用户名: 密码: 验证码:
全水发泡聚氨酯泡沫的制备及纳米改性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯泡沫是聚氨酯合成材料的主要品种之一,硬质聚氨酯泡沫塑料具有相对密度小,比强度高、热导率低及易与其它部件联接和复合成型简便等优点,广泛应用在绝热保温材料和结构部件材料领域。
     众所周知,传统的聚氨酯泡沫一般是以氯氟烃化合物(CFCs)为发泡剂进行发泡的,CFCs类发泡剂因其其对大气臭氧层具有破坏作用,现逐渐被禁止使用。人们做了大量的工作,力图开发出新型绿色无氟聚醚及其发泡工艺路线。目前,以水为发泡剂的工艺生产路线由于操作简单,对环境无任何污染而倍受人们青睐。
     本文对CFC-11发泡替代技术中全水发泡技术路线进行了分析,指出水作为发泡剂存在的优点与不足。着重阐述了全水发泡中几种主要因素,如水的用量以及异氰酸酯指数对泡沫性能的影响。
     近年来,以纳米SiO_2为基础的有机-无机纳米复合材料得到了广泛的研究,因为这种材料把聚合物的柔顺性、可延性等与纳米SiO_2的热稳定性、高强度、高硬度等性能综合起来。它特殊的微观结构使这种材料具有特殊的甚至是新的性能。
     本文通过纳米粒子的填充,改变聚氨酯硬质泡沫的性能,探索更有利的发泡工艺条件和配方生产聚氨酯硬质泡沫制品。传统的聚氨酯硬质泡沫塑料容易产生形变,强度和韧度都不太高。通过纳米SiO_2的填充可以提高其力学性能,增大其强度,使聚氨酯硬泡能更广泛的适用于各行各业。
     在我们的研究中,我们先在以聚醚多元醇为油相的W/O型微乳液中合成纳米SiO_2,然后用这种带有纳米SiO_2的聚醚多元醇与TDI反应,以其中残留的水作为发泡剂,并采用一种新的工艺来制备聚氨酯硬质泡沫(PUF)。
     实验表明,这种新的制备工艺能很好的解决了泡沫的烧芯、塌陷和收缩等问题。我们研究了工艺条件如搅拌时间、pH值和TEOS用量等对微乳液的配制和纳米SiO_2的合成的影响,以及TDI指数、微乳液中残留的水量、搅拌和催化剂用量等对聚氨酯硬质泡沫制备的影响。
     合成的聚氨酯硬质泡沫样品的性能通过FTIR、DSC和万能试验机进行测试。从FTIR谱图中可以看出,PUF样品中除了含有氨基甲酸酯基团外,还含有大量的聚脲和胺类化合物。拉伸试验的结果表明用这种方法制得的PUF的拉伸强度得到大幅度的提高,在纳米SiO_2含量为0~2%时,拉伸强度随着纳米SiO_2含量的增大而增大,而且增大的幅度比用共混法制得的PUF的要大得多。热分析的结果表明,所制得的纳米SiO_2含量为2%的PUF的分解温度为360℃,比不含纳米SiO_2的PUF(300℃)的要高60℃。
Polyurethane foam is a kind of useful synthetic materials. Rigid polyurethane foam, with advantages as relative low density, specific strength, thermal conductivity, and easy to combine with other components and simple composite forming, is widely used on structural component area.
     Previously, chlorofluorocarbons (CFCs) were used as blowing agents in polyurethane foam production. But now people know that CFCs have got destruction of ozone layer. Banning of CFCs as blowing agents resulted in the use of water instead of CFCs, because water is a sort of clean foaming agent to environment.
     The all-water foaming technique, its advantages and disadvantages, were reviewed. The effect of major technology parameters, including amount of water as well as isocyanate index on the foam properties was discussed.
     Polyurethane foam possesses fair physical and mechanical properties、acoustical property、the property of electricity and the property of chemical resistance. Especially the temperature conductivity of polyurethane rigid foam is low. Because the polyurethane rigid foam has its own particular point, the material can not be. taken the place of. Meanwhile, the property of polyurethane foam products could be transferred by adjusting the chemical constitution of raw material and the difference of each fractional mixture ratio. So in this way, polyurethane foam will have greatly comprehensive practicability.
     This article primarily alters the property of polyurethane rigid foam by the filling of nanometer particle and probes even more beneficial foaming process condition、composition for the production of polyurethane rigid foam product. Traditional polyurethane rigid foam prone to be deformation. This kind of foam has low temper and intensity. Filling nanometer sio2 could enhance its mechanical property and increase its intensity. In this way, polyurethane rigid foam can more even comprehensive applies to all walks of life .
     In our study , we synthesized nano-silica in W/O microemulsion with polyether polyol as the oil phase .The polyether polyol then react with TDI to prepare rigid polyurethane foams (PUFs) via a new process ,using the water in the microemulsion as blowing agent.
     It is found that this new method can solve the problems of scorch , subside and shrink which appear during the process of preparation of rigid polyurethane foams . We studied the affect of the processing conditions such as the stirring time , pH and the amount of TEOS on the preparation of W/O microemulsion and the synthesis of nano-silica , and the processing conditions such as the using amount of TDI , the content of water in the microemulsion ,the stirring time and the amount of catalyzer on the preparation of rigid polyurethane foams .
     The properties of the synthesized PUF samples were investigated with a FTIR Spectroscopy , a DSC instrument and a universal testing machine . From the FTIR spectrum ,we found that there exist a lot of polyurea and amine besides polyurethane in the PUF samples . The results of the investigation of the mechanical properties of the PUF samples showed that the mechanical strength of the PUF samples was increased with the addition and increasing amount of silica in the rang of 0~2%, which is larger than that of PUF samples prepared via blending method . From the results of the thermal analysis of the PUF samples , it was found that the glass-transition temperatures of the PUF samples containing 2% of nano-silica is 360℃, which .is 60℃higher than that of PUF samples (300℃) without nano-silica.
引文
[1] 赵德仁.高聚物合成工艺学.化学工业出版社,1995
    [2] 朱吕民.聚氨酯合成材料.江苏科学技术出版社,2002,2
    [3] 马天信,姜波.聚氨酯材料在航空工业方舱中的应用.聚氨酯工业,2003,18(1):32-34
    [4] 黄锐,王旭,李忠明.纳米塑料.北京:中国轻工业出版社,2002,1
    [5] 蔡亮珍,杨挺.纳米SiO_2在高分子领域中的应用.现代塑料加工应用,2002,14(6):20-22
    [6] 贺伟,张冬梅,于烨平.浅谈硬质聚氨酯泡沫塑料在军事伪装中的应用.聚氨酯工业,2003,18(3):25-28
    [7] 周成飞.浅谈聚氨酯声学材料及其吸声制品的应用.聚氨酯工业,2003,18(2):5-7
    [8] I. Javni, W Zhang, V. Karajkov, Effect of Nano-and Micro-Silica Fillers on Polyurethane Foam Properties. Journal of Cellular Plastics, 2002, 38(3): 229
    [9] 赵斌,杨振国.混杂增强聚氨酯复合硬泡塑料的物理及力学性能.复合材料学报,2003,20(6):1~6
    [10] Zoran S. Petrovic. Structure and properties of polyurethane-silica nanocomposites. Journal of Applied Polyurethane Science, 2000, (76): 133
    [11] 苏莉.聚氨酯泡沫低密度全水发泡代替氯氟烃.天津化工,2001(4)。
    [12] 李小斌,曹宏斌.全水发泡硬质聚氨酯泡沫塑料技术研究进展.中国塑料,2004,13(7):1-4
    [13] 柏松,魏永详,谢奕,童俊.全水发泡硬质聚氨酯泡沫塑料的研制.聚氨酯工业,2002,17(4):32-34
    [14] 邱颜臣,潘玉风,周红,张红,周国详.环戊烷发泡剂及其聚氨酯硬泡性能研究.中国塑料,2000,14(8):41-44
    [15] 朱吕民,刘益军等.聚氨酯泡沫塑料.北京:化学工业出版社,2005,3
    [16] 侯瑞宏,胡忠伟.全水发泡技术.聚氨酯工业,1997,12(2):1~5
    [17] 黄国波,童筱莉,邬润德.无机纳米粒子原位复合聚氨酯研究.化工新型材料,2003,3(1):12~14
    [18] 张玉龙,李长德.纳米技术与纳米塑料.北京:中国轻工业出版社,2002.101-103
    [19] 王玉琨,吴金桥.纳米粒子合成方法进展.西安石油学院学报,2002,17(3):31-34
    [20] Arriagada F J. Synthesis of nano size silica in a nonionic water in oil microemulsion. Colloid and Interface Science, 1999, 211:210
    [21] 杨光成,丁建东,宋宏昌.反胶团微乳液制备纳米粒子的研究进展.淮海工学院学报,2001,10(2):27~30
    [22] 崔正刚,殷福珊.微乳化技术及应用.北京:中国轻工业出版社,2001,87,219
    [23] 张密林,丁立国,景晓燕,侯宪全.纳米二氧化硅的制备、改性与应用.化学工程师,2003,99(6):11-14
    [24] 沈兴海,高宏成.纳米颗粒的微乳液制备法.化学通报,1995,11:6~9
    [25] 骆锋,阮建明,万千.微乳液法制备纳米二氧化硅粉末工艺的研究.硅酸盐通报,2004,(5):48-52
    [26] 罗宁,闫双景,吕志刚,姜不居.纳米SiO_2的制取技术及应用研究.淮阴工学院学报,2003,12(1):28-30
    [27] 薛伟,张敬畅,王延吉,赵新强.利用W/O微乳液制备具有规则介孔结构的单分散球形纳米SiO_2.石油学报(石油加工),2005,21(4):37-43
    [28] 王玉琨,钟浩波,吴金桥.微乳液法制备条件对纳米SiO_2粒子形貌和粒径分布的影响.精细化工,2002,19(8):466-468
    [29] 王玉琨,钟浩波,吴金桥.微乳液法合成纳米二氧化硅粒子.西安石油学院学报(自然科学版),2003,18(3):61-68
    [30] 曲绪平,王兆伦,陈娅如等.正硅酸乙酯水解-聚合的工艺参数研究及纳米SiO_2的合成.玻璃与搪瓷,2005,33(3):20-23
    [31] 王丽丽,贾光伟.反相微乳液法制备纳米SiO_2的研究.无机化学学报,2005,21(10):1505-1509
    [32] A. Jada, J. Lung, S.J. Candau, et al. Colloids and Surf., 1982,38:251~261
    [33] 连洪洲,石春山.用于纳米粒子合成的微乳液.化学通报,2004,5:333~339
    [34] 成国详,沈锋,张仁柏等.反相胶束微反应器及其制备纳米微粒的研究进展.化学通报,1997,(3):14~19
    [35] 孙志刚,胡黎明.气相合成纳米颗粒的制备技术进展.化工进展,1997,(2):21
    [36] Li Yongchang. Particles size distribution in the synthesis of nanoparticles using microemulsion. Langmuir, 1999,15(4): 952~956
    [37] Young W. Park, James E.Mark. Reinforcement of the Aromatic Polyamide poly(Trimethylhexamethylene Terephthalamide): Comparsions Among Blending Ex Situ Silica with and without A Bonding Agent and In Situ Generated Silica. Polym. -Plast. Technol. Eng., 2002,39 (5): 875~885
    [38] 王军,高四,王亦菲等.纳米二氧化硅增强硬质聚氨酯泡沫塑料的制备.国防科技大学学报,2004,26(4):86~89
    [39] 何天白,胡汉杰.功能高分子与新技术.北京:化学工业出版社,2000.1
    [40] 芦艾,黄锐.碳酸钙增强聚氨酯泡沫塑料形态与性能.中国塑料,2001,15(4):32
    [41] 秦桑路,赵斌.混杂增强聚氨酯复合硬质泡沫塑料的研制.工程塑料应用,2003,31(4):1~3
    [42] 高四,王军.纳米二氧化钛增强硬质聚氨酯泡沫塑料的制备.材料工程,2003,1:3~5
    [43] 吴舜英,徐敬一.泡沫塑料成型.北京:化学工业出版社,1999,136
    [44] 都有为.超微颗粒的物理特性.材料导报,1992(5):1~6
    [45] T. Hanemann, J. Boehm, P. Henzi, et al. From micro to nano: properties and potential applications of micro- and nano-filled polymer ceramic composites in microsystem technology. IEE proc-Nanoiotechnol., 2004, 151(4):167
    [46] 徐培林,张淑琴.聚氨酯材料手册.北京:化学工业出版社,2002.118
    [47] 吴舜英,徐敬一.泡沫塑料成型.北京:化学工业出版社,1999.2
    [48] Ramamoorthy Malaisamy. Polyurethane and Sulfonated Polysulfone Blend Ultrafiltration Membranes: Ⅱ. Application studies. Polymer International, 2003,52(3)
    [49] Zhonghao Li, Jianling Zhang, Jimin Du, Buxing Han, Jiaqiu Wang. Preparation of silica microrods with nano-sized pores in ionic liquid microemulsions. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2006,3(011),1-8
    [50] 王笃金,吴瑾光,徐光宪.反胶团或微乳液法制备超细颗粒的研究进展.化学通报,1995,9:1~5
    [51] 刘德峥.微乳液技术制备纳米微粒的研究进展.化工进展,2002,21(7):466~469
    [52] B. Yaghi, M. Benayoune, A. Al-Bemani. Viscosity of Water-Oil Emulsions with Added Nano-Particles. Petroleum Science and Technology, 2001,19 (3&4): 373~386
    [53] Thomas F, Abld K L. Kinetics and mechanism of formation of quantum-sized cadmium sulphide particles in water-in-oil Microemulsions. Chem. Soc. Faraday Trans.,1990,86:3757
    [54] Nissim Garti, Idit Amar, Anan Yaghmur. Interfacial Modification and Structural Transitions Induced by Guest Molecules Solubilized in U-Type. Joural of Dispersion Science and Technology, 24 (3&4): 400
    [55] 麦振洪,赵永男.微乳液技术制备纳米材料.实验技术,2001,30(2):106~120
    [56] 滕宏霓,孙镛,黄斌等.以非离子型表面活性剂形成微乳液的碳原子数相关性研究.高等学校化学学报,1999,20(5):772~776
    [57] 赵国玺.表面活性剂物理化学.北京:北京大学出版社,1991.407
    [58] 潘祖仁.高分子化学.北京:化学出版社,2002,112~113
    [59] Hiram Takayuki, Tsukaki Yoritaka, Sato Kiroshi, et al. Mechanism of formation of lead sulfide ultrafine particles in reverse micelle systems. J Chem Eng Jpn, 1995, 28(4):468~473
    [60] Hiram Takayuki, Sato Kiroshi, komasawa Isao, et al. Mechanism of formation of CdS and ZnS ultrafine particles in reverse micelles. Ind Eng Chem Res, 1994,33(12):3262~3266
    [61] 刁兆玉.微乳液结构的光散射及折光方法的研究.湖北教育学院学报,1999,1:53~55
    [62] Lal M,Kumar N D,joshi M P. Polymerization in a reverse micelle nanoreactor: preparation of Processable poly(p-phenylenevinylene) with controlled conjugation length. Chem. Mater., 1998,10:1065
    [63] Qiu Sunqing, Dong Junxiu, Chen Guoxu. Journal of Colloid and Interface Science, 1999,216:230~234
    [64] Yan Hong Hu, Yun Gao. Rigid Polyurethane Foam Prepared from a Rape Seed Oil Based Polyol. Journal of Applied Polymer Science, 1998, (8),1026-1037
    [65] 李珍,李正浩.微乳液法合成多孔二氧化硅实验研究.中国粉体技术,2002,8(6):34~36
    [66] Masao Sumita, Yasutoshi Tsukumo, Keizo Miyasaka. Jensile Stress of Polypropylene Composites Filled with Ultrafine Particles. Journal of Materials Science. 2003,18:1758~1764
    [67] 陈艳,王新宇.聚酰亚胺/二氧化硅纳米尺度复合材料的研究.高分子学报,1997,1:73~78
    [68] 赵斌,杨振国.增强聚氨酯硬泡塑料压缩性能的研究与表征.纤维复合材料,2003,9(3):3~5
    [69] 芦艾,黄锐.纳米碳酸钙对硬质聚氨酯泡沫塑料力学性能的影响.中国塑料,2001,15(8):28~30
    [70] Wang Wei-li, Qian Qi-hu, Li Shan-gao. Polymer Science & Engineering, 2001, 17(4): 23
    [71] 秦桑路,杨振国.增强聚氨酯硬泡塑料的冲击性能研究.玻璃钢/复合材料,2004,1:18~20
    [72] 程爱民等.聚氨酯/蒙脱土纳米复合材料的制备和性能研究.Chinese Journal of Polymer Science,2003,21(4):591~594
    [73] Li-ying Tian, Wei-hua Zhu. Polymer-gel Electrolytes Based on Thermoplastic Polyurethane. Journal of Applied Polymer Science, 2003, 90(9), 245
    [74] 卢子兴,朱汪鲲,寇长河等.聚氨酯泡沫塑料的强度与断裂韧性.力学学报,2000,32(5):628~631
    [75] I. Javni, W. Zhang, V. Karajov, et al. Effect of Nano- and Micro-Silica Fillers on Polyurethane Foam Properties. Journal of Cellular Plastics, 2002, 38(3): 229~236
    [76] 黎清宁.颗粒增强聚氨酯复合材料的制备及其冲蚀磨损性能研究.昆明理工大学学报,2003,6(2),39
    [77] 刘培生.多孔材料引论.北京:清华大学出版社,2004,256

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700