秸秆改良材料对沙质土壤结构和水分特征的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口不断增长、工农业日益发展以及城镇化加快,世界各国土地退化严重,土地沙化速度加快,土地日趋贫瘠,土地质量日趋下降,导致土地生产力严重衰退,耕地不断减少。我国是世界上受沙化危害最严重的国家之一,沙化面积大、分布广,加剧生态环境恶化,已严重影响我国工农业和社会经济的发展,威胁民族生存与发展空间,造成了严重经济损失;虽然近年来世界各国加大对退化土地的治理改良力度,并取得一定成效,但土地退化依然严重。因此,加强沙化土地治理,改良沙化土壤,防止土地退化,保护土地环境,形势迫在眉睫。
     近年来,各种土壤改良剂相继问世,并为改良沙化土壤取得很好成效。但土壤改良剂大多属于化学产品,成本较高,而且极易产生化学二次污染。为进一步研究退化土壤改良对策,并充分利用可再生资源、尽可能减少二次污染,本研究将不同作物秸秆预处理产物与膨润土、PAM配施成秸秆改良材料,通过土培试验,探讨三者协同作用对沙质土壤结构(团粒结构和容重)和水分特征(饱和含水量、田间持水量和饱和导水率)的改良与调控效应,揭示其改良与调控作用机理,并得出以下主要结论:
     1、秸秆改良材料能有效改良沙质土壤团粒结构。随改良材料用量(或PAM含量)的增大和土培时间的增长,土壤大粒级颗粒含量呈增大趋势,小粒级含量则呈减小趋势,但单位改良材料用量对提高土壤大粒级含量的效果随改良材料用量增加而下降。施用用量越大或PAM含量越高(小于2%时),土样1-5mm粒级(最具土肥价值的土壤结构体)含量呈明显增加趋势;而PAM含量太大(为3%时),土样1-5mm粒级含量反而减小;随土培时间的增长,土样1-5mm粒级含量先增大后减小,土培60d时土样1-5mm粒级含量最大。当秸秆改良材料用量为10g、PAM含量为2%(处理10.2)土培60d时土样1-5mm粒级含量最大,土壤结构改良效果最佳。3种秸秆改良材料中,麦秆改良材料对土样1-5mm粒级的改良效果最佳,玉米秆改良材料次之。
     2、秸秆改良材料能有效降低沙质土壤容重。添加秸秆改良材料后,土壤容重比对照明显减小;施用用量越大或施用PAM含量越高(小于2%时),土样容重呈明显减小趋势;PAM含量太大(为3%时),土壤容重反而变大。随土培时间的增长,土样容重先减小后增加,土培60d时容重最小。当秸秆改良材料用量为10g、PAM含量为2%(处理10.2)土培60d时土样容重最小,土壤结构改良效果最佳。3种秸秆改良材料中,麦秆改良材料对土样容重的改良效果最佳,玉米秆改良材料次之。
     3、秸秆改良材料能有效改良沙质土壤持水性能(饱和含水量、田间持水量和饱和导水率)。添加秸秆改良材料后,土壤持水性能比对照明显增大;施用用量越大或施用PAM含量越高(小于2%时),土样持水性能呈明显增大趋势;而PAM含量太大(为3%时),土壤持水性能反而减小。持水性能随土培时间的增大先增大后减小,土培60d时达到最大值,而对照土样持水性能随土培时间增大呈略减趋势(饱和导水率呈略增趋势),但减幅(增幅)很不明显。当秸秆改良材料用量为10g、PAM含量为2%(处理10.2)土培60d时土样持水性能最大,改良效果最佳。3种秸秆改良材料中,麦秆改良材料对土样持水性能的改良效果最佳,玉米秆改良材料次之。
     4、施加秸秆改良材料后,沙质土壤持水性能(饱和含水量、田间持水量和饱和导水率)的变化规律与其1-5mm粒级含量的变化规律基本一致,与容重的变化规律呈相反关系,可见,改良土壤结构(团粒结构、容重)是秸秆改良材料改良土壤水分特征(饱和含水量、田间持水量和饱和导水率)的基础,土壤结构转好,则土壤水分特征随之得以改善。
With the growing population, increasing industrial, agricultural development and urbanization accelerated, the land is severely degenerated around the world, the desertification of land speeds up, the land becomes barren, and the land quality is deteriorating day by day. All leads to the severe decline of land productivity and the decrease in cultivated land. China is one of the countries that suffered the most serious damage by desertification in the world. In our country, desertification area is large and the distribution is wide. This aggravates the deterioration of ecological environment, affects our development of industrial and social economy, and threatens the national survival and development space, causing the serious loss of economy. Countries all over the world strengthen the efforts to governance and improve the deterioration soil, and achieved certain results in recent years, but the land degeneration is still serious. As a result, it's important to strengthen the management of desertification land, improve the desertification soil, prevent the degeneration of land and protect the land environment.
     In recent years, a variety of soil modifiers have been come out, and achieved certain results in the modification of desertification soil. However, most of the soil modifiers belong to chemical product. They're cost and produce secondary pollution easily. In order to study further about the improvement measures of degeneration soil, make full use of renewable resources, and minimize secondary pollution, this paper tries to use straw pretreatment product, bentonite and PAM in the pot experiment, explore the synergy effect of the three on the improvement and control effect of the sandy soil structure (aggregates and bulk density) and water characteristics (saturated water content, field moisture capacity, and saturated hydraulic conductivity), and reveal the mechanism of improvement and control. The major conclusions are as follows:
     1. Straw modified materials can improve sandy soil aggregate structure. With the improvement of modified material dosage(PAM content) and the increase of soil culture time, the content of large grain-sized particle tends to increase, the content of small grain-sized particle tends to decrease. But with the modified material dosage increases, per unit of modified material dosage to improve the content of large grain-sized particle tends to decrease. With higher dosage or higher PAM content(less than 2%), 1-5mm grain size in the soil samples (the most valuable soil fertility of soil structure) level increases significantly. But when the PAM content is too high (for 3%), the content of 1-5mm grain size decreases. With the growth of soil culture time, the content of 1-5mm grain size first increases and then decreases. When the soil culture time is 60 days, the content of 1-5mm grain size is the largest. When the dosage of the modified material is 10 gram, PAM content is 2% (treatment of 10.2), and the soil culture time is 60 days, the content of 1-5mm grain size is the largest, and the improvement of soil structure is the best. Of the three modified materials, wheat straw is the best to improve the content of 1-5mm grain size, followed by maize straw.
     2. Straw modified materials can reduce the bulk density of the sandy soil. Added straw modified material, bulk density decreases significantly compared with the contrast. With higher dosage or higher PAM content(less than 2%), bulk density shows a decreasing trend. But when the PAM content is too high (for 3%), bulk density becomes larger. With the growth of soil culture time, bulk density first decreases and then increases. When the soil culture time is 60 days, bulk density is the smallest. When the dosage of the modified material is 10 gram, PAM content is 2% (treatment of 10.2), and the soil culture time is 60 days, bulk density is the smallest, and the improvement of soil structure is the best. Of the three modified materials, wheat straw is the best to improve the bulk density, followed by maize straw.
     3. Straw modified materials can improve the water holding capacity (saturated water content, field moisture capacity, and saturated hydraulic conductivity) of sandy soil. Added straw modified material, water holding capacity increases significantly compared with the contrast. With higher dosage or higher PAM content(less than 2%), water holding capacity shows an increasing trend. Howerve, water holding capacity of sandy soil decreases when the PAM content is too high (for 3%). With the growth of soil culture time, bulk density first increases and then decreases. When the soil culture time is 60 days, water holding capacity is the largest. Whereas in the contrast sample, with the growth of soil culture time, bulk density decreases slightly (saturated water content shows a slightly increasing trend), but the reduction (increase) is not very significantly. When the dosage of the modified material is 10 gram, PAM content is 2%(treatment of 10.2), and the soil culture time is 60 days, water holding capacity is the best. Of the three modified materials, wheat straw is the best to improve the water holding capacity, followed by maize straw.
     4. Added straw modified material, water holding capacity (saturated water content, field moisture capacity, and saturated hydraulic conductivity) of sandy soil changes almost the same as the variation content of 1-5mm grain size, and opposite to the variation of bulk density. It's easy to see that soil structure (aggregates and bulk density) is the base of water characteristics (saturated water content, field moisture capacity, and saturated hydraulic conductivity). Soil structure improves, and the water characteristics also improve.
引文
[1]曹丽花,赵世伟,梁向锋,刘合满,杨永辉,赵勇钢.PAM对黄土高原主要土壤类型水稳性团聚体的改良效果及机理研究.农业工程学报.2008.1,24(1):45-49.
    [2]崔海英,任树梅,刘东,李旭.聚丙烯酰胺对不同土壤坡地降雨产流产沙的影响研究[J].中国水土保持2006,(2):12-15.
    [3]崔立莉,李吉进,邹国元,吴玉光,薛世川.膨润土对土壤肥力的影响.华北农学报.2004.19(2):76-80.
    [4]崔学奇,吕宪俊,周国华.膨润土的性能及其应用.中国非金属矿工业导刊.2000,(2):6-9.
    [5]杜尧东,夏海江.聚丙烯酰胺防治坡地水土流失田间试验研究[J].土壤侵蚀与水土保持学报.2000,14(3):10-13.
    [6]郝竹青,赵清侠,徐林.水土保持内涵和外延的解析与启示.论文天下论文网.2007-11-25.
    [7]季立声,贾君永,张圣武.桔秆直接还田的土壤生物学效应[J].山东农业大学学报.1992,23(4):375-379
    [8]李红,周连第,张有山.秸秆还田对土壤蓄水保肥及作物产量的影响.中国农村水利水电.2002,(1):36-37.
    [9]李焕珍,张忠涂,杨伟奇等.玉米秸秆直接还田培肥效果的研究[J].土壤通报.1996,27(5):213-215.
    [10]李吉进,徐秋明,倪小会,安文焕,刘广余.施用膨润土对土壤含水量和有机质含量的影响.华北农学报2002,17(2):88-91.
    [11]李吉进,徐秋明,张宜霞,倪小会,侯满平.膨润土对土壤水分和玉米植株生育性状的影响.京农业科学.2001,(6):18-20.
    [12]李吉进,邹国元,王美菊,曹光春.膨润土保氮增产效果研究.中国土壤与肥料.2006(3):27-30.
    [13]李玲玲,黄高宝,张仁陟等.免耕秸秆覆盖对旱作农田土壤水分的影响[J].水土保持学报.2005,
    19(6):94-96.
    [14]李万良,刘武仁.玉米秸秆还田技术研究现状及发展趋势[J].吉林农业科学.2007;32(3):32-34.
    [15]李新举,张志国,李贻学.土壤深度对还田秸秆腐解速度的影响.土壤学报.2001.2,38(2):135-139.
    [16]林雪松,屈忠义,陈鸿福.PAM对土壤入渗量和抗侵蚀能力的影响.东北水利水电.2009,27(294):30-32.
    [17]刘东,任树梅,杨培岭.聚丙烯酰胺(PAM)对土壤水分蓄渗能力的影响.灌溉排水学报.2006.8,25(4):56-58.
    [18]刘丽香,吴承祯,洪伟,李键,蔡冰玲,林淑伟.农作物秸秆综合利用的进展.亚热带农业研究.2006.2,2(1).
    [19]刘瑞凤,张俊平,郑欣,王爱勤PAM-atta复合保水剂对土壤物理性质的影响.土壤(Soils).2006,38(1):86-91.
    [20]刘文乾,杨富位,杨俊伟.半干旱山区冬小麦秸秆覆盖栽培条件下土壤水分及增产效果研究.甘肃农业.2004,2:30.
    [21]龙明杰,张宏伟.高聚物土壤结构改良剂的研究[J].土壤肥料.2000(5):13-18.
    [22]龙明杰,张宏伟,陈志泉,陈港,曾繁森.高聚物对土壤结构改良的研究Ⅲ.聚丙烯酰胺对赤红壤的改良研究.土壤通报,2002.2,33(1):9-13.
    [23]吕殿青.变容重土壤的水分动力学研究:[西北农林科技大学博士论文].陕西:西北农林科技大学.2005
    [24]吕小荣,努尔夏提·朱马西,吕小莲.我国秸秆还田技术现状与发展前景.现代化农业.2004,9.
    [25]马毅杰.膨润土资源、性质及其利用[J].土壤学进展.1994,(2):22-28.
    [26]马友华.膨润土在土壤改良和肥料生产上的研究和应用.矿产保护与利用.1996.2,1:26-28.
    [27]卜元卿.秸秆原位降解选育与应用及其土壤菌群分子多态性变化.南京农业大学硕士学位论文.2004.
    [28]宋东涛,李吉进,聂俊华,邹国元,崔立莉.膨润土对土壤腐殖质特性的影响.生态环境.2008,17(2):722-726.
    [29]唐锘.秸秆预处理方法的筛选.化工时刊.2008.7,22(7).
    [30]唐元.第四届海洋强国战略论坛,http://www.sina.com.cn,新华网.2008.11.25.
    [31]唐泽军,雷廷武,张晴雯,赵军.降雨及聚丙烯酰胺(PAM)作用下土壤的封闭过程和结皮的形成.生态学报.2002.5,22(5):674-680.
    [32]唐泽军,雷廷武,赵小勇等.PAM改善黄土水土环境及对玉米生长影响的田间试验研究[J].农业工程学报,2006,22(4):216-219.
    [33]田伟.秸秆还田对提升土壤有机质含量的意义.山东农机化.2008,5:24.
    [34]王晶莹,贺占彪,阎伟义,膨润土吸水保肥能力初探.内蒙古林业科技.2007.6,33(2):20-22.
    [35]王君厚.近50年来我国沙化土地动态变化分析[J].林业资源管理.2008(2):23-27.
    [36]王宁堂,王军利,李建国.农作物秸秆综合利用现状、途径及对策[J].陕西农业科学.2007(2):112-114.
    [37]王平.秸秆还田对土壤培肥的作用与效果初探.《现代农业科技》.2008,6.139-143
    [38]王荫槐.土壤肥料学.北京:农业出版社.1992.
    [39]魏敏.棉花秸秆对绵羊饲用价值的初步研究:[新疆农业大学硕士学位论文].新疆乌鲁木齐:新疆农业大学.2002.
    [40]魏廷举,程乐圃,朱丽娜.秸秆还田的经济效益分析及其措施[J].农机化研究,1990(2):48-52.
    [41]温佩,武文洁,赵立辉.膨润土的改性及应用研究进展.化工技术与开发.2008.2,37(2):27-31.
    [42]文新亚,李燕松,张志.酶解木质纤维素的预处理技术研究进展.http://www.ifoodl.com/mag/showwz.php?wzicd=316,2006.
    [43]吴婕,朱钟麟,郑家国,姜心禄.秸秆覆盖还田对土壤理化性质及作物产量的影响.西南农业学报.2006,19(2):192-195.
    [44]夏海江,肇普兴.PAM对土壤物理性质影响的试验研究[J].东北水利水电.1999,(7):7-8.
    [45]徐国伟,常二华,蔡建.秸秆还田的效应及影响因素.耕作与栽培.2005(1):629.
    [46]杨建国,安韶山,郑粉莉.宁南山区植被自然恢复中土壤团聚体特征及其与土壤性质关系[J].水土保持学报.2006,20(1):72-75.
    [47]杨明金,张勃,王海军,居玲华.聚丙烯酰胺和磷石膏对土壤导水性能的影响研究土壤通报.2009.8,40(4):747-750.
    [48]杨永辉,武继承,赵世伟,曹丽花,黄占斌.PAM的土壤保水性能研究.西北农林科技大学学报(自然科学版).2007.12,35(12):120-125.
    [49]杨游.稻草秸秆氨化的机理研究及参数优化.西南农业大学硕士学位论文.2004.
    [50]叶文培,谢小立,王凯荣,李志国.不同时期秸秆还田对水稻生长发育及产量的影响.中国水稻科学.2008,22(1):65~70.
    [51]易杰祥,刘国道,孙水芬,田野.膨润土的土壤改良效果及其对作物生长的影响.安徽农业科学.2006,34(10):2209-2212.
    [52]员学锋,汪有科,吴普特,冯浩.PAM对土壤物理性状影响的试验研究及机理分析.水土保持学报.2005.4,19(2):37-40.
    [53]员学锋,吴普特,冯浩.聚丙烯酰胺(PAM)在土壤改良中的应用进展.水土保持研究.2002.6,9(1):141-145.
    [54]曾广骥.有机物料对提高土壤肥力的效应分析[J].黑龙江农业科学.1988(3).
    [55]曾跃辉.土壤结构.茶叶通讯.1994,3:46-47.
    [56]张夫道,Fokin A.D.作物秸秆碳在土壤中分解和转化规律的研究.植物营养与肥料学报1994.9,(1).
    [57]章明奎,何振立,陈国潮等.利用方式对红壤水稳定性团聚体形成的影响[J].土壤学报.1997,34(4):359-366.
    [58]张晓海,邵丽,张晓林.秸秆及土壤改良剂对植烟土壤微生物的影响.西南农业大学学报.2002.4,24(2):169-172.
    [59]肇普兴,夏海江.聚丙烯酰胺的保土保水保肥及改土增产作用[J].水土保持研究.1997,4(4):98-104.
    [60]郑元红,潘国元,何开强,张光旭,杨永奎.不同作物秸秆还土对玉米及土壤肥力的影响.贵州农业科学.2009,37(1):77-78.
    [61]朱列克.中国荒漠化和沙化动态研究[M].中国农业出版社.2006,1-3.
    [62]朱玉芹,岳玉兰.玉米秸秆还田培肥地力研究综述[J].玉米科学.2004,12(3):106-108.
    [63]http://www.askci.com/freereports/2008-10/2008]02494337.html.中国可用于生产燃料乙醇的秸秆资源分析.
    [64]Allison MF, Killham K. Response of soil microbial biomass to straw incorporation. J Soil Sci,2005,39 (2):237-242.
    [65]Aly SM and Letey J. Physical properties of sodium2treated soil as affected by two polymers. Soil Sci. Soc. Am. J.,1990,54:501-504.
    [66]Ben-hur M and J Letey. Effect of polysaccharides, clay dispersion, and impact energy on water infiltration [J]. Soil Science Society of American Journal,1989,53:233-238.
    [67]Ben M, Letey J and Shainberg I. Polymer effects on erosion under laboratory rainfall simulator conditions. Soil Sci. Soc. Am. J.,1990,54:1092-1095.
    [68]Green. V S, Stott D E, Graveel J G et al. Stability analysis of soil aggregates with anionic polyacrylamides of different molecular formulations [J]. Soil Science,2004,169(8):573-581.
    [69]Gregorich E G, Liang B C, Drury C F et al. Elucidation of the sourceand turnover of water soluble and microbial biomass carbon in agricultural soils [J]. Soil Biol. Biochem,2000(32):581-587.
    [70]Helalia A M, Letey J, Graham R C. Crust formation and clay migration effects on infiltration rate. Soil Sci. Soc. Am.J.,1988,52:251-255.
    [71]Lentz R D, Shainberg I, Sojka R E et al. al. Preventing irrigation rill erosion with small applications of polymers [J]. Soil Sci. Soc. Am. J,1992,56:1926-1932.
    [72]Lentz R D, Sojka R E and Foerster J A, Estimating polyacrylamide concentration in irrigation water [J]. Envir Quality,1996,25:1015-1024.
    [73]Lentz R D and Sojika R E. Field results using polyacrylamide to furrow erosion and infiltration.. Soil Sci, 1994,158:247-282.
    [74]Lentz R D, Sojka R E. Field results using polyacrylamide to manage furrow,erosion and infiltration [J]. Soil Sci,1994:158(4):274-282.
    [75]Lentz R D, Sojka R E. Field results using polyacrylamide to manage furrow erosion [J]. Soil Sci,1994,158: 274-282.
    [76]Levy, G. J., Levin J, Gal M., Ben-Hur, and. Shainberg I. Polymers effects on infiltration and soil erosion during consecutive simulated sprinkler irrigations [J]. Soil Science Society of American Journal,1992,56:902-907.
    [77]Lissens G, Thomsen A B. Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste [J]. Environ.Sci.Technol,2004,38:34182.-34241.
    [78]Liujx, Orskover, Chen XB. Optimization of steam treatment as a method for upgrading rice straw as feeds [J]. Animal Feed Science and Technology,1999,76:345-357.
    [79]Mary B, Recous S, Darwis D and Robin D. Interactions betweendecomposition of plant residues and nitrogen cycling in soil[J]. Plantand Soil,1996(181):71-82
    [80]Nadler A, perfect E and Kay B. D. Effect of polyacrylamide application on the stability of dry and wet aggregates. Soil Sci. Soc. Am. J.,1996,60:555-561.
    [81]Nigam J N, Ethanol production from wheat straw hemicellulose hydrolysate by Pichiastipitis [J], Journal of Biotechnology,2001,87:17-27.
    [82]Ocio JA, Brookes PC. An evaluation of methods for measuring the microbial biomass in soils following recent additions of wheat straw, and the characterization of the biomass that develops. Soil Biol Biochem, 1990,22(5):685-694.
    [83]Palonen H, Thomsen A B, Tenkanen M. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood [J]. Appl. Biochem. Biotechnol,2004,117:12171.
    [84]Pavlostathis SG, Gossett JM. Alkaline treatment of wheat straw for increasing anaerobic biodegradability. Biotechnol Bioengi,1985,27(3):334~344.
    [85]RD Lentz, I. Shainberg, RE Sojka et al. Prevent in irrigation furrow erosion with small application of polymers [J].Soil. Sci, Soc. Am. J,1992,56:1926-1932.
    [86]RD Lentz, RE Sojika. Field results using polyacrylamide to furrow erosion and infiltration [J], Soil Sci,1994, 158:247-282.
    [87]Recous S, Aita.C and Mary B. In situ changes in gross Ntransformations in bare soil after addition of straw [J]. Soil Biol & Biochem,1999,(31):119-133.
    [88]Reinertsen SA, Elliott L F, Cochran VL et al. The role of available C and N in determining the rate of wheat straw decomposition. Soil Biol Biochem,1984,16(5):459-464.
    [89]Santruckova H, Straskaba M. On the relationship between specific respiration, activity and microbial biomass in soils. Soil Biol Biochem,1990,23(6):525-531.
    [90]Smith H J C, Levy G J and Shainberg I. Water droplet energy and soil amendments:effect on infiltration and erosion. Soil Sci.Soc. Am. J.,1990,54:1084-1087.
    [91]Sojka R E, Lentz R D. Time for yet another look at soil conditioners [J]. Soil Sci.,1994,158:233-234.
    [92]Sojka R E, Lentz R D, Rose C W et al. PAM effect on infiltration in irrigated agriculture [9]. Soil Water Conserve,1998,53:325-331.
    [93]Terry. Nelson. Effect of polyacrylamide and irrigation method on soil physical properties [J]. Soil.Sci.,1986,, 141:317-320.
    [94]TJ Trout, RE Sojka, RD Lentz, Polyacrylamide effect on furrow erosion and infil ration[J], ASAE., 1994, 38(3):761-765
    [95]Trout, Sojka, Lentz.Polyacrylamide affect on furrow erosion and infiltration[J].ASAE,1994,38(3):761-765.
    [96]Vaccarino C, Tripodo MM, Curto RB et al. The effects of NaOH treatments of grape-marc, vinasse, and wheat-straw mixtures on their degradability in vitro. Bioresour Technol,1993,41 (2):197-202.
    [97]Varga E, Schmidt A S, Thomse(?) A B. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility [J]. Appl. Biochem. Biotechnol,2003,104:372501.
    [98]Wallace A, Wallace G A. Effect of polymeric soil conditioners on Emergence and growth of tomato, cotton, and lettuce seedlings [J]. Soil Sci,1986,141:313-316.
    [99]XC Zhang, W P Miller, Polyacrylamide effect on infiltration and erosion in furrows[J]. Soil Sci.Soc.Am.J, 1996,60:866-872.
    [100]Zhang X C, Mille W P. Effects of surface treatment on surface sealing, runoff, and inter rill erosion[J].Trans. ASAE 1998,41 (4):989-994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700