参考作物蒸发蒸腾量测定仪器研制及其在灌溉预报中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有作物需水量的测定方法及计算方法,或测定仪器昂贵、维护困难、计算公式复杂,或所需参数过多且难以获取,不易为我国普遍存在的经济与文化水平不高的农民用户所接受,在实际生产应用中受到很大限制。本文根据土壤的蒸发机制与植物的蒸腾机理,按照参考作物蒸发蒸腾量(ET0)的定义,利用生物膜技术,研制了一种参考作物蒸发蒸腾量的测定仪器,该仪器能很好的模拟稳定蒸发阶段的土壤蒸发与充分供水时植物蒸腾的物理过程。
    该仪器为植物蒸腾的物理仿真模型。仪器内的水经由进水孔段,进入导管内的填充料,通过毛管力的作用,上升到填充料的上表面。这一输送过程相当于水分由土壤经植物根、茎、输送到叶片的过程。其后,水分子首先在生物膜与填充料的空隙间蒸发为水蒸汽,然后,水分子再通过生物膜的孔隙扩散到大气中。这一过程模拟了叶面气孔中蒸腾的两步,即首先是水分在细胞间隙及气孔下室周围叶肉细胞表面上蒸腾成水蒸汽,然后水蒸汽分子通过气孔下室及气孔扩散到叶外。
    仪器根据土壤蒸发与植物蒸腾机理进行设计,可模拟稳定蒸发阶段的土壤蒸发与充分供水时植物蒸腾的物理过程。而仪器能够测定参考作物蒸发蒸腾量,在于仪器内的水可借助填充料的毛管力作用上升至填充料表层,持续充分地供给蒸发,其蒸发强度仅决定于气象条件(这相当于土壤蒸发的第一阶段,即稳定蒸发阶段),而与仪器内的水位无关,这符合参考作物蒸发蒸腾量的定义,即充分供水,只与气象条件有关。因此,仪器内的水位变化与参考作物蒸发蒸腾量呈线性关系,可根据仪器内的水位变化直接计算出参考作物蒸发蒸腾量。
    针对冬小麦和夏玉米两种作物,对仪器的性能进行了田间试验验证。仪器的试验结果采用两种方法进行分析,第一种方法采用比值曲线方法,即将每日仪器水位变化值与参考作物蒸发蒸腾量(ET0)值相比,按日序列研究其变化;第二种方法采用累积曲线方法,即将仪器水位变化值与参考作物蒸发蒸腾量(ET0)值逐日累加,研究二者之间的相关性。比值曲线可很好地证明仪器的水位变化与仪器的水位高低无关;累积曲线能证明仪器的水位变化与ET0有着很好的线性关系(简单的倍数关系),相关系数R值均接近于1。
    最后对仪器在生产实践中的应用进行了分析,认为该仪器可指导用户进行适时适量灌溉,能满足灌溉预报的精度要求。
    该仪器使用方便、维护简单、价格低廉、精度较高,具有良好的商品化开发及广阔的市场应用前景。
The present measuring and computing methods of crop water requirements have lots of defects when were applied to Chinese peasants, such as a high cost of instruments, a trouble maintenance, a complicate calculating formula, or required parameters are plethora and difficult acquirement. Therefore, it is difficult in applying to agricultural irrigation for the peasants in China who are generally at a low level of economy and culture. A simple instrument for measuring crop evapotranspiration is developed by the technology of biological membrane, according to the definition of reference crop evapotranspiration(ET0), the evaporation mechanism of soil and the transpiration mechanism of plant. The instrument can simulate the physical procedure of soil evaporation and plant transpiration when the moisture in soil is adequate.
    The instrument is a physical simulating model of vegetation transpiration. The water in the instrument enter the stuff in the vessel through the ports in the vessel, then uplift to the surface of the stuff by the capillary force. This delivery process simulates moisture from soil to leaves through roots, stems. Then the moisture of the stuff surface evaporate into the space between the stuff and biological membrane, disperse to the atmosphere subsequently through the pores in the film. This delivery process simulates the transpiration of air pores in the leaves. That is moisture turn into vapour on the surface of diachyma cells around substomatic chambers or in the intercellular space, and then diffuse to the atmosphere through substomatic chambers and air holes.
    The instrument is developed according to the evaporation mechanism of soil and the transpiration mechanism of plant, and so it can simulate the physical procedure of soil evaporation of stable phase and plant transpiration supplied water adequately. The instrument can measure reference crop evapotranspiration for the water in instrument goes up to the surface of the stuff by the capillary force to supply evaporate last and fully. The evaporation intensity of the instrument is determined only by the meteorological conditions, and it is indifferent to the water level of the instrument. Therefore, the principle of the instrument conforms to the definition of reference crop evapotranspiration, that is water
    
    
    feed sufficiently and evapotranspiration intensity is relative only to the meteorological conditions. The relationship between the variation of water level and ET0 is linear, so the ET0 could be computed directly by the variation of water level.
    Field tests ware executed to verify the performances of the instrument at the period of winter wheat and summer corn. The testing data were analysed by two methods. The first is specific value flexure method, that is the quotient of the water table variation and ET0 was studied by day serial. The second method is accumulating flexure method, that is daily water table variation and ET0 were added day by day, and then the relationship between the two cumulative values was studied. The specific value flexures certify that the water table variation in the instrument is indifferent to its water table. The accumulating flexures testify that the relationship between the variation of water level and ET0 is linear, which is simple multiple relation. The relative coefficients are close to one.
    The instrument applied in practice proofed that the instrument can guide peasants when and how much to irrigate. The precision of the instrument can satisfy the requirement of irrigation prediction.
    The instrument can be operated and maintained simply. Peasants can afford to buy the instrument easily. Therefore, The instrument will have some prospect in market place.
引文
[1] 康绍忠,刘晓明,熊运章.土壤—植物—大气连续体水分传输理论及其应用[M].北京:水利电力出版社(第三版),1994.1-150.
    [2] ALOK K.SIKKA, M.MADHU, K.P.TRIPATHI. Comparison of Different Methods of Estimating Evapotranspiration in the Nilgiris,South India[J],Indian Journal of Soil Conservation. 2001.29(3):213-219.
    [3] Patan Singh, S.N.Prasad, C.Prakash, V.Chauhan. Evapotranspiration and Water-Use-Efficiency of Soybean and Mustard Under Lysimeter in South-Eastern Rajasthan[J], Indian Journal of Soil Conservation. 2001, 29(1), 22-25.
    [4] 康绍忠, 蔡焕杰. 农业水管理[M]. 北京: 中国农业出版社. 1996.
    [5] Pramod Kumar Singh, Kamla Kant Singh, Sanjay Mathur, et al. A Feature ANN Model for Estimation of Reference Evapotranspiration[C]. Water-Saving Agriculture and Sustainable Use of Water and Land Resources. Xi’an: Shaanxi Science and Technology Press, 2003. 433-436.
    [6] Norman L. Klocke, Kenneth G. Hubbard, William L. Kranz. Evapotranspiration (ET) or Crop Water Use [EB/OL]. http://www.ianr.unl.edu/pubs/irrigation/g992.htm, 2003-11-09.
    [7] Allen, R. G., Smith, M., Perrier, A., Pereira, L. S..1994a. An update for the definition of reference evapotranspiration. ICID Bull. 43(2). 1-34.
    [8] 孙景生, 熊运章, 康绍忠.农田蒸发蒸腾的研究方法与进展[J].灌溉排水,1993.13(4):36-38.
    [9] 孙景生, 刘玉民, 康绍忠, 等. 夏玉米田作物蒸腾与棵间土壤蒸发模拟计算方法研究[J]. 玉米科学, 1996, (1): 76-80.
    [10] A.M. Ibrahim. Estimated Crop Water Requirement with Special Reference to Vegetables in Umdom Project, Khartoum Province[EB/OL]. http://www.actahort.org/books/143/143_36.htm, 2003-11-09.
    [11] 施成熙, 粟宗嵩. 农业水文学[M]. 北京: 农业出版社, 1982. 270-289.
    [12] 张崇浩, 袁玉信, 谭志一, 等(译). 植物与水分关系研究法[M]. 北京: 科学出版社, 1986. 269-351.
    [13] 李宝兴(译). 水均衡研究[M]. 北京: 地质出版社, 1988. 6-28.
    [14] 刘昌明, 洪嘉琏, 金淮. 农田蒸散量计算[C]. 水量转换实验与计算分析. 北京: 科学出版社, 1988. 116-128
    [15] 裴步祥. 蒸发和蒸散的测定与计算[M]. 北京:气象出版社, 1989. 1-28.
    [16] 奚玉英,陈国春. 由20cm蒸发皿资料和风速计算水库库面蒸发量[EB/OL]. http://www.lodestar.com.cn/files/wx%5Csdzsj%5C2002-2%5C21.htm, 2003-11-09. 
    [17] 中国水文信息网[EB/OL]. http://www.hydroinfo.gov.cn/swjc/yqsb.htm#A1. 2002-11-09.
    [18] 樊引琴.作物蒸发蒸腾量的测定与作物需水量计算方法的研究[D].西北农林科技大学,2001.
    
    [19] 北京中农大网络发展有限公司. 水量平衡法确定旱作物的灌溉制度[EB/OL]. http://www.cau-edu.net.cn/webkejian/water/CONTENT/10/100302-1.htm. 2002-11-09.
    [20] 彭顺风, 钱名开, 徐时进, 等. 史灌河流域水量平衡研究[J]. 气候与环境研究, 2001, 6(2): 234-239.
    [21] 地理小组站. 水资源[EB/OL]. http://www.h14z.com/site/research/netdl/szy.htm, 2001-10-22.
    [22] 谢小立, 王凯荣. 从水量平衡看环洞庭湖周边丘岗区农业生态建设[J]. 长江流域资源与环境, 2003, 12(2): 113-117.
    [23] 谢小立, 王凯荣. 环洞庭湖丘岗地区水资源平衡及其管理[J]. 水土保持学报, 2001, 15(4): 92-95.
    [24] 龚元石, 李保国.应用农田水量平衡模型估算土壤渗漏量[J]. 水科学进展. 1995. 6(1): 16~21.
    [25] 齐述华, 李子忠, 龚元石. 应用水量平衡原理计算三种蔬菜的需水量和作物系数[J]. 中国农业大学学报, 2002, 7(1): 71-76.
    [26] 北京中农大网络发展有限公司. 蒸发的测定与计算[EB/OL]. http: //www.cau-edu.net.cn/webkejian/water/CONTENT/1/010302-1.htm, 2002-11-09.
    [27] Denmead O T, B D Millar. Field studies of the conductance of wheat leaves and transpiration[J]. Agron. J.1976, 68: 307-311.
    [28] Fuchs M, S Moreshet. Theoretical analysis of modeled transpiration of irrigation and drainage[R]. 1984, INRA publications, Paris.1985.
    [29] Jagtap S S, J W Jones. Stability of crop coefficients under different climate and irrigation management practices[J]. Irrig. Sci. 1989, 10: 231-244.
    [30] Cohen S, Moreshet S. Response of citrus tress to modified radiation regime in semi-arid conditions[J]. J. Exp Bot. 1997, 48 (306): 35-44.
    [31] 孙晓敏, 朱治林, 张仁华, 等. 净辐射通量观测方法及观测精度的不确定性研究[J]. 中国生态农业学报, 2001, 9(1): 1-3.
    [32] 朱治林, 孙晓敏, 张仁华. 淮河流域典型地面水热通量的观测分析[J]. 气候与环境研究, 2001, 6 (2): 214-220.
    [33] Howell T A, Schneider A D, Jensen M E. History of lysimeter design and use for evapotranspiration measurements[C]. In Proceedings of the International Symposium on Lysimeters for Evapotranspiration and Environmental Measurements, eds. R Allen,T Howell, W Pruitt, I Walter and M Jensen.Honolulu, HI: IR Div, ASAE. 1991, 1-9.
    [34] Prueger J H, Hatfield J L, Aase J K, et, al. Bowen-ratio comparisons with lysimeter evapotranspiration[J]. Agron. J, 1997, (89): 730-736.
    [35] Young M H, Wierenga P J, Mancino C F. Monitoring near-surface soil water storage in Turfgrass using time domain reflectometry and weighing lysimetry[J]. Soil Sci. Soc. Am. J, 1997, (61): 1138-1146.
    
    [36] Pruitt W O, Angus D E. Large weighing lysimeter for measuring evapotranspiration[J]. Trans. ASAE, 1960, (3): 13-15.
    [37] Marek T H, Schneider A D, Howell T A, et, al. Design and construction of large weighing monolithic lysimeters[J]. Trans. ASAE. 1988, 31(2): 477-484.
    [38] Klocke N L, Heermann D F, Duke H R. Measurement of evaporation and transpiration with lysimeters.Trans[J]. ASAE, 1985, (28): 183-192.
    [39] Klocke N L, Hergert G W, Todd R W, et, al. Percolation lysimeters for water quality sampling[M]. In Proceedings of the International Symposium on Lysimeters for Evapotranspiraton and Environmental Measurements,eds. R G Allen, T A Howell,W Pruitt, I Walter and M Jensen.Honolulu, HI: IR Div, ASAE. 1991, 299-308.
    [40] Jones M B, Streetm J E, Williams W A. Leaching and uptake of nitrogen applied to annual grass and clover-grass mixtures in lysimeters[J]. Agron. J, 1974, (66): 256-258.
    [41] Martin E G, Loudon T L, Ritchie J T, et, al. Use of drainage lysimeters to evaluate nitrogen and irrigation management strategies to minimize nitrate leaching in maize production[J]. Trans. ASAE. 1994, (37): 79-83.
    [42] Dugas W A, Upchurch D R, Ritchie J T. A weighing lysimeter for evapotranspiration and root measurement[J]. Agron. 1985, (77): 821-825.
    [43] Kirkham R R, Gee G W, Jones T L. Weighing lysimeters for long-term water balance investigations at remote sites[J]. Soil Sci. Soc. Am. J. 1984, (48): 1203-1205.
    [44] Klocke N L, Todd R W, Hergert G W, et, al. Design, installation, and performance of percolation lysimeters for water quality sampling[J]. Tran. ASAE, 1993, (36): 429-435.
    [45] Ritchie J T, Burnett E. A precision weighing lysimeter for row crop water use studies[J]. Agron. J. 1968, (60): 545-549.
    [46] Ayars J E, Mead R M, Soppe R, et, al. Weighing lysimeters for shallow groundwater management studies[M]. In Proceedings of the International Conference on Evapotranspiration and Irrigation Schedule. 1996, 825-830。
    [47] Young M H, Wierenga D J, Maneino C F. Large weighing lysimeters for water use and deep percolation studies[J]. Soil Science. 1996, (161): 491-501.
    [48] Wu J, Zhang R, Yang J. Analysis of rainfall-recharge relationships[J]. Hydrol. 1996, (177): 143-160.
    [49] 美国国家灌溉工程手册.北京:中国水利水电出版社,1998.
    [50] 裴步祥. 蒸发和蒸散的测定与计算方法的现状及发展[J]. 气象科技, 1985, (1): 69-74.
    [51] J.L.Steiner, T.A.Howell, and A.D.Schneider. Lysimetric evaluation of daily potential evapotranspiration model for grain sorghum. Afron. J. ,1991, 83: 240-247.
    [52] T.A.Howell, J.L.Steiner, and A.D.Schneider, et al. Evapotranspiration of irrigation winter wheat
    
    
    southern high plains. American Society Engineers. Transaction of the ASAE, 1995, 38(3): 745-759.
    [53] T.A.Howell, J.L.Steiner, and A.D.Schneider, et al. Seasonal and maximum daily evapotranspiration of irrigated winter wheat, sorghum, and corn- southern high plains.
    [54] Pratap Singh and Ranvir Kumar. Evapotranspiration from wheat under a semi-arid climate and a shallow water table. Agriculture Water Management,1993, 23:91-108.
    [55] R.G.Allen, J.H.Prueger,R.W.Hill. Evapotranspiration from Isolanded stands of hydrophytes: Cattall and bulrush. American Society of Agricultural Engineers, 1992, 35(4): 1191-1198.
    [56] Terry A.Howett, Tudy A.Tolk, Arland D, et, al. Evapotranspiration, Yield, and Water Use Efficiency of Corn Hybrids Differing in Naturity. Agron. J., 1998, 90: 3-9.
    [57] Tudy A.Tolk, Terry A.Howett, and Steven R. Evett. Evapotranspiration and Yield of corn grow on three high plains soils. Agronomy Journal, 1998, 90: 447-454.
    [58] N.K.Tyagi, D.K.Sharma, S.K.Luthra. Determination of Evapotranspiration and Crop Coefficients of rice and sunflower with lysimeter. Agriculture Water Management,2000, 45:41-54.
    [59] 黄子琛, 蒲锦春, 高征锐. 河西地区农作物的蒸发蒸腾试验研究[J]. 中国沙漠,1998,8(2):54-64.
    [60] 黄子琛, 蒲锦春, 高征锐. 临泽北部绿洲玉米生育期的蒸发蒸腾试验研究[J]. 植物学报,1991,33(8):633-641.
    [61] 郑海雷, 黄子琛. 绿洲生态条件下春小麦蒸发蒸腾特征及其影响因子 [J]. 植物生态学报,1994,18(4):362-371.
    [62] 谢贤群. 测定农田蒸发的试验研究[J]. 地理研究, 1990, 9(4): 94-102.
    [63] 柯晓新, 张旭东, 彭素琴, 等. 旱作春小麦农田蒸散与能量平衡[J]. 气象学报, 1996, 54(3): 348-355.
    [64] 郭志中, 赵明, 王耀林, 等. 民勤绿洲沙地西瓜、白兰瓜蒸腾蒸发试验研究[J]. 干旱地区农业研究. 1996, 14(4): 67-72.
    [65] Rugege D, Regional Analysis of Maize-Based Land Use Systems for Early Warning Applications Ph.D-thesis, ITC, Enschede and Wageningen University, The Netherlands. 2001, 242 pp.
    [66] Clawson K L, Blad B L. Infrared thermometry for scheduling irrigat ion of corn[J]. Agronomy Journal, 1982, 74: 311-316.
    [67] Bouman, B. A. M. Linking physical remote sensing models with growth simulation models, applied for sugar beet[J]. International Journal of Remote Sensing. 1992, 13 (14): 2565-2581.
    [68] Clevers, J. G. P. W. and Van Leeuwen, H. J. C. A framework for monitoring crop growth by combining directional and spectral remote sensing information[J]. Remote Sensing of Environment, 1994, 25: 161~170.
    [69] Coll, C., Caselles, V. A split-window algorithm for land surface temperature from advanced very high resolution radiometer data: Validation and algorithm comparison[J]. Journal of Geophysical
    
    
    Research. 1997, 102: 16,697-16,713.
    [70] Kalluri, S. N. V. and J. R. G. Townshed, A Simple Single-layer Model to Estimate Transpiration from Vegetation using Multi-spectral and Meteorological Data[J]. International Journal of Remote Sensing. 1998, 19: 1037-1053.
    [71] Maas, S. J. Use of remotely-sensed information in agricultural crop growth models[J]. Ecological Modeling, 1988, 41: 247-268.
    [72] Kerenyi, J. and Putsay, M. Investigation of land surface temperature algorithms using NOAA AVHRR images[J]. Adv. Space. Res. 2000, 26 (7): 1077-1080.
    [73] Parodi, G. N., 2000. AVHRR Hydrological Analysis System (AHAS) [J]. ITC Water Resources Division. Enschede, The Netherlands.
    [74] Qin, Z., and A. Karnieli, Progress in the remote sensing of land surface temperature and ground emissivity using NOAA-AVHRR data[J]. Int. J. Remote Sensing 1999, 20(12): 2367-2393.
    [75] Zhan, X., Kustas, W.P. and Humes, K.S. An Intercomparison Study on Models of Sensible Heat Flux over Partial Canopy Surfaces with Remotely Sensed Surface Temperature, Remote Sensing of Environment. 1996, 58: 242-256.
    [76] 张仁华, 孙晓敏. 定量遥感反演作物蒸腾和土壤水分利用的区域分异[J]. 中国科学(D辑), 2001, 31(11): 959-968.
    [77] 张仁华, 孙晓敏. 以微分热惯量为基础的地表蒸发全遥感信息模型及在甘肃沙坡头地区的验证[J]. ?中国科学(D缉), 2002, 32(12): 1041-1050.
    [78] 辛景峰, 基于3S技术与生长模型的作物长势监测与估产方法研究[D]. 中国农业大学, 2001.
    [79] 曹卫星, 罗卫红, 作物系统模拟及智能管理[M]. 北京: 华文出版社. 2000.
    [80] 王人潮, 王珂等. 水稻单产遥感估测建模研究.遥感学报. 1998, 2(2):119-124.
    [81] 申广荣, 田国良, 2000. 基于 GIS的黄淮海平原旱灾遥感监测研究: 作物缺水指数模型的实现. 生态学报, 2000, 20(2): 224-228.
    [82] 李林,张国胜,汪青春, 等. 黄河上游流域蒸散量及其影响因子研究[J]. 地球科学进展. 2000, 15(3): 256-259.
    [83] 袁国富, 唐登银, 罗毅, 等. 基于冠层温度的作物缺水研究进展. 地球科学进展, 2001, 16(1): 49-54.
    [84] 蔡焕杰, 康绍忠. 棉花冠层温度的变化规律及其用于缺水诊断研究[J]. 灌溉排水, 1997, 16(1), 1-5.
    [85] Solaiman A. Al-Sha’lan and Abdin M.A.Salih. Evapotranspiration Estimation in Extremely Arid Areas. Journal of Irrigation and Drainage Engineering, 1987, 113(4): 565-574.
    [86] C.Di Stefano, V.Ferro. Estimation of Evapotranspiration by Hargreaves Formula and Remotely Sensed Data in Semi-arid Mediterranean Areas. J. agric. Engng Rrs, 1997, 68: 189-199.
    
    [87] 郭元裕.农田水利学[M].北京:水利电力出版社(第二版),1986.6-46.
    [88] Penman H. L. Natural Evaporation from Open Water. Bare Soil and Grass. Proc. Roy. Soc. London, 1948, A193, 120-146.
    [89] 许迪, 刘钰. 测定和估算田间作物腾发量方法研究综述[J]. 灌溉排水, 1997, 16(4): 54-59.
    [90] Jensen M. E., Haise H. R. Estimating evapotranspiration from solar radiation. J. Irrig. And Drain. Div., ASAE, 89: 15-41.
    [91] Jensen M. E., Wright, J. L. and Pratt B. J. Estimating Soil Moisture Depletion from Climate. Crop and Soil Data. Trans. Am. Soc. Agric. Engrs. 1971, 14: 954-959.
    [92] Priestlgy. C. H. B. and Taylor, R. J. On the assessment of surface heat flux and evaporation using scale parameters. Mon. Weath. Rev., 1972, 100:81-92.
    [93] Hargreaves G. H, Samani Z. A. Reference crop evapotranspiration from temperture. Transaction of the ASAE, 1985, (2), 96-99.
    [94] Makkink G. F. Testing the Penman Formula by Means of Lysimeters. J. I. Nst. Water Engng. 1957, 11(3):277-288.
    [95] Doorenbos, J., Pruitt, W. O. Crop Water requirements. Irrigation and Drainage Paper No. 24, (rev.), 1977, FAO, Rome, Italy, 144p.
    [96] 李远华. 节水灌溉理论与技术[M]. 武汉: 水利电力大学出版社.
    [97] Allen R. G. et al. Operational Estimates of Reference Evapotranspiration. Agrom. J., 1989, 81: 650-662.
    [98] Jensen M. E., Burman R. D. and Allen R. G. Evapotranspiration and Irrigation Water Requirements. ASCE Manual 70, 1990.
    [99] 康绍忠. 估算水面蒸发量的一种热力学方法[J]. 西北农业大学学报, 1987, (1).
    [100] Blaney H. F, and Criddle W. O., Determining Water Requirement in Irrigated Areas from Climatological and Irrigation Data. USDA(SCS) TP-96, 48p, 1950.
    [41] Thornthwaite, C. W., An Approachtoward a Rational Classification of Climate. Geogr. Rev. 1948, 38: 55-94.
    [102] 康绍忠. 干旱半干旱地区大气蒸发力的计算方法研究[J]. 干旱地区农业研究. 1985, (2).
    [103] 刘钰, L. S. Pereira, J. L. Teixeira, 等. 参照腾发量的新定义及计算方法对比[J]. 水利学报. 1997, (6), 27-33.
    [104] 康绍忠, 梁银丽, 蔡焕杰, 等. 旱区水-土-作物关系及其最优调控原理. 北京: 中国农业大学出版社, 1998.
    [105] Fre re, M. et al. Agrometerological crop monitoring and forecasting, FAO Plant Production and Protection Paper 17, Roma, 1979.
    [106] 龚元石. Penman-Monteith公式与FAO-PPP-17Penman修正式计算参考作物蒸发蒸腾量的比较[J]. 北京农业大学学报, 1995, 21(1): 68-75.
    
    [107] 史海滨, 何京丽, 郭克贞, 等. 参考作物腾发量计算方法及其适用性评价[J]. 灌溉排水, 1997, 16(2): 50-54.
    [108] 朱自玺. 美国农业气象和农田蒸散研究[J]. 气象, 1996, 22(6): 3-9.
    [109] Allen, R. G., Pereira, L. S., Raes, D., et al. Crop Evapotranspiration. Guidelines for Computing Crop Water and Irrigation Water Requirements. ASCE Manual 70, 1990.
    [110] 荆家海.植物生理学[M].西安:陕西科学技术出版社,1994.40-55.
    [111] 张明柱, 黎庆淮, 石秀兰. 土壤学与农作学[M]. 北京: 水利电力出版社(第三版), 1994. 53-108.
    [112] Van den Honert, T. H. , Water transport in plants as a catenary process. Discussion of he Faraday Society, 3: 146-153, 1948
    [113] ALOK K.SIKKA, M.MADHU, K.P,TRIPATHI. Comparison of Different Methods of Estimating Evapotranspiration in the Nilgiris, South India[J], Indian Journal of Soil Conservation. 2001, 29(3), 213-219.
    [114] PATAN SINGH, S.N.PRASAD, C.PRAKASH, V.CHAUHAN. Evapotranspiration and Waer-Use-Efficiency of Soybean and Mustard Under Lysimeter in South-Eastern Rajasthan[J], Indian Journal of Soil Conservation. 2001, 29(1), 22-25.
    [115] S. R. Evett, A. W. Warrick, A.D. Matthias. Wall material and capping effects on microlysimeter temperatures and evaporation. Soil Soc. Am. J., 1995, 59: 329-336
    [116] 韩娟.利用大型蒸渗仪测定蒸发蒸腾量及作物需水量计算方法的研究[D].西北农林科技大学,2000.
    [117] 汪志农,冯浩.节水灌溉管理决策专家系统[M].郑州:黄河水利出版社,2001.6-37.
    [118] 马孝义.节水灌溉新技术[M].北京:中国农业出版社,2000.9-16.
    [119] Allen, R. G., Pereira, L. S., Raes, D., et al. Crop Evapotranspiration. FAO Irrigation and Drainage Paper 56, Rome, 1998.
    [120] 陈亚新,康绍忠.非充分灌溉原理[M].北京:水利电力出版社,1995.9-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700