耐盐碱微生物的筛选及在盐碱土团聚体形成中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耐盐碱微生物是盐碱土生态系统中的一类重要的土壤微生物,了解耐盐碱微生物在盐碱土中的分布特征及其在盐碱土改良中的作用具有重要意义。
     本文从新疆、江苏盐碱土地区采集植物根际、非根际土样,分析不同盐含量及不同粒径团聚体中微生物区系分布规律,结果表明,以氯化物为主要成分的盐碱土,肥力水平低下,盐分抑制土壤蔗糖酶、脲酶、过氧化物酶的活性,盐碱土中真菌、放线菌的数量较少,细菌是其中的优势种群,在各级团聚体及不同盐化程度的盐碱土中细菌分布都比较均匀。
     从以上盐碱土土样中分离到耐盐碱细菌120株。以分解秸秆和产胞外多糖能力为指标,筛选出秸秆5天降解率达30%以上菌株3株,分别为J2、X4、M5;筛选出胞外多糖产量在4 g·L-1以上的细菌3株,分别为:DF-2、A17、M6。筛选过程中发现,分解秸秆细菌一般耐盐性较强,在盐碱土中分布广泛。但产胞外多糖细菌在尚未开垦的滩涂重盐碱土中较难分离到,大部分产胞外多糖细菌耐盐性差,主要分布在已开垦盐碱土的植物根际。
     分离得到的六株细菌与促进盐碱土改良及盐碱环境中植物生长相关的生物学特性研究结果表明:菌株M5、A17、M6、J2及X4具有精氨酸脱羧酶活性;6株细菌均能产生铁载体,产IAA,菌株DF-2产IAA能力较强;菌株J2、M6和DF-2对油菜的促生效果较好。
     对促生能力较强的菌株J2、DF-2、M6进行了初步鉴定:菌株J2为短小芽孢杆菌(Bacillus pumilus),菌株DF-2为中华根瘤菌属(Sinorhizobium),菌株M6为枯草芽孢杆菌(Bacillus subtilis).菌株J2分解秸秆,不产胞外多糖,耐盐碱能力较强;菌株M6既分解秸秆又产胞外多糖,耐盐碱能力较强;菌株DF-2产胞外多糖,不分解秸秆,耐盐性差,但耐碱性较好,在pH 8-10范围,胞外多糖产量可达pH 7情况下的5-11倍。
     通过土柱试验研究了菌株J2、M6与外源有机物相互作用对盐碱土物理、生物性状的影响。结果表明,施用未腐熟玉米秸秆处理>2mm大团聚体含量显著高于施加已腐熟的有机肥的处理,与空白对照相比,施加玉米秸秆处理接种菌株J2、M6大团聚体含量增加40%以上,接种菌株M6处理最显著,大团聚体形成量达60%以上,即既分解秸秆又产胞外多糖的耐盐碱细菌菌株M6配施未腐熟玉米秸秆,使其在土壤中腐熟,对盐碱土团聚体形成的促进作用最显著,可作为改良滩涂盐碱土的有效措施。团聚体形成的动态跟踪发现,土壤团聚体形成过程与细菌活性密切相关,团聚体含量与细菌数量相关性均达(+)90%以上。
     玉米盆栽试验发现,在施加玉米秸秆的盐碱土中,供试菌株能在玉米根际较好定殖。菌株M6使玉米根际土中可溶性糖含量明显增加,对玉米植株生物量有显著促进作用,而菌株J2与对照相比促进作用不显著。
     通过油菜盆栽试验,研究了菌株J2、DF-2、M6对油菜生长与耐盐性的影响,结果表明,细菌胞外多糖有利于团聚体和油菜生物量的增加。腐熟秸秆或未腐熟秸秆均可提高油菜根际可溶性糖含量及土壤>0.25mm团聚体含量,提高土壤的保水能力,促进油菜生长。既产胞外多糖又分解秸秆细菌菌株M6对团聚体形成及油菜生长均有显著促进作用,有望开发为滩涂盐碱土改良的微生物菌剂。
Saline-alkali-tolerant microbes are one kind of soil microbes in saline-alkali soil ecosystem. Thus, to understand the distribution characteristics of saline-alkali-tolerant microbes in saline-alkali soil ecosystem and their effect on improving saline-alkali soil is of great importance.
     Through collecting rhizosphere and non-rhizosphere soil samples of plant from the saline-alkali soil of xinjiang and Jiangsu province respectively, analyzing the distribution of Microbial flora in saline-alkali soil with different salt content and aggregate with different size, result shows that bacteria is the dominate population and distribute evenly in saline-alkali soil with different salt content and aggregate with different size. Salinity has a greater impact on fungi and there was fewer number of fungi in saline-alkali soil, which chloride was the dominate salt, with a low level of soil fertility. Soil salinity also inhibits the activity of invertase, urease and peroxidase in soil.
     One hundred and twenty saline-alkali-tolerant bacteria were isolated from saline-alkali soil said upsid. To take the capacity to decomposing straw and producing exopolysaccharides as an index of screening, three strains of bacteria with a 30% degradation rate of straw in five days were selected, named J2、X4、M5. three strains of bacteria with 4 g·L-1 exopolysaccharides production or more in three days were selected, named DF-2、A17、M6. Straw decomposing bacteria mainly have a better resistance to salt stress, and exist extensively in saline-alkali soil. Exopolysaccharides producing bacteria were hard to be found in tidal flat soils with heavy salt content, and were mainly habitated in the rhizosphere of plants in the light salt content soil which has been farmed.
     The characteristics of isolated bacteria were studied about plant growth-promoting and saline-alkali soil improvement in this paper. The results showed that test strains M5、A17、M6、J2 and X4 have arginine decarboxylase activity; All the strains can produce siderophore and indole acetic acid (IAA), of which DF-2 has a better IAA secretion ability. Strain J2、M6 and DF-2 hold more growth-promoting properties than other strains.
     The strains were respectively identified as Sinorhizobium sp. DF-2, Bacillus pumilus J2, Bacillus subtilis M6, based on their physio-biochemical characteristics and 16S rDNA sequence analysis. Strain J2 and M6 have a better saline-alkali resistance. Strain J2 has a high decomposing rate of corn straw, but can not produce Exopolysaccharides. Strain M6 can decompose corn straw and produce exopolysaccharides. Strain DF-2 do not decompose straw, has a high production of exopolysaccharides. Strain DF-2 have a poor salt resistance, and a good alkali resistance, production of exopolysaccharides with pH values under eight toten is five to eleven times compares with pH values under seven.
     Column experiments were carried out to study effects of strain J2、M6 and DF-2 screened from coastal saline-alkali soil, and combined with organic matter on the physical and biological property of saline-alkali soil. Results show that, compared with organic fertilizer, none-decomposed straw has a better effect on the forming of saline-alkali soil macroaggregates bigger than 2 mm. Strain M6、J2 combined with none-decomposed straw have good effects on the forming of soil aggregates, macroaggregates increased to more than 40% compared with control, in which the percent of macroaggregates of soil column inoculated with strain M6 reached to 60%. The inoculation with bacterial strain M6 that can decompose straw and secrete extracellular polymer substances, combining with straw that decomposed in soil, has best effect on the forming of saline-alkali soil aggregates, and is will be a good way to improve saline-alkali soil. The dynamic tracking of the aggregates formation shows that, the formation of soil aggregates is closely related to the bacterial activity, the relevance of the aggregates content and bacteria amount is more than (+)90%.
     Pot culture experiments of maize were carried out to study effects of strain J2 and M6 combined with none-decomposed straw on the growth of plant. Results show that, strain M6、J2 can colonize well in maize rhizosphere of saline-alkali soil. Inoculation of strain M6 can improve the concentration of soluble sugars significantly in rhizosphere soil and also can increase the plant biomass of maize. However the effects of inoculation of strain J2 is not significant.
     Pot culture experiments of rape were carried out to study effects of strain J2 and M6 promoting the growth of plant, and improving its resistance to salt. Results show that, Exopolysaccharides conduce to the forming of aggregates and the growth of rape. Straw fermented or not can improve the concentration of soluble sugars, the forming of aggregates bigger than 0.25 mm and water holding ability of soil. Either bacteria cell under logarithm growth period, metabolize by-product (exopolysaccharides) or ferment by-products of maize straw of strain M6 can improve the forming of aggregates and the growth of rape. The inoculation with bacterial strain M6 that can decompose straw and secrete extracellular polymer substances, has best effect on the forming of saline-alkali soil aggregates and the growth of rape, and is can be a good microbial agent to improve saline-alkali soil.
引文
1. Afin M Y, Ahmed A T, Atyia N M. Effect of some management practices on regime of soils under irrigation with diluted sea water[J].1998,38(1):413-424
    2. Akihiro I, Takashi M, Yoshie H Akiyama T, Tamaoki M, et al. Spermidine synthase genes are essential for survival of Arnbidopsis[J]. Plant Physiology,2004,135:1565-1573
    3. Al-karaki G N. Growth of mycorrhizal tomato and mineral acquisition under salt stress[J]. Myhcorrhiza,2000,10:51-54
    4. Amellal N, Burtin G, Bartoli F, Heulin T. Colonization of wheat roots by an exopolysaccharide-producing pantoea agglomerans strain and its effect on rhizosphere soil aggregation[J]. Applied and Environmental Microbiology,1998,64:3740-3747
    5. Barrett-Lennard E G. Restoration of saline land through revegetation[J]. Agricultural Water Management,2002,53(1-3):213-226
    6. Barthes B, Roose E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels[J]. Catena,2002,47:133-149
    7. Bochow H, El-Sayed S F, Junge H, Stavropoulou A, Schmiedeknecht G. Use of Bacillus subtilis as biocontrol agent. IV Salt-stress tolerance induction by Bacillus subtilis FZB24 seed treatment in tropical vegetable field crops, and its mode of action[J]. Plant Diseases and Protection,2001,108: 21-30
    8. Boukhalfa H, Crumbliss A L. Chemical aspects of siderophore mediated iron transport[J]. Biometals, 2002,15:325-339
    9. Bric, J M, Bostock R M, Silversone S E. Rapid in situ assay for indole acetic acid production by bacteria immobilization on a nitrocellulose membrane[J]. Apply and Environmental Microbiology, 1991,57:535-538
    10. Byers H K, Stackebrandt E, Hayward C, Blackall L L. Molecular investigation of a microbial mat associated with the great artesian basin[J]. FEMS Microbiology Ecology,1998,25:391-403
    11. Capriel P, Beck T, Borchet H, Harter P. Relationship between soil aliphatic fraction extracted with supercritical hexane, soil microbial biomass, and soil aggregate stability[J]. Soil Science Society of America Journal,1990,54:415-420
    12. Cambardella C A, Elliott E T. Particulate soil organic matter across a grassland cultivation sequence [J]. Soil Science Society of America Journal,1992,56:776-783
    13. Chabot R, Antoun H and Cescas M P. Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar.phaseoli[J]. Plant and Soil,1996,184: 311-321
    14. Changey K, Swift R S. Studies on aggregate stability Ⅱ. The effect of humic substances on the stability of re-formed soil aggregate[J]. Soil Science,1986,37:337-343
    15. Chan K Y, Heenan D P. Microbial-induced soil aggregate stability under different crop rotations[J]. Biology and Fertility of Soils,1999,30:29-32
    16. Chenu C. Clay or sand polysaccharide associations as models for the interface between micro-organisms and soil:water related properties and microstructure[J]. Geoderma,1993,56: 143-156
    17. Chenu C. Infulence of a fungal polysaccharide, scleroglucan, on clay microstructures[J]. Soil Biology and Biochemistry,1989,21:299-305
    18. Chenu C, Roberson E B. Diffusion of glucose in microbial extracellular polysaccharide as affected by water potential[J]. Soil Biology and Biochemistry,1996,28:877-884
    19. Chotte J L, Schwartzman A, Bailly R, Jocteur M L. Changes in bacterial communities and azospirillum diversity in a tropical soil under 3 years and 19 years natural fallow assessed by soil fractionation[J]. Soil Biology and Biochemistry,2002,34:1083-1092
    20. Crowley D E, Wang Y C, Reid C P P, Szaniszlo P J. Mechanism of iron acquisition from siderophores by microorganisms and plants [J]. Plant and Soil.1991,130:179-198
    21. Davies W J, Zhang J. Root signal and the regulation of growth and development of plants in drying soil[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1991,42:55-76
    22. Degens B P. Microbia functional diversity can be influenced by the addition of simple organic substrates to soil[J]. Soil Biology and Biochemistry,1998,30:1981-1988
    23. Degens B, Spading G. Changes in aggregation do not correspond with changes in labile organic C fractions in soil amended with 14C glucose[J]. Soil Biology and Biochemistry,1996,28:453-462
    24. Dick R P. A review:long-term effects of agricultural systems on soil biochemical and microbial parameters[J]. Agriculture, Ecosystems and Environment,1992,40:25-36
    25. Dinel H, Schnitzer M, Mehuys GR Soil lipids:origin, nature, content, decomposition and effect on soil physical properties [J]. Soil biochemistry,1991,6:397-430
    26. Doran J C, Turnbull J W. Australian Trees and Shrubs:species for land rehabilitation and farm planting in the tropics[M]. Canberra:Australian Centre for International Agricultural Research. 1997
    27. Dormaar J F, Foster R C. Nascent aggregates in the rhizosphere of perennial ryegrass[J]. Canadian Journal of Soil Science,1991,71:465-474
    28. Drazzkiewicz M. Distribution of microorganisms in soil aggregates:effects of aggregate size[J]. Folia-microb,1994,39(4):276-282
    29. Dueikovsky A N, Mordukhova E A, Kochetkov V V, Polikarpova F Y, Boronin A M. Growth promotion of blackcurrant softwood outings by recombinant strain pseudomonas fluorescens BSP53a synthesizing an increased amount of indole-3-acetic acid[J]. Soil Biology and Biochemistry,1993,25:1277-1281
    30. Edwards A P, Bretnner J M. Micro-aggregates in soils[J]. soil science,1967,18:64-73
    31. Elliott E T. Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils [J]. Soil Science Society of America Journal,1986,50:627-633
    32. Emeson W W. The structure of soil crumbs[J]. soil science,1959,10:235-244
    33. Fletcher M, Floodgate G D. An electron-microscop-icdem on stration of an acidic polysaccharide involved in the adhesion of a marine bacterium to solid surface[J]. Gen Microbiol,1973,74: 325-334
    34. Gibbons R J, Nygaard M, Inter bacterial aggregation of plaque bacteria[J]. Arch Oral Biol,1968,13: 1249-1262
    35. Glick B R, Jacobson C B, Schwarze M M K, Pasternak J J. 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation[J]. Canada Journal of Microbiology,1994,40:911-915
    36. Gravel V, Antoun H, Tweddell R J. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride:Possible role of indole acetic acid (IAA) [J]. Soil Biology and Biochemistry,2007,39:1968-1977
    37. Greenland D J. Mechanism of interaction between clays and defined organic compounds[J]. Soil Fertility,1961,28:415-425
    38. Guggenberger G, Elliott E T, Frey S D, Six J, Paustian K. Microbial contributions to the aggregation of a cultivated grassland soil amended with starch[J]. Soil Biology and Biochemistry,1999,3: 407-419
    39. Hamblin A. The influence of soil structure on water movement, crop growth, and water uptake[J]. Advances in Agronomy 1985,38:95-158
    40. Haruta S, Cui Z, HuangZ, Huang Z, Li M, Ishii M, Igarashi Y. Construction of a stab community with high cellulose-degradation ability[J]. Microbiology Biotechnology,2002,59:529-534
    41. Hasnain S, Thomas C M. Two related rolling circle replication plasmids from salt-tolerant bacteria[J]. Plasmid,1996,36:191-199
    42. Haynes R J, Beare M H. Influence of six crop species on aggregate stability and some labile organic matter fractions[J]. Soil Biology and Biochemistry,1997,29:1647-1653
    43. Jastrow J D, Miller R M, Lussenhop J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie[J]. Soil Biology and Biochemistry,1998,30:905-916
    44. Jastrow J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter[J]. Soil Biochemistry,1996,28(4):665-676
    45. Javed A Q, Malik K A. Evidence for a plasmid conferring salt-tolerance in plant-root associated diazotroph Klebsiellasp[J]. Biotechnology Letters,1990,12:783-788
    46. Jean-Luc Chotte. Microorganisms in soils:roles in genesis and functions[J]. Soil Biology,2005,3: 107-109
    47. Kabir Z, Koide R T. The effect of dandelion or a cover crop on mycorrhiza inoculums potential, soil aggregation and yield of maize[J]. Agricultural Ecxosystem Environment,2000,78:167-174
    48. Kushner D J. Life in high salt and solute concentrations:halophilic bacteria[M]. Microbial life in Extreme environments, London, Academic Press,1978
    49. Lynch J M, Panting L M. Effects of season cultivation and nitrogen fertilizer on the size of the soil microbial biomass[J]. Journal of the Science of Food and Agriculture,1982,33:249-252
    50. Marinissen E, Nijhuis N. et al., Dispersion of clay in wet earthworm casts of different soils[J]. Applied Soil Ecology,1996,4:83-92
    51. Marschner P, Yang C H, Lieberei R, Crowley D E. Soil and plant specific effects on bacterial community composition in the rhizospher[J]. Soil Biology and Biochemistry,2001,33:1437-1445
    52. Molope M B, Grieve I C, Page E R. Thixotropic changes in the stability of molded soil aggregates[J]. Soil Science Society of America Journal,1985,49:979-983
    53. Monreal C M, Schnitzer M, Schulten H R, Campbell C A, Anderson D W. Soil organic structures in macro and microaggregates of a cultivated brown chernozem[J]. Soil Biology and Biochemistry, 1995,27:845-853
    54. Oades J M. Soil organic matter and structural stability:Mechanisms and implications for management[J]. Plant Soil,1984,76:319-337
    55. Odes J M, Waters A G. Aggregate hierarchy in soil[J]. Australia Journal of soil science,1991,29: 815-828
    56. Pare T, Dinel H, Moulin A P, Townley-Smith L. Organic matter quality and structural stability of a Black Chernozemic soil under different manure and tillage practices [J]. Geoderma,1999,91: 311-326
    57. Pojasak T, Kay S D. Effect of root exudates from corn and brome grass on soil structural stability[J]. Canadian Journal of Soil Science,1990,70:351-362
    58. Prakash L, Prathapasenan G. Putrescine reduces NaCl-in-duced inhibition of germination and early seeding growth of ice[J]. Australian Journal of Plant Physiology,1988,15:761-767
    59. Puget P, Angers D A, Chenu C. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Biology and Biochemisty,1999,31:55-63
    60. Puget P, Chenu C, Balesdent J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates[J]. European Journal of Soil Science,2000,51:595-605
    61. Qadir M, Qureshi R H, Ahmad N, Ilyas M. Salt-tolerant for age cultivation on a saline-sodic field for biomass production and soil reclamation[J]. Land Degradation and Development,1999,7(1):11-18
    62. Queneherve P, Chotte J L. Distribution of nematodes in vertisol aggregates under a permanent pasture in Martinique [J]. Applied Soil Ecology,1996,4:193-200
    63. Rao D L N, Burns R G. The influence of blue-green algae on the biological amelioration of alkali soils[J]. Biology and Fertility of Soils,1991,11:306-312
    64. Rillig M C, Fernando T M, Lamit L J Microsite differences in fungal hyphal length, glomalin and soil aggregate stability in semiarid Mediterranean steppes[J]. Soil Biology and Biochemistry,2003, 35:1257-1260
    65. Rillig M C,Steinberg P D. Glomalin production by an arbuscularmy corrhizal fungus:a mechanism of habitat modification?[J]. Soil Biology and Biochemistry,2002,34:1371-1374
    66. Roberson E B, Saring S, Shennan C, et al. Nutritional management of microbial polysaccharide production and aggregation in an agricultural soil[J]. Soil Science Society of America Journal,1995, 59:1587-1594
    67. Six J, Elliott E T, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils [J]. Soil Science Society of America Journal,1998,62:1367-1377
    68. Six J, Elliott E T, Paustian K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems[J]. Soil Science Society of America Journal,1999,63:1350-1358
    69. Spaccini R, Mbagwu J S C, Igwe C A, Conte P, Piccolo A. Carbohydrates and aggregation in lowland soils of Nigeria as influenced by organic inputs[J]. Soil and Tillage Research,2003,75: 161-172
    70. Tejada M, Garcia C, Gonzalez J L, Hernandez M T. Use of organic amendment as a strategy for saline soil remediation:Influence on the physical, chemical and biological properties of soil[J]. Soil Biology and Biochemistry,2006,38:1413-1421
    71. Tisdall J M, Oades J M. Organic matter and water-stable aggregate in soil[J]. Soil Science,1982,33: 141-163
    72. Tisdall J M, Smith S E, Rengasamy P. Aggregation of soil by fungal hyphae[J]. Australian Journal of Soil Research,1997,35:55-60
    73. Tomio Y, Benjamin C, Padre J. Effect of organic matter application and water regimes on the transformation of manure nitrogen in a Philppine soil[J]. Soil Science and Plant Nutrition,1975,21: 281-292
    74. Wang X, Haruta S, Wang P, et al. Diversity of a stable culture which is useful for silage inoculant and its succession in alfalfa silage[J]. FEMS Microbiology Ecology,2006,57-115.
    75. Wohlfarth A, Severin J, Galinski E A. Identification of NS-acetylornithine as a novel osmolyte in some gram-positive halophilic eubacteria[J]. Applied Microbiology and Biotechnology,1993,39: 568-573
    76. Wright S F, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant Soil,1998,198:97-107
    77. Wright S F, Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison with hyphae protein of arbuscular mycorrhizal fungi[J]. Soil Science,1996,161:575-586
    78. Yehuda Z, Shenker M, Hadar Y, Chen YN. Remedy of chlorosis induced by iron deficiency in plant with the fungal siderophore rhizoferrin[J]. Journal of Plant Nutrition,2000,23:1991-2006
    79. Zhang M K, He Z L, Chen G C, Huang C Y, Wilson M J. Formation and water stability of aggregates in red soil as affected by organic matter[J]. Pedosphere,1996,6:39-45
    80.包衍,王晓辉,张伟琼,罗江兰,聂明,肖明.纤维素分解菌的选育及酶活测定[J].生物学杂志,2007,24(2):56-58
    81.鲍士旦.土壤农化分析[M].北京:中国农业出版社.2000
    82.布洛克N T D.微生物生物学[M].北京:人民教育出版社,1981
    83.陈恩凤.有机质改良盐碱土的作用[J].土壤通报,1984,15(5):193-196
    84.陈晓斌,张炳欣.植物根际促生细菌(PGPR)作用机制的研究进展[J].微生物学杂志,2000,20(1):38-41。
    85.程丽鹃.微生物对土壤团聚体的影响[J].西北农业大学学报,1994,22(4):93-96
    86.戴尧仁.多胺的生理学作用以及高等植物中精氨酸脱叛酶的调节[J].植物生理生化进展,1986,(4):61-73
    87.董锡文,薛春梅,吴玉德.极端微生物及其适应机理的研究进展[J].微生物学杂志,2005,25(1):74-77
    88.董晓霞,郭洪海,孔令安.滨海盐渍地种植紫花苜蓿对土壤盐分特性和肥力的影响[J].山东农业科学,2001,(1):24-25
    89.东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社.2001
    90.杜连凤,刘文科,刘建玲.三种秸秆有机肥改良土壤次生盐渍化的效果及生物效应[J].土壤通报,2005,36(3):309-312
    91.樊修武,池宝亮,焦晓燕,李东旺,张志平.盐碱地秸秆覆盖改土增产措施的研究[J].干旱地区农业研究,1993,(12):13-18
    92.冯固,张福锁.丛枝菌根真菌对棉花耐盐性的影响研究[J].中国生态农业学报,2003,11(2):21-24
    93.冯固,张玉凤,李晓林.丛枝菌根真菌的外生菌丝对土壤水稳性团聚体形成的影响[J].水土保持学报,2001,15(4):99-102
    94.关松荫等.土壤酶及其研究法[M].北京:农业出版社.1986
    95.郜翻身,崔志祥,樊润威,张三粉.有机物料对盐碱化土壤的改良作用[J].土壤通报,1997,28(1):9-11
    96.郜金荣.分子生物学实验指导[M].武汉:武汉大学出版社.2007
    97.黄不凡.施用绿肥和小麦秸秆对土壤团聚体和有机质特性的影响[J].土壤学报,1984,21(2):113-122
    98.季立声,王一川.山东省主要土壤酶活性与土壤肥力[J].山东农业大学学报,1990,21(2):37-42
    99.姜岩,窦森.土壤施用有机物料后重组有机质变化规律的探讨[J].土壤学报,1987,24(2):97-10
    100.康贻军,胡健,董必慧,陆小云.滩涂盐碱土壤微生物生态特征的研究[J].农业环境科学学,2007,26(增刊):181-183
    101.李东坡,武志杰,陈利军.土壤生物学活性对施入有机肥料的响应.Ⅰ土壤酶活性的响应[J].土壤通报,2003,34(5):463-468
    102.李建东,郑慧莹.松嫩平原盐碱化草地治理及其生物生态机理[M].北京:科学出版社.1997
    103.李建法,宋湛谦.高分子土壤结构改良材料的研究及应用[J].高分子通报,2003,(5):70-74
    104.李恋卿,张旭辉,潘根兴.退化红壤植被恢复中表层土壤微团聚体及其有机碳的储备变化[J].土壤通报,2000,31(5):193-195
    105.李培夫.盐碱地的生物改良与抗盐植物的开发利用[J].盐碱地利用垦殖与稻作,1999,3:38-40
    106.利容千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社.2002
    107.李新举,张志国.秸秆覆盖对盐渍土水分状况影响的模拟研究[J].土壤通报,1999,30(4):176-177
    1 08.林学政,沈继红,刘克斋,黄晓航.种植盐地碱蓬修复滨海盐渍土效果的研究[J].海洋科学进展,2005,23(1):65-70
    109.刘爱荣,赵可夫.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用[J].植物生理与分子生物学报,2005,31(4):389-395
    110.刘广深,许中坚,徐冬梅.酸沉降对土壤团聚体及土壤可蚀性的影响[J].水土保持通报,2001,21(4):70-74
    111.路浩,王海泽.盐碱土治理利用研究进展[J].现代化农业,2004,(8):10-12
    112.牛东玲,王启基.盐碱地治理研究进展[J].土壤通报,2002,33(6):450-455
    113.平淑珍,林敏,安道昌.耐盐联合固氮菌在盐渍化土壤改良中的应用[J].高技术通讯,1999,(9):60-62
    114.宋燕飞,金忠华,孙丹丹.盐碱胁迫下复合微生物菌剂对玉米根系性状的影响[J].杂粮作物,2008,28(3):160-162
    115.宋玉珍,安志刚,张玉红,崔晓阳,李玉文.活性微生物菌肥在大庆苏打盐碱地造林中的应用[J].东北林业大学学报,2008,36(7):17-19
    116.宋玉民,张建峰,邢尚军.黄河三角洲重盐碱地植被特征与植被恢复技术[J].东北林业大学学报,2003,31(6):87-89
    117.覃丽萍,黄思良,李杨瑞.植物内生固氮菌的研究进展[J].植物生理科学,2005,21(2):150-153
    118.唐明.VA菌根提高植物抗盐碱和抗重金属能力的研究进展[J].土壤,1998,30(5):251-254
    119.田忠孝,曹季江.有机质改良盐渍土的初步研究[J].土壤肥料,1993,(1):16-18
    120.王俊儒,尉庆丰,曲东,龚月桦.土壤多糖在肥力上的意义[J].土壤通报,1995,26(6):274-275
    121.王桂君,张丽辉,赵骥民,吴磊.盐生条件下的AM真菌以及AM真菌提高植物耐盐性研究[J].长春师范学院学报,2004,23(4):64-68
    122.王丽群,李英杰.吉林省西部盐碱地治理模式探析[J].农业与技术,1998,5(2):30-31
    123.王清奎,汪思龙.土壤团聚体形成与稳定机制及影响因素[J].土壤通报,2005,36(3):415-421
    124.王平,董飚,李阜棣,胡正嘉.小麦根圈细菌铁载体的检测[J].微生物学通报,1994,21(6):323-326
    125.王汝镛,武志杰,刘永恩,张素君,张岫岚,曹承绵,王春裕,田林杰.近代黄河三角洲东营农业综合试验区滨海盐渍土改良利用的研究[J].土壤通报,2001,32(6):166-169
    126.王旭东,张一平.娄土不同粒径团聚体中胡敏酸性质结构研究[J].干旱地区农业研究1997,15(2):69-72
    127.王振宇,包怡红,金钟跃,赵雨森,辛颖.生物活性保水剂对模拟沙化土地治理效果的分析[J].东北林业大学学报,2003,31(3):27-28
    128.王遵亲.中国盐渍土[M].北京:科学出版社.1993
    129.魏朝富,高明,谢德林,陈世正.有机肥对紫色水稻土水稳性团聚体的影响[J].土壤通报,1995,26(3):114-116
    130.尉庆丰,邹美娥,晋艳.土壤多糖与结构的稳定性[J].中国农业科学,1993,26(5):7-13
    131.魏由庆.从黄淮海平原水盐均衡谈土壤盐渍化的现状和将来[J].土壤学进展,1995,23(2):18-24
    132.文倩,关欣.土壤团聚体形成的研究进展[J].干旱区研究,2004,21(4):434-438
    133.沃尔克.土壤微生物学[M].北京:科学出版社.1981
    134.吴东儒.糖类的生物化学[M].北京:高等教育出版社.1987
    135.吴明.生物工程学-过去现在未来[M].上海:知识出版社.1989
    136.吴永平,周景文,陈守文,喻子牛.枯草芽孢杆菌ME714产聚-γ-谷氨酸固态发酵培养基的优化[J].应用与环境生物学报,2007,13(5):713-716
    137.熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素的测定[J].粮食与饲料工业,2005,8(2):40-41
    138.熊毅.灌区土壤盐渍化原因和防治[J].科学通报,1960,(3):85-87
    139.薛峰,扬劲松.劣质水的灌溉利用[J].土壤,1997,(5):240-245
    140.严慧峻,魏由庆,马卫萍,左余宝,张锐,安文钰.培育“淡化肥沃层”对盐渍土改良效果的影响[J].土壤肥料,1992,(3):5-8
    141.严建民,林敏,翟虎渠,虞秋成,张荣铣,张红生.联合固氮工程菌诱导水稻耐盐性效应研究[J].核农学报,2000,14(4):246-250
    142.杨莉琳,李金海.我国盐渍化土壤的营养与施肥效应研究进展[J].中国生态农业学报,2001,9(2):79-81
    143.姚艳玲,冯固,白灯沙·买买提艾力.NaC1胁迫下VA菌根对玉米耐盐能力的影响[J].新疆农业科学,1999,(1):20-22
    144.姚贤良,于德芬.有机肥料及其利用方式对土壤结构的影响[J].土壤学报,1985,2(3):241-249
    145.尹瑞龄.微生物与土壤团聚体[J].土壤学进展,1985,(4):24-29
    146.杨子文.陕西土壤[M].北京:科学出版社.1992
    147.俞仁培,陈德明.我国盐渍土资源及其开发利用[J].土壤通报,1999,30(4):158-159
    148.曾洪学,王俊.盐害生理与植物抗盐性[J].生物学通报,2005,40(9):1-3
    149.翟丙年,刘海轮,尚浩博,杨岩荣.植物吸收利用铁的机理[J].西北植物学报,2002,22(1):184-18
    150.张国红.土壤紧实程度对其某些相关理化性状和土壤酶活性的影响[J].土壤通报,2006,37(6):1054-1057
    151.张建峰,乔勇进,焦明,等盐碱地改良利用研究进展[J].山东林业科技,1997,7(3):5-8
    152.章明奎,何振立,陈国潮.利用方式对红壤水稳定性团聚体形成的影响[J].土壤学报,1997,34(4):359-366
    153.张旭辉,李恋卿,潘根兴.不同轮作制度对淮北白浆土团聚体及其有机碳的积累与分布的影响[J].生态学杂志,2001,20(2):16-19
    154.张元明.荒漠地表生物土壤结皮的微结构及其早期发育特征[J].科学通报,2005,50(1):42-47
    155.赵福庚,何龙飞,罗庆云.植物逆境生理生态学[M].北京:化学工业出版社.2004
    156.赵可夫,李法曾.中国盐生植物[M].北京:科学出版社.1999
    157.周峰,李平华,王宝山.K+稳态与植物耐盐性的关系[J].植物生理学通讯,2003,39(1):67-70
    158.周礼恺.土壤酶的活性[J].土壤学进展,1980,8(4):9-15
    159.周礼凯,严昶升,武冠云,陈恩凤.土壤肥力实质的研究[J].土壤学报,1986,23(3):193-203
    160.邹美娥,厨庆丰.秸秆还田中多糖的效应[J].土壤肥料,1992,(4):16-18
    161.朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境,2003,12(1):102-105
    162.朱庭芸.灌区土壤盐渍化防治[M].北京:农业出版社.1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700