基于玉米秸秆乙醇化的氨化预处理与酶解工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个能源消耗大国,能源的短缺将会严重危害我国的经济发展和国家安全。因此开发新型能源以代替逐渐枯竭的传统能源将是我国今后能源产业的发展方向。生物燃料具有可再生,无污染的特点,因此备受各国的重视。木质纤维素是地球上最丰富、最廉价的可再生资源,被认为是最重要的生物燃料酒精生产的后续资源物质。相对于以玉米和大豆等粮食为原料的第一代生物燃料来说,以秸秆等植物纤维为原料的纤维素乙醇被称为第二代生物燃料,其最大优势在于避免了“与人争粮、与粮争地”的风险。因此,利用生物技术将木质纤维素转化成乙醇,具有重要的社会及经济意义。其中主要技术途径之一是利用生物技术将植物纤维原料转化成单糖,主要分为二步:1、原料预处理;2、纤维素的酶水解。目前预处理技术不尽人意,存在糖得率低、技术工艺复杂等问题,而纤维素的酶水解又存在水解速度慢、酶用量大等缺点。这两方面同时制约了纤维原料生物转化的发展。本论文以农业废弃物玉米秸秆为原料,对纤维原料的预处理方式及最优处理条件的筛选、酶解糖化条件的优化、超声波和金属离子对酶解的影响进行了研究,主要结果如下
     采用氨水浸泡预处理、加压氨解预处理、超声波辅助氨水预处理三种方式处理玉米秸秆。氨水浸泡预处理的最优方案为:氨水浓度15%,时间39h,温度40℃,基质浓度162.5g/L,粒径0.5mm。在此条件下的预处理还原糖得率为3.23%,木质素去除率为61.20%。对应的酶解还原糖得率为45.28%,比未处理的12.51%,提高了32.77%。加压氨解预处理的最优方案为:氨水浓度15%,时间6min,压力0.075MPa,基质浓度150g/L,粒径1mm。在此条件下的预处理还原糖得率为1.74%,木质素去除率为43.30%。对应的酶解还原糖得率为21.36%,提高了8.85%。超声波辅助氨水预处理的最优方案为:氨水浓度12.5%,时间24min,功率240W,基质浓度187.5g/L,温度70℃,粒径0.5mm。在此条件下的预处理还原糖得率为1.51%,木质素去除率为32.20%。对应的酶解还原糖得率为40.33%,提高了27.82%。将最优处理结果进行比较并综合经济效益因素后认为,超声波辅助氨水预处理所需时间短、能耗低、效果较好,是比较理想的预处理方式。
     采用经超声波辅助氨水预处理后的玉米秸秆为原料,在环境温度为50℃条件下进行酶解。基质浓度因素对还原糖得率影响极显著(p<0.01),酶解时间对还原糖得率影响显著(p<0.05)。酶解最优方案为:pH值5,基质浓度60g/L,酶用量47mg/g(干秸秆),酶解时间30h。在此条件下的酶解还原糖得率为49.00%,比未预处理玉米秸秆的酶解还原糖得率提高了36.49%。
     一定程度的超声波辐射对酶解有促进作用。当酶解基质浓度为60g/L、酶用量为47mg/g(干秸秆)时,最适超声波功率为39W,超声波时间为9min。此时酶解还原糖得率为56.55%,比没有超声波参与酶解时提高了7.55%。
     K+、Na+,Ca2+、Mg2+、Zn2+对纤维素酶起激活作用,有助于预处理产物的酶解,提高酶解还原糖得率。其中Zn2+对纤维素酶的激活作用最明显,其浓度为1.5mg/ml(酶液)时激活作用最大。Fe3+、Al3+则对纤维素酶起抑制作用。
Energy shortage would be harm Chinese Economy and national security seriously.Therefore, replace traditional energy sources by new energy sources will be the development direction of the energy industry in the future. The biofuel receive national attention lately, for it has characteristics of renewable and pollution-free.The lignocellulose is the most abundant and cheapest renewable resources on the earth, and supposed to be the most important resources for fuel alcohol production. Relative to the first generation material of biofuel such as corn and bean, the straw fiber were identified as the second generation material of biofuel, which the most advantage is avoided the risk of be hard up of foodstuff. Therefore, the social and economic significance is very important to transform cellulose into ethanol by biological technology.There are two steps to convert cellulosic substrate to monosaccharide, namely,pretreatment of materials and enzymatic hydrolysis of cellulose.The technology of pretreatment is unsatisfactory at present. The development of cellulose bioconversion is limited by many problems in technology of stalks ethanol such as low rate of sugar conversion, process complication, low hydrolysis rate and large enzyme dosages. In this thesis, optimization conditions and handling methods of pretreatment of corn stalk as the fiber material, optimization conditions of enzymatic saccharification, the impact of ultrasound and metal ions on the enzyme has been studied.The results are shown as follows:
     Study is carried out on pretreatments of ammonia immersion, pammonolysis under pressure and ultrasound-assisted ammonia immersion to deal with corn stalks. The optimal scheme of pretreatment of ammonia immersion is shown as follows:Under the conditions of ammonia concentration is 15%,time is 39h, temperature is 40℃,substrate concentration is 162.5g/L, and stalk diameter is 0.5mm, the saccharifying efficiency is 3.23%,and lignin removal rate is 61.20%. Corresponding hydrolytic enzyme of reducing sugar is 45.28%, increases 32.77% than the unprocessed(12.51%).The optimal scheme of pretreatment of pammonolysis under pressure is shown as follows:Under the conditions of ammonia concentration is 15%.time is 6min. the pressure is 0.075MPa. substrate concentration is 150g/L, and stalk diameter is 1mm, the saccharifying efficiency is 1.74%. and lignin removal rate is 43.30%.Corresponding hydrolytic enzyme of reducing sugar is 21.36%, increases 8.85% than the unprocessed.The optimal scheme of pretreatment of ultrasound-assisted ammonia immersion is shown as follows:Under the conditions of ammonia concentration is 12.5%,ultrasonic time is 24min.ultrasonic power is 240W,substrate concentration is 187.5g/L,temperature is 70℃. and stalk diameter is 0.5mm, the saccharifying efficiency is 1.51%,and lignin removal rate is 32.20%. Corresponding hydrolytic enzyme of reducing sugar is 40.33%,increases 27.82% than the unprocessed.The results of optimal schemes and the factor of economic are considered that the pretreatment of ultrasound-assisted ammonia immersion is an ideal pretreatment method required for a short time, low energy consumption and the effect is better.
     Corn straw as material that deal with pretreatment of ultrasound-assisted ammonia immersion to carry out enzymatic hydrolysis under the conditions of temperature is 50℃.The factor of substrate concentration affected the reducing sugar yield significantly (p<0.01),hydrolysis time affected that as follow (p<0.05).Optimal scheme of enzymatic hydrolysis is shown as follows: Under the condition of pH value is 5,substrate concentration is 60g/L,enzyme dosage is 47mg/g (dry straw), and enzymatic hydrolysis time is 30h, the saccharifying efficiency of enzymatic hydrolysis is 49.00%, which increase 36.49% more than enzymatic hydrolysis without pretreatment.
     An appropriate degree of ultrasonic radiation plays an activation role in enzyme.Under condition of the substrate concentration is 60g/L, enzyme dosage is 47mg/g (dry straw),the optimal ultrasonic power is 39W. and ultrasonic time is 9min. Under the condition of these, reducing sugar yield of enzymatic is 56.55%.which increase 7.55% more than enzymatic hydrolysis without ultrasound.
     K+. Na+,Ca2+,Mg2+, and Zn2+ play an activation role in enzyme,improve the enzymatic hydrolysis yield of reducing sugar, of which Zn2+ is the most significant one. and the saccharifying efficiency has maximum activation when the Zn2+ concentration is 1.5mg/ml(liquid),Fe3-,Al3- play an restrain role in enzyme.
引文
[1]Iogen Corporation. Advanced, renewable biofuel that can be used in today's cars [EB/OL]. http://www.iogen.ca/key_messages/overview/ml_advanced_renewable.html.
    [2]半月谈.燃料乙醇“秸秆能源化”效益巨大[EB/OL].http://www.newenergy.org.cn/Html/00610/20061010_12032_1.html.
    [3]张爱华.燃料乙醇是我国发展替代燃料的趋势[J].科学之友.2007:33-34.
    [4]中国行业研究报告网.2009年-2013年中国生物乙醇产业投资环境分析[EB/OL].http://www.cnscdc.com/f231 OO.html.
    [5]武验.燃料乙醇向“非粮”跨越[J].中国农业科学与技术.2007(9):65.
    [6]陈洪章.纤维素生物技术[M].北京:化学工业出版社,2005.
    [7]陈洪章.秸秆资源生态高值化理论与应用[M].北京:化学工业出版社,2006.
    [8]马赞华.酒精高效清洁生产新工艺[M].北京:化学工业出版社,2003.
    [9]陈介南,王义强.木质纤维生产燃料乙醇的生物转化技术[J].林业科学.2007,43(5):99-105.
    [10]Lynd L.R. Modeling simultaneous saccharification and fermentation of lignocellulose to ethanol in batch and continuous reactors[J].Enzyme and Microbial Technology,1995:797-803.
    [11]李俊英等.玉米秸秆的酶水解糖化[J].酿酒,2000,(2):52-54.
    [12]刘洪斌.燃料乙醇非粮化-我国发展纤维乙醇的挑战与对策[J].生物加工过程.2008,6(1):7-11.
    [13]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003.
    [14]陈慧清.大米草生产生物柴油和燃料乙醇的初步研究[D].四川成都:西南交通大学,2006,3.
    [15]Laura Cadoche, Gerardo D Lopez, Assessment of size reduction as a preliminary step in the production of ethanol fron lignocellulosic wastes[J].Biological Wastes,1989,30(2):153-172.
    [16]Gharpuary M M,Lee Y-H,Fan,L T. Structural modification of lignocelluloseics by pretreatments to enhance enzymatic hydrolysis[J].Biotechnol Bioeng,1983,25:157-172.
    [17]Sinitsyn A P,Gusakov A V,Vlasenko E Y. Effect of structural and physico-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis[J].Appl Biochem Biotechnol, 1991,30:43-59.
    [18]陈洪章.纤维素原料微生物转化与生物量全利用的研究[D].北京:中国科学院过程工程研究所,1998,34-35.
    [19]李稳宏,吴大雄,高新,等.麦秸纤维素酶解法产糖预处理过程工艺条件[J].西北大学学报(自然科学版),1997,27(3):227-230.
    [20]Shafizadeh F, Lai Y Z. Thermal degradation of 2-deoxy-Darabino-hexonic acid and 3-deoxy-D-ribo2hexono-1,4-lactone[J].Carbohyd Res,1975,42:39-53.
    [21]Ye Sun, Jiayang, Cheng. Hydrolysis of lignocellulosic materials for ethanol production:a review[J].Bioresource Technology,2002(83):1-11.
    [22]SHAFIZADEH F, BRADBURYA GW. Thermal degradation of cellulose in air and nitrogen at low temperatures[J].J Appl Poly Sci,1979,23:1431-1442.
    [23]Hacking A J.Electron treatment of cellulose for viscose fiber[J].Chemical Fiber International,1995,45(6):454-459.
    [24]陈明.利用玉米秸秆制取燃料乙醇的关键技术研究[D].浙江杭州:浙江大学,2007,10.
    [25]Ojumu T V,Ogunkunle O A.Production of glucose from lingo-cellulosic under extremely low acid and high temperature in batch process,auto-hydrolysis approach [J].Journal of Applied Scicences.2005.5(1):15-17.
    [26]Saha Badal C,Iten Loen B,Cotta Michael A,et al. Dilute acid pretreatment.enzymatic saccharification of wheat straw to ethanol [J].Process Biochemistry,2005,40(12):3693-3700.
    [27]BjerreAB,olesenAB,FemqvistT,et al. Pretreatment of rise straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose[J].Bioteeh.Bioeng.1996,49:568-577.
    [28]Lyer P V, Wu ZW, Kim S B,et al. Ammonia recycled perolation process for pretreatment of herbaceous biomass[J].Appl Biochem Biotechnol,1996(57/58):121-132.
    [29]潘亚杰,张雷,郭军,等.农作物秸秆生物法降解的研究[J].可再生能源,2005,(3)33-35.
    [30]罗鹏,刘忠.用木质纤维素原料生产乙醇的预处理工艺[J].酿酒科技,2005,(8):42-47.
    [31]Wright J D.Ethnol from biomass by enzymatic hydrolysis[J].Chem Eng Prog,1998,84(8): 62-74.
    [32]陈育如,夏黎明,岑沛霖,等.蒸汽爆破预处理对植物纤维素性质的影响[J].高校化学工程学报.1996,13(3):234-239.
    [33]罗鹏,刘忠,王高升.蒸汽爆破预处理条件对麦草生物转化为乙醇影响的研究[J].酿酒科技.2005,(10):43-47.
    [34]欧阳平凯,陈育如.植物纤维素原料水解的理论与应用[M].北京:中国科学技术出版社,1995.
    [35]陈卫国,徐淘,彭玉凡等,电催化系统-电生物碳接触氧化床处理垃圾渗滤液[J],中国环境科学,2002,22(2):146-149.
    [36]李静,杨红霞,杨勇,等.微波强化酸预处理玉米秸秆乙醇化工艺研究[J].农业工程学报,2007,23(6):199-207.
    [37]刘国洪,匡同春,胡松青,等.超声波电镀的研究进展[J].电镀与涂饰,2006,3:47-50.
    [38]朱国辉,黄卓烈,徐风彩,等.超声波对菠萝果蛋白酶活性和光谱的影响[J].应用声学2003,22(6):10-14.
    [39]黄卓烈,林茹,何平,等.超声波对酵母过氧化氢酶基多酚氧化酶活性的影响[J].中国生物工程杂志,2003,23(4):89-93.
    [40]杨勇,杨红霞,李静,等.超声波强化秸秆乙醇化原料碱预处理效果研究[J].西南大学学报(自然科学版),2007,29(7):149-152.
    [41]Klinke H.B.etal.Protentialinhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae:Wet oxidation and fermentation by yeast[J].Biotechnol.Bioeng.,2003,(81):738-747.
    [42]张强,蒋磊.玉米秸秆发酵法生产燃料酒精的研究进展[J].食品工业科技.2006,(10):198-201.
    [43]Eniko Varga, etc. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility[J].Applied biochemistry and Biotechnology,2003,104:37-50.
    [44]杨基础,沈忠耀.超临界流体技术最新进展.第二届全国超临界流体技术学术及应用研讨会论文集,1998.1-8.
    [45]孙均华,江焕峰.超临界二氧化碳中几种纤维素溶解性质的研究[J].纤维素科学与技术.2001,9(3):27-29.
    [46]辛健康.纤维素酶高产菌选育及固态发酵条件研究[D].陕西杨凌:西北农林科技大学,2004,2.
    [47]宋安东,任天宝,谢慧,等.化学预处理对玉米秸秆酶解糖化效果的影响[J].化学与生物工程.2006,23(8):31-33.
    [48]张雪松.稀酸处理对秸秆厌氧发酵产氢的影响[J].可再生能源.2005,(4):20-22.
    [49]辛玮.作物秸秆的微生物降解与转化利用[D].山东济南:山东大学,2005.
    [50]夏黎明,代淑梅.应用固定化里氏木霉糖化玉米秆纤维素的研究[J].微生物学报,1998,38(2):44.
    [51]王倩,张伟,王颉,等.生物质生产酒精的研究进展[J].酿酒科技,2003,(3):56-58.
    [52]金士威,朱圣东,吴元欣,等.木质纤维原料酶水解研究进展[J].生物质化学工程.2006,40(3):48-53.
    [53]张建安,张小勇,韩润林,等.木素对纤维素酶解的影响及纤维素酶解[J].化学工程,2000,28(1):38-43.
    [54]Ghose TK, Bisariav S.Studies on mechanism of enzymatic hydrolysis of cellulosic substrates [J]. Biotechnol Bioeng,1979,21(1):131-146.
    [55]周建,罗学刚,苏林.纤维素酶法水解的研究现状及展望[J].化工科技,2006,14(2):51-56.
    [56]彭志英.食品生物技术[M].中国轻工业出版社,1999:43-46.
    [57]张裕卿,付二红,梁江华.超声波对木质纤维素糖化过程影响的研究[J].中国生物工程杂志,2007,27(9):81-85.
    [58]李盛贤.利用纤维素原料生产燃料酒精的研究进展[J].中国酿酒,2005.32(2):13-16.
    [59]孙智谋,蒋磊,张俊波,等.世界各国木质纤维原料生物转化燃料乙醇的工业化进程[J].酿酒科技,2007,(1):91-94.
    [60]郭廷杰.美、日利用纤维素生物质原料制燃料乙醇的技术开发[J].能源技术,2004,(2):61-63.
    [61]王倩.纤维素酶高产菌株选育与玉米秸秆生产酒精工艺研究[D].河北保定:河北农业大学,2003,5.
    [62]潘晓辉.微波预处理玉米秸秆的工艺研究[D].黑龙江哈尔滨:哈尔滨工业大学.2007:11-12.
    [63]刘娜,石淑兰.木质纤维素转化为燃料乙醇的研究进展[J].现代化工,2005,25(3):19-22.
    [64]徐忠,汪群慧,姜兆华.氨预处理对大豆秸秆纤维素酶解产糖影响的研究[J].高校化学工程学报.2004,18(6):773-776.
    [65]梁新红,严天柱.预处理方法对作物秸秆生物转化的影响[J].山西食品工业.2004,12(4):5-8.
    [66]樊梓鸾.同步糖化发酵纤维素转化乙醇高产菌株选育及工艺研究[D].黑龙江哈尔滨:东北林业大学.2007:20-21.
    [67]曹玲,全金英.氧化氨解木质素化学结构的研究[J].南京林业大学学报,1998,22(2):19-24.
    [68]朱启红.木质素氨解反应影响因素浅谈[J].农机化研究,2006,11:28-33.
    [69]张小勇,张建安.天然木质素原料的氨化[J].化工冶金,2000,21(2):204-207.
    [70]于淑娟,高大维.超声波强化纤维素酶反应机理研究[J].华南理工大学学报:自然科学版,1998,26(11):90-95.
    [71]Guadalupe Bustos,Jose Alberto Ramirez,Gil Garrote et.Modeling of the hydrolysis of sugar cane bagasse with hydrochloric acid [J].Applied Biochemistry and Biotechnology,2003,104: 51-68.
    [72]崔玲.超声波与助剂强化玉米桔秆预处理与酶水解的研究[D].江苏南京:南京林业大2007:20.
    [73]邱树毅,姚汝年,宗敏华.超声波在生物工程中的应用[J].生物工程进展,1999,19(3):45-48.
    [74]林仲茂.声化学发展概况[J].应用声学,1993,12(1):1-5.
    [75]Ramos L P,Breuil J N,Saddler J N. The use of enzyme recycling and the influence of sugar accumulation on cellulose hydrolysis by Triehoderma cellulases[J].Enzyme Microb Technol. 1993,15:91-125.
    [76]Wyman C E.Ethanol from lignocellulosic biomass:Technology,economies,and opportunities[J].Bioresour Technol,1994,50:3-15.
    [77]Geng Y H,Zhang B S,Gao D W. Study on the effect of ultrasonic wave on the manufacture of isomaltose oligosaccharide[J].Sci Technol Food Ind,1999,20(1):142-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700