长江源区水文周期特征及其对气候变化的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江源区位于青藏高原腹地,具备“高、寒、旱”的特点,其生态系统脆弱。近年来,随着全球气候变化,源区出现了河道断流、冻土退化、植被破坏等一系列的生态环境问题,引起社会各界的关注。而众问题与气候、水文的变化的关系较为密切。源区水文循环对气候变化较为敏感,因此研究其气候条件变化下的水文响应,对了解高寒旱流域的产流过程与极端气候条件下水文过程,具有重要的科学意义与实际价值。
     本文通过改进加里宁方法、SLOPE方法、小波方法与水文气候响应模型,计算了长江源区基流量,展示了气候要素(降水、气温、蒸发)在区域上的年际空间变化,剖析了水文要素(径流、基流)与气候的周期,揭示了水文与气候的周期相关性,计算了各气候要素对水文要素的影响贡献率,建立了整个流域尺度的水文气候响应模型,分析了模型的气候敏感性,模拟了各假定气候情景的水文响应。
     基于改进加里宁方法,各参数与基流的相关性排序为径流、比例系数B值、拐点流量Q0和退水指数a值。其中, B值反映了地表水与地下水转化特点,且与降水及气温的年际变化一致。依据SLOPE方法,源区气候变化的空间情况主要是往暖-湿方向发展,仅在东南部地区往暖-干方向发展的。
     基于小波方法,判定区内各气象站(沱沱河、五道梁、曲麻莱及玉树)的气候要素显示不同的周期特征;而整个源区的气候要素具有4年、8年、29-30年及43年的共同周期外,还存在独立的周期如14-15年(仅气温)及18年(仅蒸发)。源区径流与基流均具有7-8年、20-21年及43年的周期,其中20-21年的周期项控制了整个径流与基流的变化。
     全周期小波互相关分析中,径流、基流与降水的相关系数整体大于0,为正相关。径流、基流与气温的相关系数整体上不全大于0(存在负相关),且径流、基流与蒸发相关曲线间于降水与气温。在气候要素的影响分析中,气候要素对径流的影响排序应为降水、蒸发与气温;而基流受其影响顺序为蒸发、降水与气温。此外,比较了非标准化与标准化的小波相关分析的结果,认为后者可信度高。
     基于对长江源区积雪与冻土影响的考虑,区分了固液态降水补给与冻土冻结水分来源,所建立的水文气候响应模型对径流变化模拟效果佳。根据气候敏感性分析,推断降水易改变径流的大小,而气温易改变径流过程的形态。基于气候情景分析,认为降水对径流值为正相关影响,而气温通过影响水分冻结过程,对年内径流过程的平稳光滑程度为负相关影响。
The source region of Yangtze River is located in the middle of Qinghai-TibetPlateau described as high-cold-arid area, which eco-environment is fragile. In recentyears, with global climate change, there exist eco-environmental problems as riverdry-up, permafrost degradation and vegetation deterioration, which has caught worldattention. These problems are related closely with climatic and hydrological change,and the regional hydrological cycle is sensitive to climate change. Thus, it isimportant to study hydrological response with climatic variation, which is helpful toexplain processing of runoff and baseflow in similar regions or with extreme climaticconditions.
     Based on many methods applied in dissertation, the baseflow is calculated byadvanced Kalinin Baseflow Separation and yearly spatial variation of climatic factors(precipitation, temperature and evaporation) is shown by SLOPE. The periods ofclimatic and hydrological factors (runoff and baseflow) are decomposed by wavelettransformation, which their correlations are exposed and climatic contributions arefigured out by its further research. To built climate-hydrology TANK model in wholeregion, the sensitivity to climate change is analyzed and hydrological responses toeach extreme climatic scene is simulated.
     According to advanced Kalinin Baseflow Separation, relation order betweenparameters and baseflow is runoff, B, Q0and a. The value of B can reflecttransforming features of runoff and baseflow, which changed as trend of precipitationand temperature yearly. According to SLOPE, the warm-wet trend existed in largepart of region, but warm-arid trend only existed in south-east part.
     Through wavelet method, each meteorological station has its own periodicalfeature in Tuotuohe, Wudaoliang, Qumalai and Yushu. By considered whole region,its climatic factors have common periods of4,8,29-30and43year, which it havesingle periods of14-15year (only in temperature) and18year(only in evaporation).The runoff and baseflow have common periods of7-8,20-21and43year, which trend of hydrologic factors is almost controlled by the medium period.
     By correlative analysis of wavelet coefficients in whole periodical scale, thecorrelation between hydrological factors of precipitation is positive. The correlationbetween hydrological factors of temperature is negative in partial temporal scale, andthe correlation between hydrological factors of evaporation is located between twoformal relations. Based on climatic influence analysis, the impact order to runoff isprecipitation, temperature and evaporation. However, the impact order to baseflow isevaporation, precipitation and temperature. Comparing with non-normalized andnormalized wavelet transformation, the later one is more reasonable.
     With considerations of snow and permafrost in source region, by indentifiedsolid/liquid precipitation, the established TANK model simulates runoff pattern well.According to climatic sensitive analysis, precipitation can only influence value ofrunoff, but temperature can change its processing shape easily. Based on climaticscene analysis, it deduces that precipitation has positive impact on value of runoff.However, temperature has negative impact on monthly runoff processing by its effecton water freezing.
引文
Anderson M G, Burt T P. Modeling strategies[A]. Anderson M G, Burt T P. HydrologicalForecasting [C]. Chichester: John Wley&Sons Ltd.,1985.1-2,5-8.
    Appleby V. Recession flow and the base-flow problem[J]. Water Resources Research,1970,6(5):1398-1403.
    Arlen D F. User' s Manual of Hydrologic Modeling System HEC-HMS. Version2.1: US ArmyCorps of Engineers. Hydrologic Engineering Center,2000.
    Arnold J G, Allen P M. Automated methods for estimating base-flow and ground water rechargefrom stream flow[J]. Journal of the American Water Resources Association,1999,35(2):411-424.
    Beven K J, Kirkby M J. A physically based variable contributing area model of basin hydrology[J]. Hydrological Science Bulletin,1979,24:43-69.
    Birtles A B. Identification and separation of major base-flow components from a streamhydrograph[J]. Water Resources Research,1978,14(5):791-803.
    Cherkauer K A, Lettenmaier D P. Hydrologic effects of frozen soils in the upper MississippiRiver basin [J]. Journal of Geophysical Research,1999,104(D16):19599-19610.
    Chiew F H S, Peel M C, Western A W. Application and Testing of the Simple Rainfall-runoffModel SIMHYD. In: Mathematical Models of Watershed Hydrology[M]. Littleton,Colorado: Water Resources Publication,2002.
    Clarke R T. A review of some mathematical models used in hydrology, with observation on theircalibration and use [J]. Journal of Hydrology,1973,19(1):1-5.
    Graham L P,Aandrasson J, Carlsson B. Assessing climate change impacts on hydrology from anensemble of regional climate models, model scales and linking methods: A case study of theLule River basin [J]. Climate Change,2007,81:293-307.Hall F R. Base flow recessions: areview[J]. Water Resource Research,1968,4(5):973-983.
    Guo H, Hu Q, Jiang T. Annual and seasonal streamflow responses to climate and land-coverchanges in the Poyang Lake basin, China [J]. Journal of Hydrology,2008,355:106-122.
    Hodgkins G A, Dudley R W, Huntingo T G. Changes in the timing of high river flows in NewEngland over the20th Century [J]. Journal of Hydrology,2003,278(1/4):244-252.
    Jia Y, Ni G, Kawahara Y, et al. Development of WEP model and its application to an urbanwatershed[J]. Hydrological Processes,2001,15(11):2175-2194.
    Jia Y, Wang H, Zhou Z, et al. Development of the WEP2L distributed hydrological model anddynamic assessment Ofwater resources in the Yellow River Basin [J]. Journal of Hydrology,2006,331:606-629.
    Kirby J F, Swain C J. Global and local isostatic coherence from the wavelet transform.Geophysical Research Letters,2004,31(24):1-5.
    Koza J. Genetic Programming: On the Programming of Computers by Natural Selection[M].Cambridge, MA.: MIT Press,1992.
    Kuchment L S, Gelfan A N, Demidov V N. A distributed model of runoff generation in thepermafrost regions[J]. Journal of Hydrology,2000,240:1-22.
    Martinet J, Rango A, Roberts R. Snowmelt Runoff Model (SRM) User's Manual. UpdatedEdition2005, WinSRM1.10[R]. USDA Jornada Experimental Range, New Mexico StateUniversity, Las Cruces, USA. http://hydrolab.areas-da.Gov/cgi-bin/srmhome.
    Niemann J D, Eltahir E A B. Sensitivity of regional hydrology to climate change,withapplication to the Illinois River basin [J]. Water Resources Research,2005,41: W07014.
    Neitsch S L, Arnorld J G, Kiniry J R, et al. Soil and Water Assessment Tool TheoreticalDocumentation/Version2000[R]. http://www.brc.tamus.edu/swat/.
    Petty john W A, Henning R. Preliminary estimate of ground-water recharge rates, relatedstream-flow and water quality in Ohio[R]. Ohio State University Water Resources CenterProject Completion Report,1979,552:323-325.
    Pinder G, Jones J F. Determination of the groundwater component of peak discharge from thechemistry of total runoff[J]. Water Resources Research,1969,5(2):438-445.
    Razdan A. Wavelet correlation coefficient of strongly correlated time series. Physica A,2004,333(3):35–42.
    Rutledge A T, Daniel C C. Testing an automated method to estimate ground-water recharge fromstream-flow records[J]. Groundwater,1994,32(2):180-189.
    Smakhtin V U. Low flow hydrology: a review[J]. Journal of Hydrology,2001,240:147-186.
    Torrence C, Campo G P. A practical guide to wavelet analysis. Bulletin of the AmericanMeteorological Society,1998,79(1):61–78.
    Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer,1995.
    Wittenberg H, Sivapalan M. Watershed groundwater balance estimation using stream-flowrecession analysis and base-flow separation[J]. Journal of Hydrology,1999,219:320-331.
    Zhang Y K, Schihilling K E. Increasing stream-flow and base-flow in the Mississipi River sincethe1940s: Effect of land use change[J]. Journal of Hydrology,324(2006):412-422.
    安树青.湿地生态工程:湿地资源利用与保护的优化模式[M].北京:化学工业出版社,2003.
    白路遥,荣艳淑.气候变化对长江、黄河源区水资源的影响[J].水资源保护,2012,28(1):46-50.
    邴龙飞,邵全琴,刘纪远,等.基于小波分析的长江和黄河源区汛期、枯水期径流特征[J].地理科学,2011,31(2):232-238.
    长江水利委员会.水文预报方法[M].北京:水利电力出版社,1993.
    陈芳,马英芳,刘秀兰.长江源区气候变化及其成因研究[J].青海气象,2007,2:11-15.
    陈芳,马英芳,申红艳,等.长江源区近44年气候变化的若干统计分析[J].气象科技,2007,35(3):340-344.
    陈利群,刘昌明,李发东.基流研究综述[J].地理科学进展,2006a,25(1):1-15.
    陈利群,刘昌明,杨聪.黄河源区基流估算[J].地理研究,2006b,25(4):659-665.
    陈仁升,韩春坛.高山寒漠带水文、生态和气候意义及其研究进展[J].地球科学进展,2010,25(3):255-263.
    陈仁升,康尔泗,吉喜斌,等.黑河源头高山草甸带冻土及水文过程初步研究[J].冰川冻土,2007,29(3):387-396.
    陈仁升,康尔泗,杨建平,等. Topmodel模型在黑河干流出山径流模拟中的应用[J].中国沙漠,2003,23(4):428-434.
    陈仁升,康尔泗,杨建平.水文模型研究综述[J].中国沙漠,2003,23(3):221-229.
    陈守煜.中长期水文预报综合分析理论模式与方法[J].水利学报,1997,8:15-21.
    陈婷.长江源区生态水文学研究[D].北京:中国地质大学(北京),2009.
    程国栋,赵林.青藏高原开发中的冻土问题[J].第四纪研究,2000,20(6):521-531.
    程志刚,刘晓东,范广洲,等.21世纪长江黄河源区径流量变化情势分析[J].长江流域资源与环境,2010,19(11):1333-1339.
    邓自旺,林振山,周晓兰.西安市近50年来气候变化多时间尺度分析[J].高原气象,1997,2:81-93.
    丁志立,胡魁德,方圆圆.加里宁改进法在水资源调查评价中的应用[J].人民长江,2008,39(17):40-42.
    范晓梅.长江源区植被覆盖变化对高寒草甸蒸散的影响及作物系数的确定[D].甘肃兰州:兰州大学,2011.
    冯永忠,杨改河,杨世琦,等.江河源区地域界定研究[J].西北农林科技大学学报:自然科学版,2004,32(l):11-14.
    伏洋,张国胜,李凤霞,等.青海高原气候变化的环境响应[J].干旱区研究,2009,26(2):267-276.
    高桥浩一郎.从月平均气温、月降水量来推算蒸发量的公式[J].天气,1979,26(12):29-32.
    关志成,段元胜.寒区流域水文模拟研究[J].冰川冻土,2003,25(2):266-272.
    郭方,刘新仁,任立良.以地形为基础的流域水文模型TOPMODEL及其拓宽应用[J].水科学进展,2000,11(3):296-301.
    郝振纯,王加虎,李丽.气候变化对黄河源区水资源的影响[J].冰川冻土,2006,28(1):1-6.
    胡宏昌,王根绪,王一博,等.江河源区典型多年冻土和季节冻土区水热过程对植被盖度的响应[J].科学通报.2009,54(2):242-250.
    胡良温.近100年江河源区生态环境与气候演变趋势研究[D].陕西杨凌:西北农林科技大学,2006.
    胡兴林.概化的Tank模型及其在龙羊峡水库汛期旬平均入库流量预报中的应用[J].冰川冻土,2001,23(1):57-62.
    纪忠萍,谷德军,谢炯光.广州近百年来气候变化的多时间尺度分析[J].热带气象学报,1999,15(1):48-55.
    贾仰文,高辉,牛存稳,等.气候变化对黄河源区径流过程的影响[J].水利学报,2008,39(1):52-58.
    金栋梁.国外山丘区地下水分析方法综述[J].水资源研究,1982,2:54-60.
    靳立亚,秦宁生,毛晓亮.近45年来长江上游通天河径流量演变特征及其气候概率预报[J].气候与环境研究,2005,10(2):220-228.
    康丽莉,王守荣,顾骏强.分布式水文模型DHSVM对兰江流域径流变化的模拟试验[J].热带气象学报,2008,24(2):176-182.
    李潮流,康世昌.青藏高原不同时段气候变化的研究综述[J].地理学报,2006,61(3):327-335.
    李林,戴升,申红艳,等.长江源区地表水资源对气候变化的响应及趋势预测[J].地理学报,2012,67(7):941-950.
    李霖. HBV水文预报模型及与之集成的水文模型系统介绍[J].水利水文自动化,2004,2:39-42.
    李树德,程国栋,周幼吾,等.青藏高原冻土图[M].兰州:甘肃省文化出版社,1996.
    廉丽姝.三江源地区土地覆被变化的区域气候响应[D].上海:华东师范大学,2007.
    梁川,侯小波,潘妮.长江源高寒区域降水和径流时空变化规律分析[J].南水北调与水利科技,2011,9(1):53-59.
    梁川,潘妮.长江源高寒区域河川径流预测方法及其对比分析[J].南水北调与水利科技,2012,10(1):35-39.
    令锋,吴紫汪.渗流对多年冻土区路基温度场影响的数值模拟[J].冰川冻土,1999,21(2):115-119.
    刘昌明,成立.黄河干流下游断流的径流序列分析[J].地理学报,2000,55(3):257-265.
    刘昌明,夏军,郭生练,等.黄河流域分布式水文模型初步研究与进展[J].水科学进展,2004,15(4):495-500.
    刘春蓁.气候变化对江河流量变化趋势影响研究进展[J].地球科学进展,2007,22(8):777-783.
    刘光生,王根绪,胡宏昌,等.长江黄河源区近45年气候变化特征分析[J].资源科学,2010,32(8):1486-1492.
    刘光生,王根绪,胡宏昌,等.长江黄河源区近45年气候变化特征分析[J].资源科学,2010,32(8):1486-1492.
    刘光生.长江源多年冻土区沼泽及高寒草甸水热过程及其对气候变化的响应[D].甘肃兰州:兰州大学,2009.
    陆波,梁忠民,余钟波. HEC子模型在降雨径流模拟中的应用研究[J].水力发电,2005,31(1):12-14.
    罗芳琼,吴春梅.时间序列分析的理论与应用综述[J].柳州师专学报,2009,24(3):113-117.
    裴超重,钱开铸,吕京京,等.长江源区蒸散量变化规律及其影响因素[J].现代地质,2010,24(2):362-368.
    裴超重.长江源区蒸散量及水涵养能力变化规律与影响因素[D].北京:中国地质大学(北京),2010.
    青海省地方志编纂委员会.青海省志-长江黄河澜沧江源志[M].郑州:黄河水利出版社,2000,91-92.
    邵玉红,张海玲.长江黄河源地的气候特征[J].青海环境,1998,8(2):68-72.
    沈永平,王根绪,吴青柏,等.长江黄河源区未来气候情景下的生态环境变化[J].冰川冻土,2002,24(3):308-314.
    时兴合,秦宁生,许维俊,等.1956~2004年长江源区河川径流量的变化特征[J].山地学报,2007,25(5):513-523.
    孙颖娜,付强,姜宁,等.寒区冻土水文模拟模型研究若干进展[J].水文,2008,28(4):1-4.
    汪青春,周陆生,张海玲.长江黄河源地气候变化诊断分析[J].青海环境,1998,8(2):73-77.
    王澄海,师锐.青藏高原西部陆面过程特征的模拟分析[J].冰川冻土,2007,29(l):73-81.
    王根绪,程国栋,沈永平,等.江河源区的生态环境变化及其综合保护研究[M].兰州:兰州大学出版社.2001,1-117.
    王根绪,李元寿,王一博,等.长江源区高寒生态与气候变化对河流径流过程的影响分析[J].冰川冻土,2007,29(2):159-168.
    王根绪,沈永平,刘时银.黄河源区降水与径流过程对ENSO事件的响应特征[J].冰川冻土,2001,23(l):17-21.
    王国庆,贺瑞敏,李亚曼,等.基于流域水文模拟的径流变化原因研究[J].水电能源科学,2008,26(3):11-13.
    王国庆,张建云,刘九夫,等.气候变化对水文水资源影响研究综述[J].中国水利-气候变化影响评估,2008,2:47-51.
    王文圣,李跃清,向红莲.基于小波分析的组合随机模型及其在径流预测中的应用[J].高原气象,2004,23(增刊):146-149.
    王欣,谢自楚,冯清华,等.长江源区冰川对气候变化的响应[J].冰川冻土,2005,27(4):498-502.
    吴青柏,沈永平,施斌.青藏高原冻土及水热过程与寒区生态环境的关系[J].冰川冻土,2003,5(3):250-255.
    吴赛男,廖文根,隋欣.气候变化对流域水资源影响评价中的不确定性问题[J].中国水能及电气化,2010,71(11):14-18.
    伍立群,代兴兰.河川基流分割法在山丘区地下水资源量评价中的运用[J].中国农村水利水电.2005,1:35-38.
    武会先,吕洪予.确定河流生态需水量的方法[J].人民黄河,2006,28(6):12-13.
    夏军,王渺林.长江上游流域径流变化与分布式水文模拟[J].资源科学,2008,30(7):962-967.
    谢昌卫,丁永建,刘时银,等.长江-黄河源寒区径流时空变化特征对比[J].冰川冻土,2003,25(4):414-422.
    谢景新.非线性多步预测与优化方法及其在水文预报中的应用[D].大连:大连理工大学,2006.
    徐冬梅,赵晓慎.中长期水文预报方法研究综述[J].水利科技与经济,2010,16(1):1-7.
    燕华云,杨贵林,汪青春.长江源区径流年内分配时程变化规律分析[J].冰川冻土,2006,28(4):526-529.
    阳勇,陈仁升.冻土水文研究进展[J].地球科学进展,2011,26(7):711-723.
    杨文发.汉江上游地区大尺度分布式水文模型与气象模型耦合应用试验[J].水利水电快报,2008,29(8):1-5.
    杨文峰,周辉,李明,等.水文气象预报研究述评[J].陕西气象,2007,5:14-17.
    杨旭,栾继虹.中长期水文预报研究评述与展望[J].西北农业大学学报,2000,28(6):203-207.杨远东.加里宁-阿巴里扬地下水估算方法的改进[M].平原地区水资源研究,上海:学林出版社,1985,122-126.
    杨针娘,刘新仁,曾群柱等.中国寒区水文.北京:科学出版社,2000.
    姚文艺,徐宗学,王云璋.气候变化背景下黄河流域径流变化情势分析[J].气象与环境科学,2009,32(2):1-6.
    易东,刘月明,王文昌.小波分析方法在统计理论研究中的应用[J].2000,7(2):120-124.
    俞烜,申宿慧,杨舒媛,等.长江源区径流演变特征及其预测[J].水电能源科学,2008,26(3):14-16.
    袁作新.流域水文模型[M].北京:水利电力出版社,1988:99-117.
    张春敏.长江源区植被净初生产力及水分利用效率的估算研究[D].甘肃兰州:兰州大学,2008.
    张国胜,时兴合,李栋梁,等.长江源沱沱河区45a来的气候变化特征[J].冰川冻土,2006,28(5):678-685.
    张丽霞,梁新平.基于单相关系数法的中长期水文预报研究[J].水资源与水工程学报,2008,
    张少文,丁晶,廖杰,等.基于小波的黄河上游天然年径流变化特性分析[J].四川大学学报(工程科学),2004,36(3):32-37.
    张小文,晏玲,张世强.长江源区未来气候变化情景降尺度[J].兰州大学学报(自然科学版),2012,48(2):29-35.
    张小文,晏玲,张世强.长江源区未来气候变化情景降尺度[J].兰州大学学报(自然科学版),2012,48(2):29-35.
    张占峰.近40年来三江源区气候资源的变化[J].青海环境,2001,11(2):60-64.
    章淹.致洪暴雨中期预报进展[J].水科学进展,1995,6(2):162-168.
    赵海伟,夏达忠,张行南,等.传统新安江模型在流域分布水文模拟中的应用[J].水电能源科学,2007,25(5):27-30.
    赵坤,傅海燕,李薇,等.流域水文模型研究进展[J].农业工程学,2009,23:267-270.
    赵玉友,耿鸿江,潘辉学.基流分割问题评述[J].工程勘查,1996,2:30-36.
    郑度,李炳元.青藏高原地理环境研究进展[J].地理科学,1999,19(4):295-302.
    郑继尧,杨远东.加里宁地下水估算改进方法应用分析与探讨[J].水利规划与设计,2003,3:30-38.
    周幼吾,郭东信,邱国庆,等.中国冻土[M].北京:科学出版社,2000.157-365.
    孜来布阿不来提,阿不都沙拉木,穆艾塔尔赛地,等.融雪径流模型应用研究综述[J].新疆大学学报(自然科学版),2012,29(2):235-239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700