淹水和有机质对土壤镉活性消长行为的影响及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综观淹水及添加有机物料对土壤镉活性有升和降等行为,对淹水稻田硫化镉沉淀机制提出了质疑,为此本文对淹水还原过程中铁氧化物的形态转化带来的镉组分再分配的机制进行了论证,同时提出了此机制能用pe+pH值来表征。本研究采用红壤(pH4.46)和潮黄土(pH7.10)在氮气(N_2)覆盖下进行淹水恒温(25±0.5℃)培养,设置了对照(不加有机物料)、苜蓿、稻草三处理,测定土壤Eh、pH及铁、镉的形态分级分析,再依据化学及电化学平衡原理,对Eh、pH、DOM、铁氧化物等因素与镉活性的关系作数据处理,探讨淹水和添加有机物料后,土壤pe+pH升降与铁组分、镉组分转化之间的关系,初步明确了淹水条件下土壤镉活性行为与氧化还原状况的关系。试验得到以下结果:
     1.淹水培养60天后,红壤pH上升到5.92,潮黄土在淹水后3天pH降到6.62,然后再上升到6.89。两土壤pe+pH从14.16下降到5.38。pH和pe+pH的升降导致了土壤固相Exc-Fe、Carb-Fe、Oxide-Fe、Org-Fe再分配比例的增长,并使Exc-Cd向Carb-Cd、Oxide-Cd、Org-Cd转化。土壤Exc-Cd与Exc-Fe之间、Exc-Cd与(Carb-Cd+Oxide-Cd+Org-Cd)、(Carb-Fe+Oxide-Fe+Org-Fe)之间都有着显著或极显著的负相关性,由此表明Fe组分的再分配决定着Cd组分的再分配.初步提出了Cd组分再分配的pe+pH、pH范围。
     2.pe+pH和pH的升降影响着液相中Fe、Cd的浓度.在红壤淹水的1-7天中,固相以Exc-Cd为主,液相中Cd的浓度随pe+pH的下降而增加。在红壤淹水的中后期及潮黄土的整个淹水期,固相以Carb-Cd和Oxide-Cd为主,液相中Cd的浓度随pe+pH的下降而下降。
     3.土壤淹水后溶液的DOM浓度变化对水溶性Cd浓度的影响不显著。
     4.苜蓿和稻草处理与对照相比,能使红壤pH平均高出0.39和0.34个单位、pe+pH平均减少2.12和2.52,DOM平均浓度高出19.1倍和3.4倍;能使潮黄土pH平均减少0.27和0.11个单位,pe+pH平均减少0.85和0.65,DOM平均浓度高出3.6倍和1.1倍.pH和pe+pH的升降是不同土壤矿物Fe与有机质之间多个化学和电化学反应作用的结果。Fe组分的再分配决定着Cd组分的再分配.这些反应使红壤有机物料处理比对照的pe+pH下降,pH、Exc-Fe和Oxide-Fe增加,导致苜蓿和稻草两处理的平均Exc-Cd含量比对照分别减少0.101mg·1~(-1)和0.098mg·1~(-1)。潮黄土则相反,有机物料处理比对照的pe+pH、pH、Exc-Fe减少和Carb-Fe增加,导致苜蓿和稻草两处理平均Exc-Cd含量比对照分别增加0.441 mg·1~(-1)和0.10 mg·1~(-1).
     5.有机物料处理的液相Cd~(2+)浓度与对照相比,更明显受DOM的配合作用及Exc-Cd的扩散作用的影响。
     6.有机物料成分的差异直接影响固相Exc-Cd含量和溶液Cd~(2+)浓度的降升幅度。
Cadmium activity in soil may increase or decrease upon submergence and organic matter addition.Based on the literature review we posed questions to CdS precipitation as the mechanism of controlling Cd activity in flooded rice paddy soils.In this thesis we propose a hypothesis that the redistribution of Cd fractions was controlled by the transformation of iron oxides during the reductive process after submergence.This mechanism can be characterised with the parameter of pe+pH.To prove this,a red soil (pH4.46) and a fluvo-aquic soil(pH7.10) were chosen to be incubated under nitrogen coverage and constant temperature(25±0.5℃).Three treatments,including control(no addition of organic materials),clover blossom and straw addition,were set to determine soil Eh,pH,and Fe/Cd fractionation.We studied the relations between Cd activity and Eh,pH, DOM,iron oxides according to the principles of chemical and electrochemical equilibrium to investigate the relationship between transformation of Fe/Cd components and variation of pe+pH in soils after submergence and organic matter addition.The experimental results, which were summarized below,revealed the relationship between Cd behaviors and the redox state in soil under submerged condition.
     1.The pH of the red soil rose to 5.92 after 60 days of submergence.For the ftuvo-aquic soil,it dropped to 6.62 after 3 days and then increased to 6.89.The pe+pH of two soils descended from 14.16 to 5.38.The variation of pH and pe+pH caused increase of the redistribution ratio of Exe-Fe,Carb-Fe,Oxide-Fe,Org-Fe in soil solid phase,and transformation of Exc-Cd to Carb-Cd,Oxide-Cd and Org-Cd.The negative correlations were significant or highly significant between Exc-Cd and Exc-Fe,between Exc-Cd and (Carb-Cd+Oxide-Cd+Org-Cd) or(Carb-Fe+Oxide-Fe+Org-Fe).This demonstrates that Fe redistribution controlled Cd redistribution.We also put forward a preliminary range of pe+pH and pH for the redistribution of Cd fractions.
     2.The variation ofpe+pH and pH affected the concentration of Fe/Cd in solution phase. During the 1-7 days after submergence in the red soil,Exc-Cd was the dominated forms in soild phase,and the concentration of Cd in solution phase increased with the decrease of pe+pH.In the later periods for the red soil and the whole incubation for the fluvo-aquic soil, Carb-Cd and Oxide-Cd were the dominated forms in soild phase,and the concentration of Cd in solution phase decreased with the decrease of pe+pH.
     3.The change of dissolved organic matter(DOM) concentration following submergence did not significantly affect soluble Cd concentration.
     4.Compared to the control group,the average pH of the red soil with clover blossom and straw addition increased respectively 0.39 and 0.34,the average pe+pH decreased 2.12 and 2.52,and the average DOM concentration was 19.1 and 3.4 times higher.For the fluvo-aquic soil,the average pH with clover blossom and straw addition decreased 0.27 and 0.11,the average pe+pH decreased 0.85 and 0.65,and the average DOM concentration was 3.6 and 1.1 times higher respectively.The changes of pH and pe+pH were the result of multiple chemical and electrochemical reactions between different Fe minerals in soil and organic matter.Iron redistribution controlled Cd redistribution.These reactions caused pe+pH declined and pH,Exc-Fe,Oxide-Fe increased for the red soils added with organic matter,and the average Exc-Cd with the clover and straw treatments respectively decline 0.101mg·1~(-1) and 0.098mg·1~(-1).The trend for the fluvo-aquic soil was opposite.Compare to the control group,the pe+pH,pH,Exc-Fe decreased and Carb-Fe increased when adding organic matter,and the average Exc-Cd with the clover and straw treatments respectively increased 0.441mg·1~(-1) and 0.10mg·1~(-1).
     5.Compare to the control group,the concentration of Cd~(2+) in soil solution of the organic matter-treated soils was more clearly affected by complexation of DOM and diffusion of Exc-Cd.
     6.The difference in composition of organic materials directly affected the content of Exc-Cd in solid phase and the variation of Cd~(2+) concentration.
引文
[1]李恋卿,潘根兴,张平究,等.丘多生.太湖地区水稻土表层土壤10年尺度重金属元素积累速率的估计[J].环境科学,2002,23(3):119-123.
    [2]赵中秋,朱永官,蔡运龙.镉在土壤-植物系统中的迁移转化及其影响因素[J].生态环境,2005,14(2):282-286.
    [3]崔玉静,黄益宗,朱永官.镉对人类健康的危害及其影响因子的研究进展[J].卫生研究,2006,35(5):656-660.
    [4]Asami T.Maximium allowable limits of heavy metals in rice and soils.Metal pollution in soil of Japan[M].Tokyo:Japan Sci Soc press,1981,257-274.
    [5]陈涛,吴燕玉.张士灌区镉改良和水稻镉污染防冶研究[J].环境科学,1980,19(5):7-11.
    [6]黄道友,陈惠萍,龚高堂,等.湖南省主要类型水稻土镉污染改良利用研究.农业现代化研究,2000,21(6):364-372.
    [7]顾继光,周启星.镉污染土壤的治理及植物修复[J].生态科学,2002,21(4):352-356.
    [8]蒋先军,骆永明,赵其国,等.镉污染土壤植物修复的EDTA调控机理[J].土壤学报,2003,2:205-209.
    [9]宗良纲,徐晓炎.水稻对土壤中镉的吸收及其调控措施[J].生态学杂志,2004,23(3):120-123.
    [10]林贤青,朱德峰,李春寿,等.水稻不同灌溉方式下的高产生理特性[J].中国水稻科学,2005,19(4):328-332.
    [11]梁文举,武志杰,闻大中.21世纪初农业生态系统健康研究方向[J].应用生态学报,2002,13(8):1022-1026.
    [12]胡省英,冉伟彦,范宏瑞.土壤-作物系统中重金属元素的地球化学行为[J].地质与勘探,2003,39(5):84-87.
    [13]Patrick W H,Reddy C N,水稻土的化学变化[C]/金元军.土壤与水稻.浙江:浙江科学技术出版社,1981:89-127.
    [14]马毅杰,陈家坊等著.水稻土物质变化与生态环境[M].北京:科学出版社,1999:25-33.
    [15]Fiedler S,Michael J,Vepraskas J L.Soil redox potential:importance,field measurements,and observations[J].Advances in Agronomy,2007,94:1-54.
    [16]于天仁等.水稻土的物理化学[M].北京:科学出版社,1983:1-34.
    [17]Ponnamperuma F N,The chemistry of submerged soils[J].Advances in Agronomy,1972,24:29-96.
    [18]Caille N,Tiffeau C,Morel J L.Solubility of metals in anoxic sediment during prolonged aeration.Science of the Total Environment[J],2003,301:239-250.
    [19]何振立.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社,1998.
    [20]Sjwan K S,Lindsay W L,Effects of redox on Zn deficiency in paddy rice[J].Soil Sci.Soc.Am.J,1986,50:1264-1269.
    [21]Lindsay W L,Chemical equilibria in soils[M].Canada:John Wiley & Sons,Inc,1979:129-149.
    [22]Gambrell R P,Trace and toxic metals in wetlands-A review[J].J.Environ.Qual,1994,23:883-891.
    [23]马耀华,刘树应.环境土壤学[M].西安:陕西科学技术出版社,1998:198-201.
    [24]朱鹤健.水稻土[M].北京:农业出版社,1985:35-68.
    [25]贾国东,钟佐燊.铁的环境地球化学综述[J].环境科学进展,1998,7(5):74-84.
    [26]姜明,吕宪国,杨青,等.湿地铁的生物地球化学循环及其环境效应[J].土壤学报,2006,43(3):493-499.
    [27]陈家坊.土壤粘粒中的氧化物,见:于天仁主编,士壤化学原理[M],北京:科学出版社,1987,73-105.
    [28]何念祖译编.植物的铁营养,土壤学进展[M],1986,14(1):19-23.
    [29]刘铮等编著.微量元素的农业化学,北京:农业出版社,1991,258-268.
    [30]Gotoh S,Patrick W H.Transformation of iron in a waterlogged soil as influenced by redox potential and pH[J].Soil Sci.Soc.Amer.Proc,1974,38:66-71.
    [31]Davranche M,Bollinger J C.Heavy metals desorption from synthesized and natural iron and manganese oxyhydroxides:Effect of reductive conditions[J].Journal of Colloid and Interface Science,2000,227:531-539.
    [32]Lindsay W L.Use of pe+pH to predict and interpret metal solubility relationships in soils[J].The Science of the Total Environment,1983,28:169-178.
    [33]Patrick W H,Williams B G,Moraghan J T.A simple system for controlling redox potential and pH in soil suspensions[J].Soil Sci.Soc.Amer.Proc,1973,37:331-332.
    [34]Reddy C N,Jugsujinda A,Patrick W H.System for growing plants under controlled redox potential-pH conditions[J].Agron.J,1976,68:987-989.
    [35]Patrick W H,Henderson R E.Reduction and reoxidation cycles of manganese and iron in flooded soil and in water solution[J].Soil Sci.Soc.Am.J,1980,45:855-859.
    [36]Patrick W H,Jugsujinda A.Sequential reduction and oxidation of inorganic nitrogen,manganese,and iron in flooded soil[J].Soil Sci.Soc.Am.J,1992,56:1071-1073.
    [37]Atta S K,Mohammed S A,et al.Transformations of iron and manganese under controlled Eh,Eh-pH conditions and addition of organic matter[J].Soil Technology,1996,9:223-237
    [38]陈建斌,高山.有机物料对土壤土中外源铜形态及土壤化学性质的影响[J].农业环境保护.2000,19(1):38-40.
    [39]葛滢,李义纯.淹水还原作用下土壤镉的吸附解吸特征的初步探讨[J].生态环境,2006,15(4):730-734.
    [40]杨长明,杨林章,颜廷梅.不同养分和水分管理模式对土壤生态环境影响[J].农村生态环境,2002,18(3):11-1.
    [41]戴树桂主编,环境化学进展[M],北京:化学工业出版社,2005,181-206.
    [42]胡宁静,李泽琴,等.贵溪市污灌水田重金属元素的化学形态分布[J].农业环境科学学报,2004,23(4):683-686.
    [43]李学垣主编,土壤化学(研究生教材)[M].北京:高等教育出版社,2001,83-99.
    [44]Kashem M A,Singh B R.Transformations in solid phase species of metals as affected by flooding and organic matter[J].Communications in Soil Science and Plant analysis 2004,35(9 & 10):1435 -1456.
    [45]Chaillou G,Anschutz P,Lavaux G.,et al.The distribution of Mo,U,and Cd in relation to major redox species in muddy sediments of the Bay of Bisay[J].Marine Chemistry 2002,80:41-59.
    [46]Maes A,Vanthuyne M,et al.Metal partitioning in a sulfidic canal sediment metal solubity as a function of combined with EDTA extraction in anoxic conditions[J].The Science of the Total Environment,2003,312:181-193.
    [47]Clark M W,McConchie D,et al.Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments:a geochemical model Chemical[J].Geology,1998,149:147-171.
    [48]Chuan M C,Shu G Y,Liu C.Solubility of heavy metals in a contaminated soil:Effects of redox potential and pH[J].Water,Air and Soil Pollution,1996,90:543-556.
    [49]魏世强,青长乐,木志坚.模拟淹水条件下紫色土镉的释放特征及影响因素[J].环境科学学报,2002,22(6):696-700.
    [50]张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应[J].土壤学报,2001,38(2):212-218.
    [51]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996:71-12.
    [52]王艮梅,周立祥,占新华,等.水田土壤中水溶性有机物的产生动态对土壤中金属活性的影响:田间微区试验[J].环境科学学报,2004,24(5):858-864.
    [53]李庆逵等.中国水稻土[M].北京:科技出版社,1992:3-30,155-171.
    [54]Breennan E W,Lindsay W L.The role of pyrite in controlling motal in activities in highly reduced soils[J].Geochimica et Cosmochimica Acta,1996,60(19):3609-3618.
    [55]郑绍建,胡霭堂.淹水对污染土壤Cd形态转化的影响.环境科学学报,1995,15(2):142-147.
    [56]Mortimer R J G,Rea J E.Metal speciation(Cu,Zn,Pb,Cd) and organic matter in oxic to suboxic salt marsh sediments,Severn Estury,Southwest Britain[J].Marine Pollution Bulletin,2000,40(5):377-386.
    [57]Li X,Thornion L,Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities[J].Applied Geochemistry,2001,16:1693-1706.
    [58]Impellitteri C A,Lu Y,et al.Correlation of the partitioning of dissolved organic matter fractions with desorption of Cd,Cu,Ni,Pb and Zn fron 18 Dutch soils[J].Environment International 2002,28:401-410.
    [59]Bergkvist P,Nicholas J,Berggren D.Long-term effects of sewage sludge applications on soil properties,cadmium availability and distribution in arable soil[J].Agriculture,Ecosystems and Environment,2003,97:167-179.
    [60]Cauwenberg P,A.Influence of oxidation on sequential chemical extraction of dredged river sludge.International Journal of Environmental and Analytical Chemistry,1997,68:47-57.
    [61]Ge Y,Li Y,Zhou Q S.Effects of submerging and organic matter addition on Cd availability in paddy soils.In:Biogeochemistry of trace elements:Environmental protection,remediation and human health.(Proceedings of the 9th International Conference on the Biogeochemistry of Trace Elements.Beijing,China.) Editors:Y.G.Zhu,N.Lepp and R.Naidu.Tsinghua University Press,2007:524-525.
    [1]Kitagishi K,Yamane I,(Eds.).Heavy Pollution in Soils of Japan[J].Japan Science Society Press,Tokyo,1981,302.
    [2]Jung M C,Thornton I.Environmental contamination and seasonal variation of metal in soils,plants and waters in the paddy fields around a Pb-Zn mine in Korea[J].The Science of the Total Environment,1997,198(2):105-121.
    [3]Caille N,Tiffeau C,et al.Solubility of metals in anoxic sediment during prolonged aeration[J].The Science of the Total Environment,2003,301:239-250.
    [4]Maes A,Vanthuyne M,et al.Metal partitioning in a sulfidic canal sediment metal solubity as a function of combined with EDTA extraction in anoxic conditions[J].The Science of the Total Environment,2003,312:181-193.
    [5]Mortimer R J G,Rea J E.Metal speciation(Cu,Zn,Pb,Cd) and organic matter in oxic to suboxic salt marsh sediments,Severn Estury,Southwest Britain[J].Marine Pollution Bulletin,2000,40(5):377-386.
    [6]Clark M W,McConchie D,et al.Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments:a geochemical model Chemical Geology,1998,149:147-171.
    [7]陈怀满.土壤-植物系统中的重金属污染行为[M].北京:科学出版社,1996,119-120.
    [8]Kashem M A,Singh B R.Transformations in solid phase species of metals as affected by flooding and organic matter.Communications in Soil Science and Plant analysis,2004,35(9 &10):1435-1456.
    [9]郑绍建,胡霭堂.淹水对污染土壤Cd形态转化的影响.环境科学学报,1995,15(2):142-147.
    [10]Chuan M C,Shu G,Liu C.Solubility of heavy metals in a contaminated soil:Effects of redox potential and pH[J].Water,Air and Soil Pollution,1996,90:543-556.
    [11]魏世强,青长乐,木志坚.模拟淹水条件下紫色土镉的释放特征及影响因素.环境科学学报,2002,22(6):696-700.
    [12]Breennan E W,Lindsay W L.The role of pyrite in controlling motal in activities in highly reduced soils[J].Geochimica et C osmochimica Acta,1996,60(19):3609-3618.
    [13]Lindsay W L,Chemical Equilibria in Soils.John Wiley & Sons,New York,NY,1979,23-31.
    [14]Lindsay W L,Sadiq M.Use of pe+pH to predict and interpret metal solubility relationships in soils [J].The Science of the Total Environment,1983,28:169-178.
    [15]朱燕婉,沈壬水,钱钦文.土壤中金属元素的五个组分的连续提取法.土壤,1993,(2):163-166.
    [16]鲁如坤主编.土壤农业化学分析方法[M],北京:中国农业科技出版社,2000.
    [17]李庆逵主编.中国水稻土[M].北京:科学出版社,1992:209
    [18]张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应[J].土壤学报,2001,38(2):212-218.
    [19]高山,陈建斌,王果.淹水条件下有机物料对潮土外源镉形态及化学性质的影响[J].植物营养与肥料学报,2003,9(1):102-105.
    [20]李学垣主编,土壤化学(研究生教材)[M].北京:高等教育出版社,2001,83-99.
    [21]戴树桂主编,环境化学进展[M].北京:化学工业出版社,2005,181-206.
    [22]于天仁.水稻土的物理化学[M].北京:科学出版社,1983,42-193.
    [23]胡宁静.李泽琴,等.贵溪市污灌水田重金属元素的化学形态分布.农业环境科学学报,2004,23(4),683-686.
    [24]邵孝侯,侯文华,邢光熹.用连续提取法研究土壤镉和锌的吸持特性土壤,1994,(2):77-79.
    [1]Kashem M A,Singh B R.Transformations in solid phase species of metals as affected by flooding and organic matter[J].Communications in Soil Science and Plant analysis,2004,35(9-10):1435-1456.
    [2]张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应[J].土壤学报,2001,38(2):212-218.
    [3]王果,李建超,等.有机物料影响下土壤溶液中镉形态及其有效性研究[J].环境科学学报,2000,20(5):621-626.
    [4]张秋芳,王果,等.有机物料对土壤镉形态及其生物有效性的影响[J].应用生态学报,2002,13(12):1659-1662.
    [5]王艮梅,周立祥,占新华,等.水田土壤中水溶性有机物的产生动态扩其对土壤重金属活性的影[J].环境科学学报,2004,24(15):858-864.
    [6]陈怀满,土壤-植物系统中的重金属污染行为[M].北京:科学出版社,1996,119-120.
    [7]Breennan E W,Lindsay W L.The role of pyrite in controlling motal in activities in highly reduced soils[J].Geochimica et Cosmochimica Acta,1996,60(19):3609-3618.
    [8]Lindsay W L.Chemical Equilibria in Soils[M].John Wiley & Sons,New York,NY,1979,23-31.
    [9]Lindsay W L,Sadiq M.Use of pe+pH to predict and interpret metal solubility relationships in soils [J].The Science of the Total Environment,1983,28:169-178.
    [10]朱燕婉,沈壬水,钱钦文.土壤中金属元素的五个组分的连续提取法[J].土壤,1993(2):163-166.
    [11]鲁如坤主编.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [12]胡宁静.李泽琴,等.贵溪市污灌水田重金属元素的化学形态分布[M],农业环境科学学报,2004,23(4):683-686.
    [13]戴树桂主编,环境化学进展[M].北京:化学工业出版社,2005,181-206.
    [14]李学垣主编,土壤化学(研究生教材)[M].北京:高等教育出版社,2001,83-99.
    [15]高山,陈建斌,王果.淹水条件下有机物料对潮土外源镉形态及化学性质的影响[M].植物营养与肥料学报,2003,9(1):102-105.
    [16]邵孝侯,侯文华,邢光熹.用连续提取法研究土壤镉和锌的吸持特性土壤,1994,(2):77-79.
    [17]李庆逵主编.中国水稻土[M].北京:科学出版社,1992.
    [18]于天仁.水稻土的物理化学[M].北京:科学出版社,1983,42-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700