Fenton、光Fenton氧化处理剩余污泥研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在用活性污泥法处理城市污水和工业废水时往往会产生大量的剩余污泥,这些污泥的体积庞大,成分复杂,处理费用也较高,其处理与处置已成为污水处理过程中的难题之一。剩余污泥的含水量高达95%-99.5%,因此,脱水成为了污泥减量中的关键一环。污泥中胞外聚合物(EPS)的大量存在给污泥脱水造成了一定的困难。EPS是细菌细胞壁外膜周围保护细胞并阻止其脱水的水合胶囊或粘液的聚合体,它决定污泥的理化性质及生物特性。EPS的质量(包括其结合水)约占到污泥固体质量的近80%,主要由有亲水性与粘性的多聚糖、蛋白质、核酸、脂质和DNA等高分子物质组成。
     当今应用最多的减小污泥体积的方法是机械脱水。而化学调理法则广泛应用于改善剩余污泥的机械脱水性能。
     本研究利用Fenton试剂氧化破解剩余污泥,通过污泥过滤比阻(SRF)和毛细吸水时间(CST)表征污泥脱水性能的变化,重点考察pH、反应时间、H202和Fe2+的投加量等条件对污泥脱水性能的影响,旨在找出Fenton试剂氧化污泥提高其脱水性能的适宜条件,在此基础上回调污泥pH值,考察SRF、CST和污泥沉降体积(SV30)等指标,研究污泥脱水性能的变化。结果表明,Fenton试剂处理污泥改善其脱水性能的效能明显优于酸处理。pH为2.5、反应时间为60min、H2O2和Fe2+投加量分别为6g/L和4g/L为Fenton适宜反应条件。该条件,SRF和CST分别由1.34x1010s2/g和69.6s下降至1.31×109s2/g和20.6s,污泥脱水性能的到明显改善。Fenton反应氧化剩余污泥后,回调pH能明显改善污泥的脱水性能,但是对污泥沉降性能的改善不明显。
     利用紫外光-Fenton(光Fenton)氧化处理剩余污泥,通过上清液的SCOD、多聚糖以及蛋白质浓度表征胞外聚合物(EPS)的破解情况,SRF和滤饼含水率表征污泥脱水性能的变化。结果表明,光Fenton反应破解污泥EPS和改善污泥脱水性能的效能明显优于Fenton反应和单独紫外光照射处理。pH为3,反应时间为2 h,H202投加量为4 g/L和Fe2+投加量为0.6 mg/L是处理试验污泥的适宜条件。在适宜反应条件下,污泥上清液中的SCOD、多聚糖和蛋白质浓度分别由67.46 mg/L、12.53 mg/L和8.62 mg/L增加到568.12 mg/L、448.62 mg/L和292.94 mg/L; SRF和滤饼含水率分别由2.4x109 s2/g和88.52%下降至5.26×108 s2/g和76.36%。光Fenton反应在有效破解污泥的同时,提高了污泥的脱水性能,有利于污泥的减量化。
Activated sludge process to treat municipal and industrial wastewater produces huge amounts of excess sludges. The treatment of these excess sludge becomes a difficult problem in sewage treatment because of its large volume, complex components and high cost. The water content of it is as high as 95%-99.5%. Therefore dewatering is the key of sludge reduction. The bottleneck of sludge reduction is dewatering because of much of extracellular polymeric substances (EPS). EPS are a complex high-molecular-weight mix coture of excreted by microorganisms, produced by cellysis and hydrolysis, which absorbed organic matter from wastewater. The physical-chemical properties and microbial characteristics of sludge are certainly determined by EPS, which compose 80% of the weight of solid sludge, and the main components of EPS are polysaccharide, protein, nucleic acid, lipid and DNA, etc.
     Mechanical dewatering is the most common method in sludge reduction. Chemical condition has been adopted widely to improve sludge mechanical dewatering.
     After using Fenton oxidation to processed excess sludge, in which sludge dewatering capacity was described by the specific resistance to filtration (SRF) and capillary suction time (CST). The effect of pH, reaction time, the dosage of Fe2+ and H2O2 on sludge dewatering capacity was investigated. The objective of this study was to optimize the operational conditions for sludge dewatering capacity with Fenton oxidation. Based on the best condition, the effects of various pH on SRF, CST and static balance time (SV30) were investigated. The results showed that the sludge dewatering capacity improvement by Fenton reaction was higher than that by acid treatment. The optimal operational conditions for the experimental sludge were: pH=2.5, reaction time=60 min, H2O2 dosage=6 g/L and Fe2+ dosage=4 g/L. Under these conditions, SRF and CST reduced from 34×1010s2/g and 69.6s to 1.31×109s2/g and 20.6s, dewatering capacity was improved obviously. After Fenton reaction, raising pH can improve dewatering capacity but affects settlement of sludge seldom.
     Photo-Fenton reaction was used to oxidize excess sludge, in which sludge EPS disintegration was characterized by the concentration of soluble chemical oxygen demand (SCOD), polysaccharide and protein of sludge supernate, and sludge dewatering capacity was described by the SRF and the water content of the sludge cake. The results showed that the effect of EPS disintegration and sludge dewatering capacity improvement by photo-Fenton reaction was higher than that by Fenton reaction or UV radiation. The optimal operational conditions for the experimental sludge were:pH=3, reaction time=2 h, H2O2 dosage=4 g/L and Fe2+ dosage=0.6 mg/L. Under these conditions, the concentration of SCOD, polysaccharide and protein of the sludge supernate increased from 67.46 mg/L,12.53 mg/L and 8.62 mg/L to 568.12 mg/L,448.62 mg/L and 292.94 mg/L, respectively; and the SRF and the water content of filter cake reduced from 2.4x109 s2/g and 88.52% to 5.26x108 s2/g and 76.36%, respectively. The efficient EPS disintegration and dewatering capacity improvement of the excess sludge was simultaneously achieved by photo-Fenton, which benefits the further sludge reduction.
引文
[1]Perez-Elvira S I, Nieto Diez P, Fdz-Polanco F. Sludge minimization technologies. Reviews in Env Sci Bio/Technol,2006,5:375-398
    [2]陈同斌,黄启飞,高定,等.中国城市污泥的重金属含量及其变化趋势.环境科学学报,2003,23(5):561-569
    [3]Edward S R, Cliff I D.工程与环境引论.北京:清华大学出版社,2002,65-67
    [4]尹军,谭学军.污水污泥处理处置与资源化利用.北京:化学工业出版社,2005,1-28,198-207,284-285
    [5]Vaxelaire J, Cezac P. Moisture distribution in activated sludges:a review. Water Res,2004,38(9):2215-2230
    [6]张光明,张信芳,张盼月.城市污泥资源化技术进展.北京:化学工业出版社,2006
    [7]Katsoyiannis A, Zouboulis A, Samara C. Persistent organic pollutant (POPs) in the conventional activated sludge treatment process:Model predictions against experimental values. Chemosphere,2006,65(9):1634-1641
    [8]Kuster M, Jose Lopez de Alda M, Barcelo D. Analysis and distribution of estrogens and progestogens in sewage sludge, soils and sediments. Trends Anal Chem,2004,23(10-11):790-798
    [9]Andrews J P, Asaadi M, Clarke B, et al. Potentially toxic element release by Fenton oxidation of sewage sludge. Water Sci Technol,2006,54(5):197-205
    [10]Wang J, Wang J. Application of radiation technology to sewage sludge processing:a review. J Hazard Mater,2007,143:2-7
    [11]付融冰,杨海真,甘明强.中国城市污水厂污泥处理现状及其进展.环境科学与技术,2004,27(5):108-109
    [12]赵庆祥.污泥资源化技术.北京:化学工业出版社,2002:1-41
    [13]高廷耀,顾国维.水污染控制工程下册(第二版).北京:高等教育出版社,1995,279-302
    [14]赵庆祥.污泥资源化技术.北京:化学工业出版社,2002,1-17
    [15]翁焕新.污泥无害化、减量化、资源化处理新技术.北京:科学出版社,2009,5-7
    [16]张辰,王国华,孙晓.污泥处理处置技术与工程实例.北京:化学工业出版社,2006,5-6
    [17]Brown M J, Lester J W. Metal removal in activated sludge:The role of bacterial extracellular polymer. Water Res,1979,13:817-837
    [18]宋菲,郭玉文,刘效义.镉、锌、铅复合污染对菠菜的影响.农业环境保护,1996,15(1):9-14
    [19]马运宏,范瑜,胡维佳等.重金属在土壤作物系统中迁移分布规律的分析.江苏环境科技,1995,1:8-10
    [20]姚刚.德国的污泥利用与处置(Ⅱ)(续).城市环境与城市生态,2000,13(2):24-26
    [21]周立祥,胡霭堂,戈乃玢,等.城市污泥土地利用研究.生态学报,1999,19(2):185-193
    [22]Smith J K, Vesilind P A. Dilatometric measurement of bound water in wastewater sludge. Water Res,1995,29(12):2621-2626
    [23]Tsang K R, Vesilind P A. Moisture distribution in sludges. Water Sci Technol, 1990,22(12):135-142
    [24]Vesilind P A. The role of water in sludge dewatering. Water Environ Res.,1994, 66(1):4-11
    [25]Vesilind P A, Hsu C C. Limits of sludge dewaterability. Water Sci Technol, 1997,36(11):87-91
    [26]Colin F, Gazbart S. Distribution of water in sludges in relation to their mechanical dewatering. Water Res,1995,29(8):2000-2005
    [27]Neyens E, Baeyens J. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J Hazard Mater,2004,106B: 83-92
    [28]Flemming H C, Wingender J. Relevance of microbial extracellular polymeric substances(EPSs)-Part Ⅰ. Structural and ecological aspects. Water Sci Technol, 2001,43(6):1-8
    [29]Fr(?)lund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res,1996,30(8): 1749-1758
    [30]罗曦,雷中方,刘翔.胞外聚合物的提取、组成及其对污泥性质的影响.城市环境与城市生态,2005,18(5):38-41
    [31]赵军,徐高田,秦哲等.胞外聚合物EPS组成及对污泥特性的影响研究.安全与环境工程,2008,15(1):66-70
    [32]周健,龙腾锐,苗利利.胞外聚合物EPS对活性污泥沉降性能的影研究.环境科学学报,2004,24(4):613-618
    [33]周健,罗勇,龙腾锐,等.胞外聚合物、Ca2+、pH值对生物絮凝作用的影响.中国环境科学,2004,24(4):437-441
    [34]王红斌,李晓岩,赵庆祥.胞外聚合物对活性污泥沉降和絮凝性能的影响研究.中国安全科学学报,2003,13(9):31-34
    [35]Matthew J H. Characterzation of exocellular proteinand it role in bioflocculation. Environ Eng,1997,5:479-484
    [36]Forstor C F. Factors involved in the settlement of activated sludge lnutyients and surface polymers. Water Res,1985,19(10):1259-1264
    [37]Bruus J H. Study on the stability of activated sludge floes with implication to dewatering. Water Res,1992,26:1597-1604
    [38]Forster C F. Bound water in sewage sludges and its relationship to sludge surfaces and sludge viscosities. Chem Technol Biotechnol,1983,33(1):76-84
    [39]Wingender J, Jhger K E, Flemming H C. Interaction between extracellular polysaccharides and enzymes. Microbial Extracellular Polymeric Substances California:T R Neu,1999,1-19
    [40]Watson J D, Hopkins N H, Roberts J W, et al. Cells obey the laws of chemistry. Molecular Biology of the Gene. CA:Menlo.1987,25-64
    [41]Brooks R B. Heat treatment of sewage sludge. Water Pollut Control,1970,69(1): 92-99
    [42]Brooks R B. Heat treatment of activated sludges. Water Pollut Control,1968,67: 592-599
    [43]王勇.底泥中营养物质及其他污染物释放机理综述.工业安全与环保,2006,32(9):27-28
    [44]张海丰,孙宝盛,齐庚申.传统活性污泥法与膜生物反应器污泥沉降性能的比较.四川环境,2005,24(3):1-3
    [45]Huang C, Dong C, Tang Z. Advanced chemical oxidation:its present role and potential future in hazardous waste treatment. Waste Manage,1993,13(5-7): 361-377
    [46]闵怀,傅亮,陈泽军.Fenton法及其在废水处理中的应用研究.环境污染与防治,2004,26(1):28-30
    [47]张玲玲,李亚峰,孙明,等.Fenton氧化法处理废水的机理及应用.辽宁化工,2004,33(2):734-736
    [48]周健,龙腾锐,苗利利.胞外聚合物EPS对活性污泥沉降性能的影响.环境科学学报,2004,24(4):613-618
    [49]Fr(?)lund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res,1996,30(8): 1749-1758
    [50]郑蕾,田禹,孙德智.pH值对活性污泥胞外聚合物分子结构和表面特征影响研究.环境科学,2007,28(7):1507-1511
    [51]倪丙杰,徐得潜,刘绍根.污泥性质的重要影响物质—胞外聚合物(EPS).环境科学与技术,2006,29(3):108-110
    [52]Sanin F D, Vesilinel P A. Effect of centrifugation on the removal of extracellular polymers and physical properties of activated sludge. Water Sci Technol,1994, 30(8):117-127
    [53]董辉,王国华,孙晓.影响污水污泥脱水性能因素的探讨.上海建设科技,2005,(6):27-28
    [54]Pere J, Alen R, Viikari L, et al. Characterisation and dewatering of activated sludge from the pulp and paper industry. Water Sci Technol,1993,28 (1): 193-201
    [55]朱英,赵由才,李鸿江,等.厌氧消化污泥稳定化评价指标综述.有色冶金设计与研究,2007,28(2-3):234-236
    [56]钟恒文,二宫加奈.生污泥的Fenton氧化处理.中国给水排水,2003,19(8):46-47
    [57]郑冠宇,王世梅,周立祥.污泥生物沥浸处理对病源物的杀灭效果影响.环境科学,2007,28(7):1540-1542
    [58]Hickey W, Arnold S, Harris R. Degradation of atrazine by Fenton's reagent condition optimization and product quantification. Environ Sci Technol,1995(8), 29:2083-2089
    [59]沈晓南,谢经良,阚薇莉.厌氧消化后污泥中的重金属形态分布.中国给水排水,2002,18(11):51-52
    [60]Lu M, Lin C, Liao C, et al. Influence of pH on the dewatering of activated sludge by Fenton's reagent. Water Sci Technol,2001,44(10):327-332
    [61]何文远,杨海真,顾国维.酸处理对活性污泥脱水性能的影响及其作用机理.环境污染与防治,2006,28(9):680-682
    [62]Neyens E, Baeyens J, Weenaes M, et al. Pilot-scale peroxidation (H2O2) of sewage sludge. J Hazard Mater,2003,98B (1-3):91-106
    [63]Buyukkamaci N. Biological sludge conditioning by Fenton's reagent. Process Biochem,2004,39 (11):1503-1506
    [64]Lu M C, Lin C J, Liao C H, et al. Dewatering of activated sludge by Fenton's reagent. Adv Environ Res,2003,7(3):667-670
    [65]Andrews J P, Asaadi M, Clarke B, et al. Potentially toxic element release by Fenton oxidation of sewage sludge. Water Sci Technol,2006,54(5):197-205
    [66]钟萍,林志芬,刘志文,等.Photo-Fenton氧化法处理废水的原理及影响因素.生态科学,2004,23(4):362-364
    [67]Eisenhauser HR. Chemical removal ofABS from wastewater effluents. J Water Poll ControlFed,1965,36(9):1116-1128
    [68]EisenhauserH Oxidation ofphenolicwaste. J Water Poll Control Fed,1964, 37(11):1567-1128
    [69]Bihorp DF,Stem G. Hydrogen peroxide catalytic oxidation of refractory organic in municipal wastewater. Ind Eng. Chem Pro Design Dev,196,7:110-117
    [70]Kavitha V, Palanivelu K. The role of ferrous ion in Fenton and photo-Fenton processes for the degradationofphen. Chemosphere.2004(55):1235-1243
    [71]朱秀珍,张伟.应用纯种微生物和自然微生物生产麸曲酱香白酒工艺探讨.酿酒,2001.28(3):42-43
    [72]何文远,杨海真,顾国维.酸处理对活性污泥脱水性能的影响以及作用机理.环境污染与防治,2006,28(9):680-706
    [73]Bossmann S H, Oliveros E, Gob S. et al. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton Reaction. J Phys Chem A,1998,102(28):5542-5550
    [74]Janga N., Ren X., Kim G., et al. Characteristic of soluble microbial products and extracellular polymeric substances in the membrane bioreactor for water reuse. Desalination,2007,202(1-3):90-98
    [75]Comte S., Guibaud G., Baudu M. Relations between extraction protocols for activated sludge extracellular polymeric substances(EPS) and EPS complexation properties Part Ⅰ. Comparison of the efficiency of eight EPS extraction methods. Enzyme Microb. Technol.,2006,38(1-2):237-245
    [76]李娟,张盼月,曾光明,等.Fenton氧化破解剩余污泥中的胞外聚合物.环境科学,2009,30(2):475-479
    [77]Tokumura M., Sekine M., Yoshinari M., et al. Photo-Fenton process for excess sludge disintegration. Process. Biochem.,2007,42(4):627-633
    [78]Tony M. A., Zhao Y. Q., Tayeb A. M. Exploitation of Fenton and Fenton-like reagents as alternative conditioners for alum sludge conditioning. J. Environ. Sci.,2009,21(1):101-105
    [79]陈传好,谢波,任源,等.Fenton试剂处理废水中各影响因子的作用机制.环境科学,2000,21(5):93-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700