散中的应用[J].印染助剂,2009,26(11):10-14.
    [74]Winnik F. M., Davidson A. R., Breton M. P. Inks with dendrimer colorants [P]. US:5098475,1992-5-24.
    [75]Fukumoto H., Nakano K., Oyanagi T. Photocurable ink composition set for inkjet recording, comprises ink composition containing dendritic polymer and vinyl monomer and another ink composition containing coloring agent and vinyl monomer [P]. US2009041946-A1,2009-2-12.
    [76]Burkinshaw S. M., Mignanelli M., Froehling P. E., Bide M. J. The use of dendrimers to modify the dyeing behaviour of reactive dyes on cotton [J]. Dyes Pigment.,2000,47(3):259-267.
    [77]Zhang F., Chen Y. Y., Lin H., Lu Y. H. Synthesis of an amino-terminated hyperbranched polymer and its application in reactive dyeing on cotton as a salt-free dyeing auxiliary [J]. Color. Technol.,2007,123(6):351-357.
    [78]张峰,陈宇岳,张德锁,华琰蓉.棉织物HBP-NH2改性对无盐染色工艺的影响[J].印染,2007,33(22):5-7.
    [79]张峰,陈宇岳,张德锁,华琰蓉,赵兵HBP-NH2接枝氧化棉织物制备工艺探讨[J].印染,2008,34(4):9-12.
    [80]Zhang F., Chen Y. Y., Lin H., Wang H., Zhao B. HBP-NH2 grafted cotton fiber: Preparation and salt-free dyeing properties [J]. Carbohydr. Polym.,2008,74(2): 250-256.
    [81]张德锁,林红,张峰,陈宇岳,刘文全.HBP-HTC改性对真丝织物兰纳素染料染色的影响[J],丝绸,2008,11:30-36.
    [82]张德锁,林红,张峰,陈宇岳.HBP-HTC改性对真丝织物活性染料染色性能研究[J],印染助剂,2008,25(8):20-22.
    [83]华琰蓉,张峰,林红,陈宇岳.HBP-NH2在真丝绸活性染料染色中的应用[J].丝绸,2008,9:31-33.
    [84]赵兵,张峰,林红,陈宇岳.HBP-NH2接枝亚麻织物活性染料染色性能研究 [J],印染助剂,2008,25(9):13-16.
    [85]徐厚才,罗运军,李国平,谭惠民.低代数聚酰胺-胺树形分子在棉纤维染色中的应用研究[J].印染助剂,2005,22(7):20-22.
    [86]Froehling P. E., De Brabander-Van Den Berg E. M., Mostert H. A. M. Process for incorporating an active substance in moulded plastic part [P]. CN:1238018, 1999-12-08.
    [87]Burkinshaw S. M., Froehling P. E., Mignanelli M. The effect of hyperbranched polymers on the dyeing of polypropylene fibres [J]. Dyes Pigment.,2002,53(3): 229-235.
    [88]Khatibzadeh M., Mohseni M., Moradian S. Compounding fibre grade polyethylene terephthalate with a hyperbranched additive and studying its dyeability with a disperse dye [J]. Color. Technol.,2010,126(5):269-274.
    [89]周贵忠,谭惠民,罗运军等.聚酰胺胺树形分子在染料废水处理中的应用研究[J].环境科学与技术,2003,6(1):1-2.
    [90]王学川,何林燕,强涛涛.阳离子树状聚酰胺-胺的制备及在皮革染色废水中应用[J].精细化工,2010,27(04):391-395.
    [91]彭晓春,彭晓宏,赵建青,林裕卫.改性聚酰胺-胺阳离子树状聚合物的制备、表征及其絮凝脱水性能的研究[J].石油化工,2005,34(10):986-989.
    [92]Chen C. Z. S., Beck-Tan N. C., Dhurjati P., van Dyk T. K., LaRossa R. A., Cooper S. L. Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials:Structure-activity studies [J]. Biomacromolecules,2000,1(3):473-480.
    [93]Chen C. Z. S., Cooper S. L. Interactions between dendrimer biocides and bacterial membranes [J]. Biomaterials,2002,23(16):3359-3368.
    [94]Chen C. Z. S., Cooper S. L. Recent advances in antimicrobial dendrimers [J]. Adv. Mater.,2000,12(11):843-846.
    [95]刘杰,李本高,汪燮卿.超支化聚合物杀菌剂的合成及性能评价[J].石油炼制与化工,2004,35(10):68-72.
    [96]Ghosh S., Yadav S., Vasanthan N., Sekosan G. A study of antimicrobial property of textile fabric treated with modified dendrimers [J]. J. Appl. Polym. Sci.,2010, 115(2):716-722.
    [97]Lamba-Kohli N. M. Generation of antimicrobial surfaces using dendrimer biocides [P]. US:2006188537-A1,2006-08-24.
    [98]Klaykruayat B., Siralertmukul K., Srikulkit K. Chemical modification of chitosan with cationic hyperbranched dendritic polyamidoamine and its antimicrobial activity on cotton fabric [J]. Carbohydr. Polym.,2010,80(1):197-207.
    [99]Crooks R. M., Zhao M. Q., Sun L., Chechik V., Yeung L. K. Dendrimer-encapsulated metal nanoparticles:Synthesis, characterization, and applications to catalysis [J]. Accounts Chem. Res.,2001,34(3):181-190.
    [100]Zhao M. Q., Crooks R. M. Intradendrimer exchange of metal nanoparticles [J]. Chem. Mat.,1999,11(11):3379-3385.
    [101]Garcia M. E., Baker L. A., Crooks R. M. Preparation and characterization of dendrimer-gold colloid nanocomposites [J]. Anal. Chem.,1999,71(1):256-258.
    [102]Balogh L., Swanson D. R., Tomalia D. A., Hagnauer G. L., McManus A. T. Dendrimer-silver complexes and nanocomposites as antimicrobial agents [J]. Nano Lett.,2001,1(1):18-21.
    [103]Zhang Y. W., Peng H. S., Huang W., Zhou Y. F., Zhang X. H., Yan D. Y. Hyperbranched poly(amidoamine) as the stabilizer and reductant to prepare colloid silver nanoparticles in situ and their antibacterial activity [J]. J. Phys. Chem. C,2008,112(7):2330-2336.
    [104]Kavitha M., Parida M. R., Prasad E., Vijayan C., Deshmukh P. C. Generation of Ag nanoparticles by PAMAM dendrimers and their size dependence on the aggregation behavior of dendrimers [J]. Macromol. Chem. Phys.,2009,210(16): 1310-1318.
    [105]Zhang F., Wu X. L., Chen Y. Y., Lin H. Application of silver nanoparticles to cotton fabric as an antibacterial textile finish [J]. Fiber. Polym.,2009,10(4): 496-501.
    [106]Zhang F, Chen Y, Wu X. Processing nanometric silver antibacterial textile by immersing textile in nanometric aqueous silver solution or immersing textile with amino-terminated hyperbranched compound and quaternary amine salt in silver nitrate solution [P]. CN101307563-A,2008-11-19.
    [107]黄建洪,林桂凤,王铁群,宋心远.树状大分子化合物的防水整理[J].印染,2006,32(10):34-36.
    [108]胡四军,张传杰,王柳,朱平.棉织物PAMAM抗皱整理[J].印染,2009,35(23):5-8.
    [109]Zhu S. W., Shi W. F. Synthesis and photopolymerization of hyperbranched polyurethane acrylates applied to UV curable flame retardant coatings [J]. Polym. Int.,2002,51(3):223-227.
    [110]Huang Z. G., Shi W. F. Synthesis and properties of a novel hyperbranched polyphosphate acrylate applied to UV curable flame retardant coatings [J]. Eur. Polym. J.,2007,43(4):1302-1312.
    [111]Huang Z. G., Shi W. F. UV curing behavior of hyperbranched polyphosphate acrylate/di(hydroxylpropyl methacrylate) piperazine and properties of the cured film [J]. Prog. Org. Coat.,2007,59(4):312-317.
    [112]Zhu S. W., Shi W. F. Flame retardant mechanism of hyperbranched polyurethane acrylates used for UV curable flame retardant coatings [J]. Polym. Degrad. Stabil.,2002,75(3):543-547.
    [1]Gao C., Yan D. Hyperbranched polymers:from synthesis to applications [J]. Prog. Polym. Sci.,2004,29(3):183-275.
    [2]彭晓春,彭晓宏,赵建青,林裕卫.改性聚酰胺-胺阳离子树状聚合物的制备、表征及其絮凝脱水性能的研究[J].石油化工,2005,34(10):986-989.
    [3]张峰,陈宇岳,张德锁.HBP-HTC改性棉织物活性染料无盐染色[J].印染,2008,34(11):5-7.
    [4]崔淑玲,赵立环.季铵盐在纺织品加工中的应用[J].印染助剂,2006,23(4):7-9.
    [5]龚丽芳,倪人捷,黄煜,姚成.双季铵盐表面活性剂对涤纶织物的抗静电性能[J].纺织学报,2008,(5):72-74,83.
    [6]陈湘,王祥荣.壳聚糖改性物对酸性染料絮凝性能的研究[J].印染助剂,2008,25(5):16-18.
    [7]杨建洲,匡登云,王伟平,何芳.含酯基Gemini双季铵盐表面活性剂的合成及应用[J].精细化工,2008,25(8):739-741,749.
    [8]郭东荣,高锦屏.季铵阳离子聚合物的制备与应用[J].石油钻探技术,1997,25(4):19-24.
    [9]Sideratou Z., Tsiourvas D., Paleos C. M. Quaternized poly(propylene imine) dendrimers as novel pH-sensitive controlled-release systems. Langmuir [J],2000, 16(4):1766-1769.
    [10]Murugan E., Sherman R. L., Spivey H. O., Ford W. T. Catalysis by hydrophobically modified poly(propylenimine) dendrimers having quaternary ammonium and tertiary amine functionality [J]. Langmuir,2004,20(19): 8307-8312.
    [11]周贵忠.PAMAM树形分子合成、改性及在水处理中的应用研究[D].北京理工大学,博士学位论文,2003.
    [12]Chen C. Z. S., Beck-Tan N. C., Cooper S. L., Incorporation of dimethyldodecyl-ammonium chloride functionalities onto polypropylene imine) dendrimers significantly enhances their antibacterial properties [J]. Chem. Commun.,1999,(16):1585-1586.
    [13]Chen C. Z. S., Beck-Tan N. C., Dhurjati P., van Dyk T. K., LaRossa R. A., Cooper S.L. Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials:Structure-activity studies. Biomacromolecules [J],2000,1(3):473-480.
    [14]Chen C. Z. S., Cooper S. L. Interactions between dendrimer biocides and bacterial membranes. Biomaterials [J],2002,23(16):3359-3368.
    [15]Ghosh S., Yadav S., Vasanthan N., Sekosan G. A study of antimicrobial property of textile fabric treated with modified dendrimers [J]. J. Appl. Polym. Sci.,2010, 115(2):716-722.
    [16]Tziveleka L. A., Psarra A. M. G., Tsiourvas D., Paleos C. M. Synthesis and evaluation of functional hyperbranched polyether polyols as prospected gene carriers. Int. J. Pharm. [J],2008,356(1-2):314-324.
    [17]罗运军,夏敏,王兴元.超支化聚酯[M].北京:化学工业出版社,2009.
    [18]刘杰,李本高,汪燮卿.超支化聚合物杀菌剂的合成及性能评价[J].石油炼制与化工,2004,35(10):68-72.
    [19]QB 1915-93阳离子表面活性剂脂肪烷基三甲基卤化铵及脂肪烷基二甲基苄基卤化铵[S].
    [20]孟蕾.环氧丙基三烷基季铵盐和Gemini季铵盐的合成及性能研究[D]:中国石油大学,2007.
    [21]张华.现代有机波谱分析[M].北京:化学工业出版社,2005.
    [22]荆煦瑛,陈世棣,么摁运.红外光谱使用指南[M].天津:天津科学技术出版社,1992.
    [23]Kavallauskaite R., Klimaviciute R., Zemaitaitis A. Factors influencing production of cationic starches [J]. Carbohydr. Polym.,2008,73(4):665-675.
    [24]刘杰,李本高,汪燮卿.超支化聚合物杀菌剂的合成及性能评价[J].石油炼制与化工,2004,35(10):68-72.
    [25]Lamba-Kohli N. M. Silane-quaternary ammonium compound-hyperbranched polymer biocide, useful to treat e.g. textiles and air filters, comprises polyester based hyperbranched polymers modified to include functionalized quaternary ammonium and silane moiety [P]. US2006188537-A1,2006-08-24
    [26]张德锁,张峰,林红,陈宇岳.端氨基超支化合物季铵盐制备的可控性研究[J].印染助剂,2008,25(1):13-15.
    [27]吴修利,薛冬桦,徐昆,杜希兵,宋春雷,王丕新.高取代度阳离子淀粉的合成与表征[J].精细化工,2007,24(12):1218-1221.
    [28]Wan Q. C., Schricker S. R., Culbertson B. M. Methacryloyl derivitized hyperbranched polyester.1. Synthesis, characterization, and copolymerization [J]. J. Macromol. Sci.-Pure Appl. Chem.,2000, A37(11):1301-1315.
    [29]Klaykruayat B., Siralertmukul K., Srikulkit K. Chemical modification of chitosan with cationic hyperbranched dendritic polyamidoamine and its antimicrobial activity on cotton fabric [J]. Carbohydr. Polym.,2010,80(1):197-207.
    [30]Baudrion F., Perichaud A., Coen S. Chemical modification of hydroxyl functions: Introduction of hydrolyzable ester function and bactericidal quaternary ammonium groups [J]. J. Appl. Polym. Sci.,1998,70(13):2657-2666.
    [31]Fogelstrom L., Malmstrom E., Johansson M., Hult A. Hard and flexible nanocomposite coatings using nanoclay-filled hyperbranched polymers [J]. ACS Appl. Mater. Interfaces,2010,2(6):1679-1684.
    [32]Xie W., Gao Z. M., Pan W. P., Hunter D., Singh A., Vaia R. Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite [J]. Chem. Mater., 2001,13(9):2979-2990.
    [33]龙飞,范瑜.聚酰胺-胺型树枝状高分子水溶液的表面活性[J].高等学校化学学报,1999,20(3):495-497.
    [34]Murugan E., Sherman R. L., Spivey H. O., Ford W. T. Catalysis by hydrophobically modified poly(propylenimine) dendrimers having quaternary ammonium and tertiary amine functionality [J]. Langmuir,2004,20(19): 8307-8312.
    [35]陈启斌,韦国红,施云海,刘洪来,胡英.阳离子型偶联表面活性剂溶液的表面张力和电导率[J].华东理工大学学报:自然科学版,2003,(1):33-37.
    [36]GB/T 11276-2007表面活性剂临界胶束浓度的测定中阳离子表面活性剂临界胶束浓度的测定[S].
    [37]姚慧琴,高作宁.用氯离子电极同时测定阳离子表面活性剂的CMC及反离子缔合度[J].化学研究与应用,2004,16(4):543-544.
    [1]Tsen W. C., Hsiao K. J., Shu Y. C. Kinetics of alkaline hydrolysis and morphologies of novel poly(ethylene terephthalate) micro-porous hollow fibers and functional characteristics of fabrics [J]. J. Appl. Polym. Sci.,2009,113(3): 1822-1827.
    [2]杨栋梁.织物整理之八:碱减量处理(一)[J].印染,1988,14(03):171-176.
    [3]杨栋梁.织物整理之八:碱减量处理(二)[J].印染,1988,14(04):240-246.
    [4]杨栋梁.织物整理之八:碱减量处理(三)[J].印染,1988,14(05):307-313.
    [5]杨栋梁.织物整理之八:碱减量处理(四)[J].印染,1988,14(06):370-374.
    [6]Niu S., Wakida T., Ogasawara S., Fujimatsu H., Takekoshi S. Influence of a quaternary ammonium surfactant on alkaline-hydrolysis of heat-set poly(ethylene-terephthalate) fibers [J]. Text. Res. J.,1995,65(12):771-775.
    [7]吴明华.环氧类季铵盐表面活性剂在涤纶碱减量中应用[J].印染助剂,2001,18(4):14-17.
    [8]常淑贞.促进剂1242在聚酯碱减量加工中的应用[J].印染,1994,20(11):29-31.
    [9]吴英,张介贤.季铵盐表面活性剂的结构对碱减量加工的影响[J].印染,1995,21(8):27-29.
    [10]Gawish S. M., Mosleh S., Ramadan A. M. Synthesis of a new cationic surfactant for the alkaline hydrolysis of solvent-pretreated polyester fabrics [J]. J. Appl. Polym. Sci.,2002,85(8):1652-1660.
    [11]宗平,王祥荣.阳离子Gemini表面活性剂对超细聚酯纤维碱水解的影响[J].印染助剂,2006,23(3):21-23.
    [12]Achwal W. B. Use of cationic polymers as catalysts during deweighting of polyester by alkalies [J]. Colourage,1993,40(7):15-16.
    [13]赵涛主编.染整工艺与原理[M].北京:中国纺织出版社,2009.
    [14]郑旭明,吴新宇.季铵盐结构与涤纶碱减量关系的探讨[J].浙江丝绸工学院学报,1995,(3):1-6.
    [15]刘翠华.关于涤纶碱减量促进剂的探讨[J].大连大学学报,1993,3(4):132-137.
    [16]Niu S., Wakida T., Ogasawara S., Fujimatsu H., Takekoshi S. Influence of quaternary ammonium surfactant on alkaline hydrolysis of heat-set poly(ethylene terephthalate) fibres [J]. Text. Res. J.,1995,65(12):771-775.
    [17]宋心远主编.新合纤染整[M].北京:中国纺织出版社,1997.
    [18]Hsiao K. J., Jen Z. F., Yang J. C., Chen L. T. Physical properties of R-PET/CD-PET polyblended hollow filaments and their kinetics of alkaline hydrolysis [J]. J Polym Res,2002,9(1):53-60.
    [19]吴明华,陈水林.聚酯纤维碱处理技术实践及其进展[J].丝绸,2001,(2):24-28.
    [20]郭静,童隆埙,徐德增,许长波,全信淑.吸水涤纶碱水解及其动力学研究——聚酯-共聚酯纤维[J].大连轻工业学院学报,1990,Z2,1-5.
    [21]Namboori C. G. G., Heith M. S. Steric effects in the basic hydrolysis of poly (thylene terphthalate) [J]. J. Appl. Polym. Sci.,1968,12(9):1999-2005.
    [22]Dave J., Kumar R., Srivastave H. C. Studies on modification of polyester fabrics I:Alkaline hydrolysis [J]. J. Appl. Polym. Sci.,1987,33(2):455-477.
    [23]傅献彩,沈文霞,姚天杨编.物理化学[M].北京:高等教育出版社,2005.
    [24]Crancaric A. M., Kallay N. Kinetics of polyester fiber alkaline hydrolysis:Effect of temperature and cationic surfactants [J]. J. Appl. Polym. Sci.,1993,49(1): 175-181.
    [25]Kish M. H., Nouri M. Effects of sodium hydroxide and calcium hydroxide on polyester fabrics [J]. J. Appl. Polym. Sci.,1999,72(5):631-637.
    [26]肖为维,郭小刚.聚酯纤维碱减量加工的研究[J].成都科技大学学报.1983,(1):67-78.
    [1]朱虹,孙杰,李剑超.印染废水处理技术[M].北京:中国纺织出版社.2004.
    [2]王萍.印染废水处理方法的研究进展[J].化工环保,1997,17(5):273-276.
    [3]常青.水处理絮凝学[M]北京:化工出版社,2003.
    [4]马青山.絮凝化学和絮凝剂[M].北京:中国环境科学出版社,1988.
    [5]Golob V., Vinder A., Simonic M. Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents [J]. Dyes Pigment.,2005,67(2): 93-97.
    [6]Nabi Bidhendi G. R., Torabian A., Ehsani H., Razmkhah N., Abbasi M. Evaluation of industrial dyeing wastewater treatment with coagulants [J]. Int. J. Environ. Res.,2007,1(3):242-247.
    [7]Shi B. Y., Li G. H., Wang D. S., Feng C. H., Tang H. X. Removal of direct dyes by coagulation:The performance of preformed polymeric aluminum species [J]. J. Hazard. Mater.,2007,143(1-2):567-574.
    [8]Zonoozi M. H., Moghaddam M. R. A., Arami M. Coagulation/flocculation of dye-containing solutions using polyaluminium chloride and alum [J]. Water Sci. Technol.,2009,59(7):1343-1351.
    [9]卢建杭,刘维屏.印染废水混凝脱色与染料结构及混凝剂种类间的关系[J].工业水处理,1999,19(4):28-30.
    [10]高宝玉,宋永会.聚硅酸硫酸铁混凝剂的性能研究[J].环境科学,1997,18(2):46-48.
    [11]Yue Q. Y, Gao B. Y., Wang Y, Zhang H., Sun X., Wang S. G, Gu R. R. Synthesis of polyamine flocculants and their potential use in treating dye wastewater [J]. J. Hazard. Mater.,2008,152(1):221-227.
    [12]隋智慧,赵欣,刘安军.季铵盐型高分子絮凝剂的制备及其在印染废水处理中的应用[J].纺织学报,2008,29(11):92-96.
    [13]金漫彤,沈学优.微生物絮凝剂处理印染废水的技术研究[J].丝绸,2004,(12):19-21.
    [14]Blackburn R. S. Natural polysaccharides and their interactions with dye molecules:Applications in effluent treatment [J]. Environ. Sci. Technol.,2004, 38(18):4905-4909.
    [15]Khalil M. I., Aly A. A. Use of cationic starch derivatives for the removal of anionic dyes from textile effluents [J]. J. Appl. Polym. Sci.,2004,93(1): 227-234.
    [16]Pal S., Mal D., Singh R. P. Cationic starch:an effective flocculating agent [J]. Carbohydr. Polym.,2005,59(4):417-423.
    [17]Guibal E., Roussy J. Coagulation and flocculation of dye-containing solutions using a biopolymer (Chitosan) [J]. React. Funct. Polym.,2007,67(1):33-42.
    [18]Szygula A., Guibal E., Ruiz M., Sastre A. M. The removal of sulphonated azo-dyes by coagulation with chitosan [J]. Colloid. Surface. A,2008,330(2-3): 219-226.
    [19]Szygula A., Guibal E., Palacin M. A., Ruiza M., Sastre A. M. Removal of an anionic dye (Acid Blue 92) by coagulation-flocculation using chitosan [J]. J. Environ. Manage.,2009,90(10):2979-2986.
    [20]周贵忠,谭惠民,罗运军,周睿华,王彩旗,张学同.聚酰胺胺树形分子在染料废水处理中的应用研究[J].环境科学与技术,2003,26(1):1-2.
    [21]周贵忠.PAMAM树枝形聚合物多功能水处理剂的机理探讨[J].青岛科技大学学报(自然科学版),2007,28(z1):58-61,65.
    [22]王学川,何林燕,强涛涛.阳离子树状聚酰胺-胺的制备及在皮革染色废水中应用[J].精细化工,2010,27(04):391-395.
    [23]彭晓春,彭晓宏,赵建青,林裕卫.改性聚酰胺-胺阳离子树状聚合物的制备、表征及其絮凝脱水性能的研究[J].石油化工,2005,34(10):986-989.
    [24]郑树亮,黑恩成.应用胶体化学[M].上海:华东理工大学出版社,1996.
    [25]陈信华,唐俭德.颜料色浆稳定性及其测定[J].上海染料,1990,(5):33-37.
    [26]隋智慧,赵欣,刘安军.季铵盐型高分子絮凝剂的制备及其在印染废水处理中的应用[J].纺织学报,2008,29(11):92-96.
    [27]Bolto B., Gregory J. Organic polyelectrolytes in water treatment [J]. Water Res., 2007,41(11):2301-2324.
    [28]Spicer P. T., Pratsinis S. E. Shear-induced flocculation:The evolution of floc structure and the shape of the size distribution at steady state [J]. Water Res., 1996,30(5):1049-1056.
    [29]Jarvis P., Jefferson B., Parsons S. A. Measuring floc structural characteristics [J]. Rev. Environ. Sci. Biotech.,2005,4(1-2):1-18
    [30]曹雪琴,娄颖.zeta电位与分散染料的分散稳定性[J].印染助剂,1998,15(6):9-13.
    [31]Kim T. H., Park C., Shin E. B., Kim S. Decolorization of disperse and reactive dye solutions using ferric chloride [J]. Desalination,2004,161(1):49-58.
    [32]Kang Q., Zhou W. Z., Li Q., Gao B. Y., Fan J. X., Shen D. Z. Adsorption of anionic dyes on poly(epicholorohydrin dimethylamine) modified bentonite in single and mixed dye solutions [J]. Appl. Clay Sci.,2009,45(4):280-287.
    [33]Choy K. K. H., Porter J. F., McKay G. Langmuir isotherm models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon [J]. J. Chem. Eng. Data,2000,45(4):575-584.
    [34]Mahmoodi N. M., Hayati B., Arami M., Mazaheri F. Single and Binary System Dye Removal from Colored Textile Wastewater by a Dendrimer as a Polymeric Nanoarchitecture:Equilibrium and Kinetics [J]. J. Chem. Eng. Data,2010, 55(11):4660-4668.
    [35]Al-Degs Y., Khraisheh M. A. M., Allen S. J., Ahmad M. N., Walker G. M. Competitive adsorption of reactive dyes from solution:Equilibrium isotherm studies in single and multisolute systems [J]. Chem. Eng. J.,2007,128(2-3): 163-167.
    [36]余颖,李莹,庄源益,辛宝平,邹其猛.染料结构与其絮凝脱色效果关系的探讨[J].城市环境与城市生态,2000,13(1):16-19.
    [37]臧庆达,李卓美.疏水相互作用对阳离子聚电解质与染料键合的影响[J].物理化学学报,1993,9(1):21-26.
    [38]郑冀鲁,范娟,阮复昌.印染废水混凝脱色技术的分子结构基础[J].环境污染与防治,2002,24(1):23-25.
    [39]华伦.S.珀金斯著.纺织品染整基础[M].北京:中国纺织出版社,2004.
    [40]张华.现代有机波谱分析[M].北京:化学工业出版社,2005.
    [41]张德锁,张峰,林红,陈宇岳.端氨基超支化合物季钱盐制备的可控性研究[J].印染助剂,2008,25(1):13-15.
    [42]Ghosh S. Extraction of azo dye molecules from aqueous solution using polyamidoamine dendrimer based polymeric network [J]. J. Chem. Res.-S,2008, (7):419-421.
    [1]邢凤兰,徐群,贾丽华主编.印染助剂[M].北京:化学工业出版社,2002.250-265
    [2]Blackburn R. S., Burkinshaw S. M., Collins G. W. The application of cationic fixing agents to cotton dyed with direct dyes under different pH conditions [J]. J. Soc. Dyers Colour.,1998,114(11):317-320.
    [3]Sharif S., Ahmad S., Izhar-Ul-Haq M. M. Role of quaternary ammonium salts in improving the fastness properties of anionic dyes on cellulose fibres [J]. Color. Technol.,2007,123(1):8-17.
    [4]罗运军,夏敏,王兴元.超支化聚酯[M].北京:化学工业出版社,2009.
    [5]Gao C, Yan D. Hyperbranched polymers:from synthesis to applications [J]. Prog. Polym. Sci.,2004,29(3):183-275.
    [6]谢孔良,张宇浩.长碳链聚合物材料的结构与固色性能研究[J].印染,2005,(4):1-3.
    [7]Sharif S, Saeed A, Muhammad NK, Muhammad F. Aftertreatment of conventional direct dyeings of cotton with a bis-reactive cationic fixing agent [J]. Chin. J. Chem.,2009,27(8):1553-1557.
    [8]J.格里菲斯.颜色与有机分子结构[M].北京:化学工业出版社,1984.
    [9]杜鹃,冯见,陈水林,占莉.聚阳离子固色剂对直接染料的固色[J].印染助剂,2005,(4):27-30.
    [10]van Benthem R. A. T. M. Novel hyperbranched resins for coating applications [J]. Prog. Org. Coat.,2000,40(1-4):203-214.
    [11]Trey S. M., Nilsson C., Malmstrom E., Johansson M. Thiol-ene networks and reactive surfaces via photoinduced polymerization of allyl ether functional hyperbranched polymers [J]. Prog. Org. Coat.,2010,68(1-2):151-158.
    [12]黄茂福,杨玉琴.无醛固色剂的发展与目前情况[J].印染助剂,2002,(4):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700