基于集合卡尔曼滤波的遥感信息和作物模型结合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粮食问题是农业生产的重中之重,精确、实时的作物长势监测信息及产量预测信息是农业管理和粮食安全的重要保障。作物生长模拟模型是监测作物生长发育、估算作物产量的有力工具,然而将基于站点研发的作物模型应用于大范围区域作物长势监测和产量预报时面临难以获得区域尺度上的作物参数、农业管理、种植布局信息缺乏等问题,也不易解决模型在区域尺度上的适用性验证问题。随着遥感技术的发展,遥感信息已经成为完善作物模型模拟的主要数据支撑。由于作物生长模型是对实际作物生长发育过程的简化,不仅模型本身存在误差,初始条件、边界条件同样也存在误差。因此,随着作物模型的向前积分,模拟值与真实值之间的差距会越来越大。遥感可以反演作物冠层要素的空间分布,即提供了一种作物冠层要素的客观观测值。因此,作物模型与遥感信息的相互结合十分重要,一方面利用作物生长模型来约束遥感反演模型,另一方面利用遥感数据来调整作物模型的运行轨迹,使积累的误差得到“释放”。最大限度的利用不同来源、不同空间与时间分辨率数据,并将它们有机地融合,更好的表达各种时空尺度上的作物生长过程。数据同化方法的出现和渐趋实用化,为我们达到这一目标提供了一条可行的途径。针对目前国内外研究和应用中存在的问题,并考虑到区域作物估产的需要,本文首先对研究区进行作物分类研究并通过两种玉米制图方案对比综合的方法提取玉米种植区。然后,在引进国外基于集合卡尔曼滤波(EnKF)构建的遥感信息-作物模型耦合模型(PyWOFOST)的基础上,通过对该模型的修改与完善,建立了以LAI为结合点,适用于东北玉米种植区的同化模拟模型,并使用MODIS LAI作为外部同化数据进行同化模拟,将同化模拟结果与常规作物模型(WOFOST)模拟结果比较发现同化后的模拟结果更接近实测值,从而揭示了基于数据同化方法的作物模拟的优势。同时,重点分析了遥感观测(MODIS LAI)和模型参数(TSUM1)的不确定性对同化模拟结果的影响。最后,在玉米制图的基础上,利用完善后的PyWOFOST模型实现了区域尺度上的玉米估产,并利用东北三省各地级市的产量统计数据验证了区域估产的结果,进一步揭示了基于集合卡尔曼滤波同化遥感信息进行作物估产的适用性和可行性。论文的主要研究工作和初步结论如下:1.基于波谱分析方法的作物分类及玉米制图研究本文基于波谱分析方法对研究区进行作物分类制图,并使用两种制图方案对比综合的方法提取玉米种植区。1)考虑到区域作物估产的需要及实测资料的限制,本文使用MODIS陆表产品(包括陆地覆盖类型数据、NDVI数据及反射率数据),通过提取各类作物(大豆、玉米、水稻及小麦)纯净像元的NDVI时间序列曲线,利用波谱分析方法(SAM)进行作物分类研究,在此基础上提取玉米种植区(制图方案1)。2)大豆,玉米及水稻的遥感分类面积和统计面积的相关系数分别为0.858、0.715、0.927,确定系数R2分别为0.770、0.710、0.686,表明基于波谱分析方法获得的作物类型分布图精度比较理想。特别地,对玉米的制图精度而言,黑龙江、吉林、辽宁玉米的分类面积和统计面积的相关系数分别为0.9527、0.6528、0.3462,确定系数分别为0.8291、0.813、0.6883,辽宁省的玉米制图精度不够理想,因此,根据研究区内作物耕种的实际情况,本文采用由中国科学院地理科学与资源研究所(简称中科院地理所,IGSNRR)提供的1km的陆地覆盖类型数据并结合海拔高程数据,提取高程介于0-400m之间且旱地类型占像元面积80%以上的区域作为辽宁省的玉米种植区(制图方案2)。2. PyWOFOST模型在东北玉米估产中的适用性验证通过将PyWOFOST的同化模拟结果与WOFOST的模拟结果及实测结果相比较(主要是玉米LAI、产量、发育期的比较)发现,同化后的模拟结果更接近实测值:1)20个未受灾害影响的农气站玉米产量同化前的模拟误差及在TSUM1的不确定性为0、10、20、30℃时的同化后模拟误差分别为14.04%、12.71%、11.91%、10.44%及10.48%,玉米模拟产量与实测产量的相关系数为0.681,确定系数为0.597,而TSUM1的不确定性为0、10、20、30℃时同化后的模拟产量与实测产量的相关系数均达到0.7以上,确定系数分别为0.631、0.678、0.724及0.697,可见,同化了外部观测数据后的产量模拟结果较同化前有明显改善。2) PyWOFOST的同化模拟LAI普遍较WOFOST的模拟LAI更接近实测LAI,更符合玉米LAI的变化趋势,部分同化后的模拟LAI与实测LAI近乎重合。3)同化前WOFOST模拟发育期与实测发育期平均绝对误差为3.33天,而同化后在TSUM1的不确定性为0、10、20、30℃时PyWOFOST模拟发育期与实测发育期的平均误差分别为3.42、4.29、5.0、5.54天。4)同化后模拟得到的产量、LAI及发育期结果都充分证明了PyWOFOST模型在东北玉米种植区监测作物长势和估产的有效性,也进一步揭示了基于EnKF同化遥感观测和作物模型进行LAI模拟和作物估产的优势。5)尽管PyWOFOST的同化模拟结果较WOFOST的模拟结果普遍有改善,但并不存在所有站点在某一不确定性水平上的同化后的模拟产量或LAI全部优于其它不确定性水平的情况。6)作物模型的模拟能力直接决定同化模拟结果的优劣。由于模型本身对于严重灾害条件下作物的生长情况模拟不十分理想,因此,在严重灾害条件下,尽管同化外部观测数据后,作物的模拟产量较同化前有所改进,但仍和实测值存在较大差距。3.基于PyWOFOST的区域玉米估产研究1)以东北三省玉米种植区为例,同化区域MODIS LAI数据,模拟区域玉米产量,并利用研究区内35个地级市的统计产量验证同化模拟结果。结果表明,57.14%的区域同化估产误差在15%以内,同化产量和统计产量相关系数为0.875,确定系数为0.806;多数市的产量分布较集中,铁岭的产量标准差最小为76.16kg/ha;四平的标准差最大为1856.45 kg/ha,玉米的区域估产精度比较理想。2)作物品种遗传参数对区域作物估产影响较大,在区域作物估产过程中,应尽量将作物品种遗传参数精细化;作物制图精度也是影响作物估产精度的主要因素之一,在区域作物估产时应使用精度更高的作物种植分布图。3)总体而言,区域尺度上利用集合卡尔曼滤波同化LAI的遥感信息与作物模型模拟正常年份或轻度灾害年份作物产量的方案是可行的,但对于极端灾害条件下的作物生长模拟情况仍不十分理想。
The food issue is a top priority of agricultural production. Accurate, real-time information on crop monitoring and yield forecasting is an important guarantee of the agricultural management and food security. Crop growth simulation model is a powerful tool to monitor crop growth and development, and estimate crop yield. However, there exist some difficulties in applying the crop model which is developed based on site in a wide range of region, for example, lack of crop parameters, agricultural management, and planting layout information, and not easy to solve the verification problem of model applicability on the regional scale. With the development of remote sensing technology, remote sensing has become main data support to improve crop model simulation. Crop growth model is a simplification of the actual crop growth and development process, not only model errors, there're also errors in the initial conditions and boundary conditions of a crop model. Thus, with the forward integration of crop model, the gap between modeled value and true value will become increasingly large. Remote sensing information can display the spatial distribution of crop canopy elements, that is to provide a kind of objective observations of crop canopy elements. Therefore, it is very important to combine crop model with remote sensing observations. On the one hand, crop growth models are used to constrain remote sensing inversion model; on the other hand, remote sensing data are used to adjust the trajectory of a crop model and the accumulated errors of a crop model will get released. Different sources, spatial and temporal resolution data are integrated to express crop growth and development process on a variety of spatial and temporal scales better. Data assimilation method appears, becomes more practical and provides a feasible way for us to achieve this goal.First, considering the need for regional crop yield estimation, crop distribution patterns in the study area was studied and maize-growing area was extracted by comparing two maize mapping schemes comprehensively. Second, taking into account the problems in the domestic and foreign research and application, a foreign model (PyWOFOST) built on Ensemble Kalman Filter (EnKF) was introduced which coupled remote sensing information and crop model. First, we modified and improved the PyWOFOST model to take LAI as the joint point of the crop model (WOFOST) and remote sensing information and be applicable to the maize-growing area in Northeast China. MODIS LAI data were used as external assimilation data to simulate maize LAI, yield and development stage with the PyWOFOST model on agro-meteorological stations. Compared the results modeled by WOFOST, the results modeled by PyWOFOST which were closer to the observed values reveals the advantages of crop simulation based on data assimilation methods. At the same time, the impact of uncertainty of remote sensing observations (MODIS LAI) and model parameter (TSUM1) on the assimilation simulation results was analyzed deeply in our work. Finally, on the basis of maize mapping, the PyWOFOST model was used to estimate maize yield on a regional scale. Then the regional yield estimation result was verified by comparing with the statistical yield of maize of each prefecture-level city of three provinces in Northeast China. The result shows that the yield estimation scheme based on EnKF is applicable and feasible. The main research work and preliminary conclusions are as follows:1. Study on crop classification by remote sensing based on spectral analysis method and maize mapping.Spectral analysis method (SAM) was used to identify and classify the crop type distribu-tion in the study area, and two mapping schemes were compared comprehensively to extract maize- growing areas in the study area.1) Considering the needs to regional crop yield estimation and the limitations of measured data, MODIS products (including land cover type data, NDVI data and reflectance data) were used to extract time-series NDVI curves of various crops (soybean, maize, rice and wheat) pure pixels. And then used spectral analysis method (SAM) to identify and classify the crop type distribution in study area and extract the maize-growing area further (Mapping Scheme 1).2) The area derived from the crop classification result was compared with the crop planting area from statistical data, and the results showed that the correlation coefficient of soybeans, maize and rice were 0.858,0.715 and 0.927 respectively, and the coefficient of determination of above crops were 0.770,0.710,0.686 respectively. It revealed that the accuracy of crop classification based on spectral analysis method was ideal. In particular, for the accuracy of maize mapping, the correlation coefficient of maize inversion area extracted from crop classification result and statistical area of Heilongjiang, Jilin and Liaoning Province were 0.9527,0.6528,0.3462, with R2=0.8291,0.813,0.6883 respectively. The maize mapping accuracy of Liaoning Province was not satisfactory, so we combined 1km land cover type data from IGSNRR (Institute of Geographic Sciences and Natural Resources Research, CAS) with DEM data from NASA to extract the area with elevation range from 0-400m and dryland area accounted for more than 80% of a pixel area as the maize-growing area of Liaoning Province (Mapping Scheme 2).2. Applicability of PyWOFOST Model Based on Ensemble Kalman Filter in Simulating Maize Yield in Northeast China.The result showed that, the modeled results (mainly maize LAI, yield, development stage) after assimilating MODIS LAI were closer to observed values by comparing with the results modeled by WOFOST.1) The errors of maize production before and after assimilation at different uncertainty levels of TSUM1(0,10,20,30℃) of 20 agro-meteorological stations without the impact of meteorological disasters were 14.04%,12.71%,11.91%,10.44% and 10.48% respectively. The correlation coefficient and determination coefficient between modeled yield before assimilation and observed yield of maize was 0.681 and 0.597 respectively; the correlation coefficient between modeled yield after assimilation and observed yield of maize were all above 0.7 at different uncertainty levels of TSUM1(0,10,20,30℃)and the determination coefficient were 0.631,0.678,0.724 and 0.697 respectively. In a word, the modeled results after assimilation were better than before.2) LAI modeled by PyWOFOST which more in line with the change trend of maize LAI were generally closer to observed LAI than LAI modeled by WOFOST, part of LAI values after assimilation nearly coincided with observed LAI values.3) The mean error of development stage between modeled value of WOFOST and observed value was 3.33d; the mean error of development stage between modeled value of PyWOFOST at different uncertainty levels of TSUM1(0,10,20,30℃) and observed value were 3.42,4.29,5.0 and 5.54d respectively.4) The modeled results after assimilation (LAI, yield, development stage) all fully proved that PyWOFOT model was applicable in monitoring crop growth and estimating yield in maize-growing area in Northeast China, also revealed the advantages of assimilating remote sensing information into crop model to model LAI and estimate yield based on EnKF.5) Assimilation simulation results of PyWOFOST were better than WOFOST simulation results, but it did not exist an uncertainty level on which assimilation simulation results (yield and LAI) of all sites were superior to other uncertainty levels.6) The modeled ability of crop model directly determines the modeled result with assimilation whether good or not. The crop model itself is not very ideal for simulating crop growth and development under serious disaster conditions. Although the modeled crop yield after assimilation has improved than before, it still exist a gap between the modeled and observed value under serious disaster conditions.3. Regional maize production estimation based on PyWOFOST model1) Taking the maize-growing area in Northeast China as the study area, used MODIS LAI data as external assimilation data to estimate maize yield in the study area. Then verified the regional maize yield result based on EnKF by comparing with the statistical yield of 35 prefecture-level cities. The results showed that, the error of maize yield with assimilation were less than 15% in 57.14% of the study area; the correlation coefficient and coefficient of determination between modeled yield with assimilation and statistical yield were 0.875 and 0.806 respectively; the minimum and maximum standard deviation of modeled yield were 76.16(kg/ha) of Tieling city and 1856.45(kg/ha) of Siping city respectively. Overall, the accuracy of regional crop yield estimation was ideal.2) The genetic parameters of crop varieties has larger effect on regional crop yield estimation, it's better to choose finer genetic parameters on regional scale; the accuracy of crop mapping was also one of the main factors for affecting the accuracy of regional crop yield estimation, consequently, more accurate crop type distribution map should be used.3) Overall, it was feasible to estimate regional crop yield under normal crop growth or mild-disaster conditions with assimilating LAI remote-sensing observations into crop model based on EnKF, but it was still not very satisfactory for simulating crop growth and estimating crop yield under serious disaster conditions.
引文
[1]赵艳霞.遥感信息与作物生长模型结合方法研究及初步应用[D].北京:北京大学,2005:12-14.
    [2]郭建茂.基于遥感与作物生长模型的冬小麦生长模拟研究[D].南京:南京信息工程大学,2007:10.
    [3] De Wit, A., Van Diepen, K.. Crop model data assimilation with the Ensemble Kalman Filter for improving regional crop yield forecasts. Agric. Forest Meteorol.2007(146):38-56.
    [4] Laura Dente, Giuseppe Satalino, Francesco Mattia, et al. Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield[J]. Remote Sensing of Environment, 2008,112 (2008):1395-1407.
    [5] C. Mignolet, C. Schott, M. Benoit. Spatial dynamics of farming practices in the Seine basin:Methods for agronomic approaches on a regional scale[J]. Science of the Total Environment,2007(375):13-32.
    [6]李新,黄春林,车涛,等.中国陆面数据同化系统研究的进展与前瞻[J].自然科学进展,2007,17(2):163-173.
    [7]丑纪范.四维同化的理论和新方法[R].兰州:兰州大学大气科学系,1994.
    [8] Daley R. Atmospheric Data Analysis [M]. New York:CambridgeUniversity Press,1991:457.
    [9] Talagrand O. Assimilation of observations, an introduction [J] Journal of the Meteorological Society of Japan,1997(75)(1B):1912209.
    [10]高亮之.农业模型学基础[M].香港:天马图书有限公司,2004.110.
    [11] Montieth J L. The quest for balance in modeling. Agronomy Journal,1996 (88):695-697.
    [12] Penlinmlng de Vries FWT Jansen DM, tenBerge HFM et al. Simulation of ecophysiological processes of growth of several annual crops, Simulation Mongraphs, Centre for Agricultural Publishing and Documentation (Pudoc), Wageningen, the Netherlands,1989.
    [13]谢云,Kiniry,J.R..国外作物生长模型发展综述.作物学报,2002(28):190-195.
    [13] Sinclair, T. R.,Seligman,N.G..Crop modeling:from infancy to maturity.Agronomy Journal,1996(88): 698-704.
    [14] Bouman,B. A. M.,van Keulen,H.,van Laar,H.H.et al.The school-of-de-W it crop growth simulation models:A pedigree and historical overview[J].Agricultural System,1996,52(2-3):171-198.
    [15]林忠辉.河北平原夏玉米生长与水分利用效率的动态模拟[D].北京:中国科学院地理科学与资源研究所,2003.
    [16] Boote, K.J., Jones, J.W., Pickering, N.B.,1996. Potential uses and limitations of crop models. Agron. J. 88,704-716.
    [17] De Wit, C.T,et al. Simulation of assimilation, respiration and transpiration of crops[J].Simulation Monographs, PUDOC, Wageningen, The Netherlands.1978.
    [18] Stroosnijder, L.(1982).Simulation of the soil water balance. In:Penning de Vries F W T& van laar H
    H (Eds.), Simulation of plant growth and crop production. Simulation Monographs, PUDOC, Wageningen, The Netherlands.1982,175-193.
    [19] de Wit C T. Photosynthesis of leaf canopies. Agricultural Research Report 63. PUDOC, Wageningen, The Netherlands.1965.1-57.
    [20] Penning de Vries, F. W.T. I.. Simulation models of growth of crops, particularly under nutrient stress. In,Physiological aspects of crop productivity.Proceedings of the 15th Colloquium,1980, 213-226.International Potash Institute,Bern
    [21] Penning de Vries, F.W.T.,van Laar,H.,H..Simulation of growth processes and the model BACROS.In F. W. T. Penning de Vries&H.H.van Laar (Eds.), Simulation of plant growth and crop production. Simulation,1982.
    [22] Penninning de Vries FWT, Jansen DM, ten Berge HFM et al, Simulation of ecophysiological processes of growth of several ailnual crops, Simulation Monographs, Centre for Agricultural Publishing and Documentation (Pudoc), GVageningen, the Netherlands,1989.
    [23] Kropff MJ, van Laar HH, Matthews R, ORAZAI, an ecophysiolagical model for irrigation rice production, SARP Research Proceedings, DLO Research Institute for Agrobiology and Soil Fertility, Wageningen, the Netherlands.1994,110pp.
    [24] Ritchie J T, Otter S, Description and performance of CERES2Wheat:Auser-oriented wheat yield model, USDA-ARS, ARS-38,1985,159-175.
    [25] Jones C A, Kiniry J R, CERES2Maize:A Simulation Model of Maize Growth and Development,Texas A &M University Press, College Station, TX,1986.
    [26] Ritchie J T,Alocijia E C, Uehara G, IBSNATPCERES Rice Model, Agrotechnology Transfer,1986.3: 1-5.
    [27] Otter-Nacke S J, Ritchie J T, Godwin D, Singh U, A User's Guide to CERES Barley-V2,10, International Fertilizer Development Centre, Muscle Shoals, Alabama,USA,1991.
    [28] Alagarswamy G, Ritchie J T, Godwin D C, Singh U, A user's guide to CERES Sorghum,Michigan State University, ICRISAT, TFDC and IBSNAT Joint Publication,1988.
    [29] Baker D N, Lambert J R, McKinion J M, GOSSYM:A simulator of cotton crop growth and yield, Tech, Bull,1089, South Carolina Agric Exp Sta, Clemson Univ,Clemson,1983.
    [30] Hoogenboom,G.,Wilkens,P.W.,Tsuji,G.Y.(Eds.).DSSAT Version 3,1999,Volume 4. Honolulu, Hawaii: University of Hawaii.
    [31] Uehara,G.,Tsuji,G.Y.. Overview of IBSNAT.In G.Y.Tsuji,G.Hoogenboom&P.K.Thornton(Eds.),Understanding Options for Agricultural Production. Dordrecht,The Netherlands:Kluwer AcademicPublishers.1998,1-7.
    [32] Alagarswamy,G.,Ritchie,J.T.,Godwin,D.C.,Singh,U..A user's guide to CERES Sorghum:Michigan State University, ICRISAT,IFDC and IBSNAT Joint Publication.1988
    [33] Jones,C.A.,Kiniry,J.R..CERES-Maize:A Simulation Model of Maize Growth and Development:Texas
    A&M University Press,1986.
    [34] Otter Nacke,S.J.,Ritchie,J.T.,Godwin,D.,Singh,U..A User's Guide to CERES Barley V2.10. In Alabama, USA:International Fertilizer Development Centre,Muscle Shoals,1991.
    [35] Ritchie,J.T.,Alocijia,E.C.,Uehara,G..IBSNATPCERES Rice Model.Agrotechnology Transfer, 1986,3,1-5.
    [36] Ritchie,J.T.,Otter,S..Description and performance of CERES Wheat:A user oriented wheat yield model. USDA-ARS, ARS238,1985,159-175
    [37] Wilkerson,G.G.,Jones,J.W.,Boote,K.J..Modeling soybean growth for crop management.Trans.ASAE, 26,1983,63-73.
    [38] Duchon, C. E.. Corn yield prediction using climatology. J. Climate Appl. Meteorol.1986,25:581-590.
    [39] Hodegs, T., Botner, B., Sakamoto, C., et al. Usining the CERES-maize model to estimate production for the US corn belt. Agric. Forest Meteorol.1987,40:293-303.
    [40] Chipanshi, A. C., Ripley, E. A., Lawford, R. G.. Large-scale simulation of wheat yields in a semi-arid environment using a crop-growth model. Agric. Syst.1999,59:57-66.
    [41] Lemmon,H..COMAX:An expert system for cotton crop management.Science,1986,233,29-33.
    [42] McCown,R.L.,Hammer,G.L.,Hargreaves,J.N.G..APSIM:a novel software system for model development, model testing,and simulation in agricultural systems research.Agricultural Systems,1996, 50,55-271.
    [43] Gao L Z,Jin ZQ,Huang Y, et al, Rice clock model computer model to simulate rice development, Agricultural and Forest Meteorology,1992(60):1-16.
    [44]高亮之,金之庆,黄耀等,水稻钟模型一水稻发育动态的计算机模拟,中国农业气象,1989,10(3):3-10.
    [45]王馥棠,王石立,李友文等,春小麦黄叶率发生规律及其模拟模式的研究,应用气象学报,1990(3):305-311
    [46]沈思渊,作物产量的模拟模型,应用生态学报,1990,1(3):270-276.
    [47]王石立,王馥棠,李友文等,春小麦生长简化模拟模式的研究,应用气象学报,1991(3):293-299.
    [48]高翔,双季稻生长动态模拟模式的研究,硕士学位论文,北京:中国气象科学研究院,1995.
    [49]潘学标,韩湘玲,石元春等,COTGROW:棉花生长发育模拟模型,棉花学报,1996,8(4):180-188.
    [50]冯利平,高亮之,金之庆等,小麦发育期动态模拟模型研究,作物学报,1997,23(4):418-424.
    [51]裘国旺,王馥棠,气候变化对我国江南双季稻生产可能影响的数值模拟研究,应用气象学报,1998,9(2):151-159.
    [52]刘建栋,于强,傅抱璞,黄淮海地区冬小麦光温生产潜力数值模拟研究,自然资源学报,1999,14(2):169-174.
    [53]高亮之,金之庆,郑国清等,小麦栽培模拟优化决策系统(WCSODS),江苏农业学报,2000,16(2):65-72.
    [54]吴金栋,王馥棠等,气候异常对东北地区玉米生长影响评估系统的研制,农业工程学报,2000(增
    刊).
    [55]尚宗波,杨继武,殷红等,玉米生长生理生态学模拟模型,植物学报,2000,42(2)184-194.
    [56]张宇,王石立,王馥棠等,气候变化对我国小麦发育及产量可能影响的模拟研究,应用气象学报,2000,11(3):264-270.
    [57]刘建栋,王馥棠,于强等,华北地区农业干旱预测模型及其应用研究,应用气象学报,2003,14(5):593-60447.
    [58]刘布春,王石立,庄立伟等,基于东北玉米区域动力模型的低温冷害预报应用研究,应用气象学报,2003,14(5):616-625.
    [59]石春林,金之庆,基于WCSODS的小麦渍害模型及其在灾害预警上的应用,应用气象学报,2003,14(4):462-468.
    [60] Gao L Z, Jin Z Q, Huang Y, et al. Rice clock model a computer model to simulate rice development. Agricultural and Forest Meteorology.1992(60):1-16.
    [61]高亮之,金之庆等.水稻栽培计算机模拟优化决策系统.北京:中国农业科技出版社.1992.124-134.
    [62]潘学标,韩湘玲,石元春等COTGROW棉花生长发育模拟模型.棉花学报,1996.8(4):180-188.
    [63] Gao L Z Jin ZQ,Huang Y, et al, Rice clock model computer development, Agricultural and Forest Meteorology,1992(60):1-16.
    [64]高亮之,金之庆,黄耀等,水稻钟模型-水稻发育动态的计算机模拟,中国农业气象,1989,10(3):3-10.
    [65]王石立,王馥棠,李友文等春小麦生长简化模拟模式的研究.应用气象学报,1991(3):293-299.
    [66]高翔.双季稻生长动态模拟模式的研究:[硕士学位论文].北京:中国气象科学研究院,1995.
    [67]裘国旺,王馥棠.气候变化对我国江南双季稻生产可能影响的数值模拟研究.应用气象学报,1998.9(2):151-159.
    [68] Spitters C J T, chapendonk A H C M.Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation, Plant and soil,1990(123):193-203.
    [69] Boote KJ, Jones J W, Pickering N B.Potential uses and limitations of crop models. Agronomy Journal, 1996(88):704-716.
    [70] Jurry R B, Peart R M, Jones J W, Boote KJ, et al.Simulation as a tool for analyzing crop response to climate change.Trans ASAE,1990(33):981-990.
    [71] Sinclair T R,Rawlins S L. Inter seasonal variation in soybean and maize yield under global environmental change. Agronomy Journal,1993(85):406-409.
    [72]金之庆,葛道阔,陈华等.评价全球气候变化对我国玉米生产的可能影响.作物学报,1996,22(5):1-12.
    [73]金之庆,方娟,葛道阔等.评价全球气候变化对我国小买生产的可能影响.作物学报,1994,20(2):186-197.
    [74] Muchow R C,Hammer GL, Vanderlip R L. Assessing climatic risk to sorghum production in water
    limited subtropical environments:Ⅱ.Effects of planting date, soil water at planting, and cultivar phenology. Field Crops Research,1994(36):235-246.
    [75] de Wit, A.J.W., Boogaard, H.L., van Diepen, C.A.5. Spatial resolution of precipitation and radiation: the effect on regional crop yield forecasts. Agricult. Forest Meteorol.2005,135 (1-4):156-168.
    [76] Olesen, J. E., Bocher, P. K., Jensen, T.. Comparison of scales of climate and soil data for aggregating simulated yields of winter wheat in Denmark. Agric. Ecosys. Envir.2000,82:213-228.
    [77] Hartkamp, A. D., Whit, J. W., Hoogenboom, G.. Interfacing geographic information systems with agronomic modeling:A review. Agron. J.1999,91:761-772.
    [78] Priya, S., Shibasaki, R. National spatial crop yield simulation using gis-based crop production model. Ecol. Model.2001,135:113-129.
    [79] Goward, S.N., Williams, D.L.. Landsat and Earth system science:development of terrestrial monitoring. Photogrametric Eng. Remote Sens.1997(63):887-900.
    [80] Clevers, J.G.P.W.. A simplified approach for yield prediction of sugar beet based on optical remote sensing data. Remote Sens.Environ.1997,61 (2):221-228.
    [81]梁顺林.定量遥感[M].北京:科学出版社,2009.293.
    [82] W.A. Dorigo, R. Zurita-Milla, A.J.W. de Wit,et al. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. International Journal of Applied Earth Observation and Geoinformation.2007(9):165-193.
    [83] Gobron, N., Pinty, B., Verstraete, M.M., Widlowski, J.-L..Advanced vegetation indices optimized for up-coming sensors design, performance, and applications. IEEE Trans. Geosci. Remote Sens.2000,38 (6): 2489-2505.
    [84] Bouman, B.A.M.. Crop modeling and remote-sensing for yield prediction. Netherlands J. Agricult. Sci.1995,43 (2):143-161.
    [85] Doraiswamy, P.C., Hatfield, J.L., Jackson, T.J., Akhmedov, B.,Prueger, J., Stern, A.. Crop condition and yield simulations using Landsat and MODIS. Remote Sens. Environ.2004,92 (4):548-559.
    [86] Mo, X., Liu, S., Lin, Z., Xu, Y., Xiang, Y., McVicar, T.R..Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecol. Model.2005,183 (2-3):301-322.
    [87] Moulin, S., Zurita-Milla, R., Gue'rif, M., Baret, F.. Characterizing the spatial and temporal variability of biophysical variables of a wheat crop using hyper-spectral measurements. In:Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS).2003,2206-2208.
    [88] Haboudane, D., Miller, J.R., Tremblay, N., Zarco-Tejada, P.J., Dextraze,L.. Integrated narrow-band vegetation indices forprediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ.2002,81 (2-3):416-426.
    [89] Zhao, C., Liu, L., Wang, J., Huang, W., Song, X., Li, C., Wang, Z.. Methods and application of remote sensing to forecast wheat grain quality. In:Proceedings of International Geoscience and Remote Sensing
    Symposium (IGARSS).2004,.4008-4010.
    [90] Mutanga, O., Skidmore, A.K., Prins, H.H.T.,2004. Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features. Remote Sens. Environ.2004,89 (3):393-408.
    [91] Moran, M.S., Clarke, T.R., Inoue, Y., Vidal, A.. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ.1994,49 (3):246-263.
    [92] Tucker, C.J., Vanpraet, C., Boerwinkel, E., Gaston, A.. Satellite remote sensing of total dry matter production in the SenegaleseSahel. Remote Sens. Environ.1983,13 (6):461-474.
    [93] Bastiaanssen, W.G.M., Ali, S.. A new crop yield forecasting model based on satellite measurements applied across the IndusBasin, Pakistan. Agricult. Ecosyst. Environ.2003,94 (3):321-340.
    [94] Hurtado, E., Artigao, M.M., Caselles, V.. Estimating maize (Zeamays) evapotranspiration from NOAA-AVHRR thermal data in the Albacete area, Spain. Int. J. Remote Sens.1994,15 (10):2023-2037.
    [95] Richardson, A.J., Wiegand, C.L., Arkin, G.F., Nixon, P.R., Gerbermann,A.H.. Remotely-sensed spectral indicators of sorghum development and their use in growth modelling. Agricult.Meterol.1982(26): 11-23.
    [96] Clevers, J.G.P.W.,1989. Application of a weighted infrared-red vegetation index for estimating leaf area index by correcting for soil moisture. Remote Sens. Environ.29 (1),25-37.
    [97] Atzberger, C.,2004. Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models. Remote Sens. Environ.93 (1-2),53-67
    [98] Huang, Z., Turner, B J., Dury, S.J., Wallis, I.R., Foley, W.J.,2004. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens. Environ.93 (1-2),18-29.
    [99]赵英时等.遥感应用分析原理与方法[M].北京:科学出版社.2003,371-372.
    [100] Anatoly Gitelson et al.,1996. Estimation of seasonal dynamics of pasture and crop productivity in Kazakhstan using NOAA/AVHRR data. Geoscience and Remote Sensing Symposium.1996,1,209-211.
    [101]宫鹏,浦瑞良,郁彬.不同季相针叶树种高光谱数据识别分析[J].遥感学报,1998,8(2):212-216.
    [102]宫鹏,史培军,浦瑞良,郭华东.对地观测技术与地球系统科学.北京:科学出版社.1996,208.
    [103] Gobron, N, Pinty, B., Verstrate, M. M, and Widlowski, J. L. Advanced vegetation indices optimized for up-coming sensors:Design, performance, and applications, IEEE Trans. Geosci. Remote Sens.2000, 38:2489-2504.
    [104]李小文,王锦地(1995).植被光学遥感模型与植被结构参数化.北京:科学出版社.
    [105] Nilson,T.,Kuusk,A.(1989).A Refelctance Model for the Homogeneous Plant Canopy and Its Inversion.Remote sensing of Environment,27,157-167.
    [106] Kuusk. A. (1995a). A fast invertible canopy reflectance model, Remote Sens. Enbir.50:75-82.
    [107] Ross, J. The Radiation Regime and Architecture of Plant Stands[M]. Dr. W. Junk Publishers.1981. Myneni, R. B., Ross, J., Eds.. Photo-Vegetation Interactions:Application in Optical Remote Sensing and Plant Physiology, Springer-Verlag.
    [108] Li, S. S., Zhou, X. B. Modelling and measuring the spectral bidirectional reflectance factor of snow-covered sea ice:An intercomparison study. Hydrological processes.2004,18; 3559-3581.
    [109] Kokhanovsky, A. A., Aoki, T., Hachikubo, A. et al.. Reflective properties of natural snow: Approximate asymptotic theory versus in situ measurements. IEEE transactions on geo- science and remote sensing.2005,43:1529-1535.
    [110] Pitmam, K. M., Wolff, M. J., Clayton, G. C.. Application of modern radiative transfer tools to model laboratory quartz emissivity. Journal of geographysical research-planets.2005,110, Art. No.08003.
    [111] Li, X., Strahler, A. H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy:Effect of crown shape and mutual shadowing, IEEE Trans.Geosci. Remote Sens.1992, 30:276-292.
    [112] Li, X., Strahler, A. H., Friedl, M.. A conceptual model for effective directional emissivity from nonisothermal surface, IEEE Trans. Geosci. Remote Sens.1999,37:2509-2517.
    [113] Peddle, D. R., Franklin, S. E., Johnson, R.L. et al.. Structural change detection in a distributed conifer forest using a geometric optical reflectance model in multiple-forward mode. IEEE transactions on geoscience and remote sensing.2003,41:163-166.
    [114] Peddle, D. R., Johnson, R. L., Cihlar, J. et al. Large area forest classification and biophysical parameter estimation using 5-scale canopy reflectance model in multiple-forward mode. Remote sensing of environment.2004,89:252-263.
    [115] Liu, J. C., Melloh, R. A., Woodcock, C. E. et al. The effect of viewing geometry and topography on viewable gap fractions through forest canopies. Hydrological processes.2004,18:3595-3607.
    [116] Chopping, M.J., Su, L. H., Laliberte, A. et al. Mapping woody plant cover in desert grasslands using canopy reflectance modelling and MISR data. Geophysical research letters.2006,33, Art. No. L17402.
    [117] Xiang, G., Alfredo R. H., Wenge, N. et al.. Optical-biophysical relationships of vegetatiom spectra without background contamination. Remote sensing of environment.2000,74(3):609-620.
    [118] Borner, A., Wiest, L., Keller, P. et al. Sensor:A tool for the simulation of hyperspectral remote sensing systems. ISPRS journal of photogrammetry and remote sensing.2001,55:299-312.
    [119] Casa, R., Jones, H. G.. LAI retrieval from multiangular image classification and inversion of a ray tracing model. Remote sensing of environment.2005,98:414-428.
    [120] Disney, M., Lewis, P., Saich, P..3D modeling of forest canopy structure for remote sensing simulations in the optical and microwave domains. Remote sensing of environment.2006,100:114-132.
    [121] Kobayashi, H., Suzuki, R., Kobayashi, S.. Reflectance seasonality and its relation to the canopy leaf area index in an eastern Siberian larch forest:Multi-satellite data and radiative transfer analyses. Remote sensing of environment.2007,106:238-252.
    [122] Moran, M. S., Inoue, Y., Barnes, E.. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ.1997,61:319-346.
    [123] Baret, F., Weiss, M., Troufleau, D., et al. Maximum information exploitation for canopy characterization by remote sensing. Aspects Appl. Biol.2000,60.
    [124] Wiegand C L, Richardson A J, Kanemasu E T, et al. Leaf area index estimates for wheat from LANDSAT and their imp lications for evapotransp iration and crop modeling [J]. Agronom y Journal,1979(71):3362342.
    [125] Wiegand, C L, Richardson A J, Jackson R D, et al, Development of agrometeological crop model inputs from remotely sensed information. IEEE Trans. Geosci. Remote Sens.,1986.GE-24:90-98.
    [126] Delecolle R, Maas S J, Guerif M, Baret F, Remote sensing and crop production models,Present trends, ISPRS Journal of Photo and Remote Sensing,1992(47):145-161.
    [127] Fischer,A.,Kergoat,L.,Dedieu,G..Coupling satellite data with vegetation functional models:review of different approaches and perspectives suggested by the assimilation strategy.Remote Sensing Reviews, 1997(15):283-303.
    [128] Moulin,S.,Bondeau,A..Combining agricultural crop models and satellite observations:from field to regional scales.International Journal of Remote Sensing,1998(19):1021-1036.
    [129] Maas,S.J..Use of remotely-sensed information in agricultural crop growth models.Ecological Modeling,1988(41):274-268.
    [130] Delecolle,R.,Guerif,M..Introducing spectral data into a plant process model for improving its prediction ability. Aussois,France,In,Proceeding of the 4th International Colloquium Signatures Spectrals d'Objets en Teledetection.1998,125-127.
    [131] Karvonen T, Laurila H, Meemola J. Estimation of Agricultural Crop Production Using Satellite Information [M]. Husbandry:University of Helsinki, Department of Crop,1991(26):1273.
    [132] Supit I; Hoojier C A, van Diepen. System description of the WOFOST 6,0 crop simulation model implemented in CGMS, The Winand Starting Centre for Intergrated Land, Soil and Water Research {SC-DLO), Wageningen, The Netherlands.1994,144pp.
    [133] Carbone G J,Narumalani S, KingM. App lication of remote sensing and GIS technologies with physiological crop models [J].Photogram etry Engineering and Rem ote Sensing,1996,62 (2):171-179
    [134] Bunkei,M.,Masayuki,T.Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in East Asia.Remote sensing of Environment,2002(81),58-66.
    [135]辛景峰.基于3S技术与生长模型的作物长势监测与估产方法研究[D].北京:中国农业大学,2001.
    [136]宇振荣,Driessen PM基于遥感反演作物冠层温度的作物生长模拟和预报[J].中国农业大学学报,2003(8)(增刊):71-75.
    [137]林忠辉.河北平原夏玉米生长与水分利用效率的动态模拟[D].北京:中国科学院地理科学与资源研究所,2003.
    [138]王人潮,黄敬峰.水稻遥感估产[M].北京:中国农业出版社,2002
    [139]杨星卫,薛正平,陆贤.水稻遥感动力估产模拟初探[J].遥感学报,1994,9(4):281-286.
    [140]李秉柏,田翠玲,王志明等.基于作物模型与遥感信息的水稻产量预报研究[J].江苏农业科学,2006(6):29-31.
    [141] Maas, S.J..Using satellite data to improve model estimates of crop yield.Agronomy Journal,1988(80), 655-662.
    [142] Maas,S.J..Use of remotely-sensed information in plant growth simulation models.Advances in Agronomy,1991(1),17-26.
    [143] Maas,S.J.,Jackso,R.D.,Idso,S.B. Incorporation of remotely-sensed indicators of water stress in a crop growth simulation model. Charleson, S. Carolina, In,Preceedings of the 19th Conference on Agriculture and Forest Meteorology.1989,228-231.
    [144] Maas,S.J.. Parameterized model of gramineous crop growth:Ⅱ.Within season simulation calibration. Agronomy Journal,1993(85),354-358.
    [145] Clevers,J.G.P.W.,van Leeuwen,H.J.C..Combined use of optical and microwave remote sensing data for crop growth monitoring.Remote Sensing o Environment,1996(56),42-51.
    [146] Clevers, J.G.P.W. A simplified approach for yield prediction of sugar beet on optical remote sensing data. Remote Sensing o Environment,1997(61),221-228.
    [147] Bach,H.,Verhoef,W.,Schneider,K..Coupling remote sensing observation models and a growth model for improved retrieval of(Geo)Biophysical Information from Optical remote sensing Data. Barcelona,Spain,In,remote sensing for agriculture,ecosystems,and hydrology,2000(Ⅱ):1-11.
    [148] Nouvellon,Y.,Susan,M.M.,Danny,L.S..Coupling a grassland ecosystem model with landsat imagery for a 10-year simulation of carbon and water budgets.Remote sensing of Environment,2001(78):131-149.
    [149] Fang, Hongliang, Liang, Shunlin, Hoogenboom, Gerrit, Teasdale, John and Cavigelli, Michel. Corn-yield estimation through assimilation of remotely sensed data into the CSM-CERES-Maize model, International Journal of Remote Sensing,2008,29(10):3011-3032.
    [150] Dente L, Satalino G, Mattia F, et al. Assimilation of leaf area index derived from ASAR and MER IS data intoCERES- Wheat model to map wheat yield [J]. Rem ote Sensing of Environm ent,2008,112 (4): 1395-1407.
    [151]闫岩,柳钦火,刘强,等.基于遥感数据与作物生长模型同化的冬小麦长势监测与估产方法研究.[J].遥感学报,2006,10(5):804-811.
    [152]张黎,王石立,何延波,马玉,庄立伟,侯英雨.遥感信息应用于水分胁迫条件下的华北冬小麦生长模拟研究.作物学报,2007,33(3):401-410.
    [153] Bouman,B.A.M..Linking physical remote sensing models with crop growth simulation models, applied for sugar beet.International Journal of Remote Sensing,1992(13):2565-2581.
    [154] Moulin,S.,Fischer,A.,Dedieu,G.,Delecolle,R..Temporal variations in satellite reflectances at field and regional scales compared with values simulated by lining crop growth and SAIL models.Remote sensing of Environment,1995(54):261-272.
    [155] Moulin,S.,Fischer,A.,Dedieu,G.. Assimilation of shortwave remote sensing observations within an
    agrometeorological model:crop production estimation. Lincoln,U.S.A.,In,1996 International Geoscience and Remote Sensing Symposium.1996,2366-2368.
    [156] Kergoat,L.,Fischer,A.,Moulin,S.,Dedieu,G..Satellite measurements as a constraint on estimates of vegetation carbon budget.Tellus,1995(47B):251-263.
    [157] Guerif,M.,Duke,C.L..Calibration of the SUCROS emergence and early growth module for sugar beet using Opical remote sensing data assimilation.European journal of agronomy,1998,127-136.
    [158] Verhoef W. Light scattering by leaf layers with application to canopy reflectance modeling:the SAIL model. Remote sensing environ,1984(16):125-141.
    [159] Stol W, Rouse DI, van Kraalingen DWCG.FSEOPT a FORTRAN program for calibration and uncertainty analysis of simulation models, Simulation Report CABO-TT, No,24, CABO-DLO and Agricultural University, Wageningen,1992,24.
    [160] Baret F, Guyot G.Potentials and limits of vegetation indices for LAI and APAR assessment.Remote Sens Environ,1991(35):161-173.
    [161] Guerif M, Duke C. Adjustment procedure of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation. Agric, Ecosyst Environ,2000(81):57-69.
    [162] Moulin S, Launay M, Guerif M. The crop growth monitoring at a regional combination of remote sensing and process-based models. Tsukuba (Japan), International Symposium "Crop monitoring and Prediction at Regional Scales", February,2001.
    [163] Launay M, Guerif M. Remote sensing data assimilation in a sugar beet growtl nmodel as a tool for spatial crop development variability forecast and diagnosis. Aussois (France),8th International Symposium "Physical Measurements and Signatures in Remote Sensing, January 2001.
    [164] Supit I. Predicting national wheat yields using a crop simulation and trend models. Agricultural and Forestry Meteorology,1997(88):199-214.
    [165] Weiss M, Troufleau D, Baret F et al. Coup ling canopy functioning and radiative transfer models for remote sensing data assimilation.Agricultural and Forest Meteorology,2001(108):113-128.
    [166] Marie Launay, Martine Guerif. Assimilating remote sensing data into a cropmodel to improve predictive performance for spatial applications. Agriculture, Ecosystems and Environment,2005(111): 321-339.
    [167] Fang, Hongliang, Liang, Shunlin and Hoogenboom, Gerrit. Integration of MODIS LAI and vegetation index products with the CSM-CERES-Maize model for corn yield estimation. International Journal of Remote Sensing,2011,32(4):1039-1065.
    [168]马玉平,王石立,张黎等,基于遥感信息的华北冬小麦区域生长模型及模拟研究,气象学报,2005,63(2):204-215.
    [169]杨沈斌,申双和,李秉柏,等ASAR数据与水稻作物模型同化制作水稻产量分布图[J].遥感学报,2009,3(2):282-289.
    [170] Yannick C, de Wit A, Gregory D,et al. Potential performances of remotely sensed LAI assimilation in
    WOFOST model based on an OSS Experiment[J]. Agricultural and Forest Meteorology,2011, 151:1843-1855.
    [171]王东伟.遥感数据与作物生长模型同化方法及其应用研究[D].北京:北京师范大学,2008:1-141.
    [172] Hansen J W, Jones J W. Scaling-up crop models for climate variability applications[J].Agro. System, 2000,65(1):43-72.
    [173] Hoogenboom G. Contribution of agrometeorology to the simulation of crop production and its applications[J]. Agricultural and Forest Meteorology,2000,103:137-157.
    [174] Russell G, van Gardingen P R. Problems with using models to predict regional crop production[A]. Scaling-up from Cell to Landscape[C]. Cambridge, U K:Cambridge University Press,1997:273-294.
    [175] Yakov P, David B, Walter R. Simulating scale-dependent solute transport in soils with the fractional advective- dispersive equation[J]. Soil Sci. Soc. Am. J,2000,64:234-1243.
    [176]韩丽娟.陆地表面过程模型同化MODIS地表温度定量研究[D].北京:北京师范大学,2006,1-108.
    [177] Charney, J., Halem, M. and Jastrow, R.,. Use of incomplete historical data to infer the present state of the atmosphere, Journal of Atmospheric Science,1969(26):1160-1163.
    [178]李新,摆玉龙.顺序数据同化的Bayes滤波框架[J].地球科学进展,2010,25(5):515-522.
    [179] Gilchrist B, Cressman G P.. An experiment in objective analysis.Tellus,1954,6,309-318.
    [180] Panofsky H A.. Objective weather map analysis. J. Met.,1949,6,386-392.
    [181] P. Berthorsson and B. Doos, "Numerical weather map analysis," Tellus,1955(7):329-340.
    [182]邹晓蕾.资料同化理论和应用[M].北京:气象出版社,2009.14.
    [183] Mike Fisher, Assimilation techniques (3):3dVar, April 2001.
    [184] Mike Fisher, Assimilation techniques (3):3dVar, April 2001, ECMWF,2002.
    [185] F. LeDimet and O. Talagrand, "Variational algorithms for analysis and assimilation of meteorological observations:theoretical aspects," Tellus,1986(38A),97-110.
    [186] DaleyR. Atmospheric DataAnalysis [M]. NewYork:Cambridge University Press,1991:457.
    [187] Kalnay E. AtmosphericModeling, DataAssimilation and Predictability [M]. Cambridge:Cambridge University Press,2002,512.
    [188] Courtier P. Variational methods[J]. Journal of the Meteorological Society of Japan,1997,75(1B): 211-218.
    [189] Talagrand O. Assimilation of observations, an introduction [J]. Journal of the Meteorological Society of Japan,1997,75(1B):191-209.
    [190] LiX, Koike T, Mahadevan P. A very fast simulated re-annealing (VFSA) approach for land data assimilation[J]. Computers and Geosciences,2004,30(3):239-248.
    [191] YangK, WatanabeT, KoikeT,etal. Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soilmoisture and the surface energy budget [J] Journal of the Meteorological Society of Japan,2007,85A:229-242.
    [192] Evensen, G.,Sequential data assimilation with a non-linear quasi-geostrophic model using Monte
    Carlo methods to forecast statistics.Journal of Geophysical Research,1994,99,10143-10162.
    [193] Evensen,G.The Ensemble Kalman Filter:theoretical formulation and practical implementation. Ocean Dynamics,2003(53):343-367.
    [194]张建平,赵艳霞,王春乙,等.气候变化情景下东北地区玉米产量变化模拟.中国生态农业学报.2008,16(6):1448-1452.、
    [195] Zhang Mingwei, Zhou Qingbo, Chen Zhongxin, et al. Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data[J]. International Journal of Applied Earth Observation and Geoinformation,2008,10:476-485.
    [196] Chen Jin, Jonsson Per, Tamura Masayuki, et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter[J]. Remote Sensing of Environment,2004,1: 332-344.
    [197]马玉平,王石立,张黎针对华北小麦越冬的WOFOST模型改进[J].中国农业气象,2005,26(3):145-149.
    [198]陈振林,张建平,王春乙,等.应用WOFOST模型模拟低温与干旱对玉米产量的综合影响[J].中国农业气象,2007,28(04):440-442.
    [199] Brian D Wardlow, Stephen L Egbert. Large-area crop mapping using time-series MODIS 250 m NDVI data:An assessment for the U.S. Central Great Plains[J]. Remote Sensing of Environment.2008, 112:1096-1116.
    [200] Doraiswamy P C, Sinclair T R, Hollinger S, et al. Application of MODIS derived parameters for regional crop yield assessment[J]. Remote Sensing of Environment,2005,97:192-202.
    [201] Mutlu Ozdogan.The spatial distribution of crop types from MODIS data:Temporal unmixing using independent component analysis[J]. Remote Sensing of Environment,2010,114:1190-1204.
    [202] Turner Ⅱ B L, Skole D, Sanderson S, et al. Land-Use and Land-Cover Change Science/Research Plan[R]. IGBP Report No.35 and HDP Report No.7,1995.
    [203] Xiangming Xiao, T Stephen Bolesa, Jiyuan Liu, et al. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images[J]. Remote Sensing of Environment,2005,95:480-492.
    [204] Wang Q, Tenhunen J, Granier A, et al. Long-term variations in leaf area index and light extinction in a Fagus sylvatica stand as estimated from global radiation profiles[J]. Theoretical and Applied Climatology, 2004,79:225-238.
    [205] Sellers P J. Canopy reflectance photosynthesis and transpiration[J]. International Journal of Remote Sensing,1985,6:1335-1372.
    [206] Brian D Wardlow, Stephen L Egbert, Jude H Kastens Analysis of time-sseries MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains[J]. Remote Sensing of Environment,2007,108:290-310.
    [207]邓书斌ENVI遥感图像处理方法[M].北京:科学出版社,2010.342-345.
    [208] John C Mars, Lawrence C Rowan. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals[J]. Remote Sensing of Environment,2010, 114:2011-2025.
    [209] Rhonda D Phillips, Layne T Watson, Randolph H Wynne. Hybrid image classification and parameter selection using a shared memory parallel algorithm[J]. Computers and Geosciences,2007,33:875-897.
    [210] Hansen M C, Reed B. A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products[J]. International Journal of Remote Sensing,2000,21:1365-1373.
    [211]王秀,赵春江,周汉昌,等.冬小麦生长便携式NDVI测量仪的研制与试验[J].农业工程学报,2004,20(4):95-98.
    [212]郝卫平,梅旭荣,蔡学良,等.基于多时相遥感影像的东北三省作物分布信息提取[J].农业工程学报,2011,27(1):201-207.
    [213]中国农林作物气候区划协作组.中国农林作物气候区划[M].北京:气象出版社,1987.57
    [214] Singer R B, Mccord T B. Mars:Large scale mixing of bright and dark materials and implications for analysis of spectral reflectance[C]. Lunar and Planatary Science Conference,1979,10:1825-1848.
    [215]王培娟,梁宏,李袆君,等.气候变暖对东北三省玉米关键发育期及种植布局的影响[J].资源科学,2011,33(10):1976-1983.
    [216]万恩璞,徐希孺.中国玉米遥感动态监测与估产[M].北京:中国科学技术出版社,1996.2
    [217]山东省农业科学院.中国玉米栽培学[M].上海:上海科学技术出版社,1986.18
    [218]刘明光.中国自然地理图集[M].北京:中国地图出版社,1997.113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700