基于MODIS与TM的遥感墒情反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤墒情,是水文学、气象学以及农业科学研究领域中的一个重要指标参数,对气候、农业、旱情监测都具有极为重要的意义。遥感技术在土壤墒情监测中的应用,使得土壤墒情的快速、大范围获取成为了可能,克服了传统墒情监测方法的不足。
     本文从采用多源遥感影像数据优势互补出发,对应用较为广泛的MODIS与Landsat TM数据用于土壤墒情监测进行了研究,提出了基于MODIS与TM影像同时采用表观热惯量法和植被供水指数法对土壤墒情监测的方法,实现减少地面实测资料的依赖,增大墒情监测结果的空间尺度,提高不同植被覆盖度下地表土壤墒情监测结果的精度。主要研究内容如下:
     (1)在收集整理国内外主要土壤墒情遥感反演相关资料的基础上,选取具有代表性的适用于裸土/低植被覆盖区域的表观热惯量法和适用于高植被覆盖区域的植被供水指数法,研究了基于MODIS数据分别应用两种方法的土壤墒情反演、基于Landsat TM数据的植被供水指数法土壤墒情反演。
     (2)分析了MODIS与TM数据结合实现优势互补用于土壤墒情监测的可能性,以植被阈值作为不同植被覆盖度地表的划分依据,研究了采用两种数据同时应用表观热惯量法和植被供水指数法对土壤墒情监测的实现方法。
     (3)以VS2005为开发环境,采用面向对象的C#语言,在ArcGIS与ENVI/IDL二次平台的基础上,选取河南省白沙灌区为实验区域,建立了白沙灌区土壤墒情遥感监测系统,分别实现了采用MODIS数据应用表观热惯量法和植被供水指数法监测土壤墒情,采用TM数据应用植被供水指数法监测土壤墒情,采用MODIS数据结合TM数据进行墒情监测,并能输出遥感反演过程的中间参数,对墒情监测结果进行专题图输出。
     (4)对提出的MODIS数据结合TM数据监测墒情方法得到的墒情结果与单独采用其中一种影像数据和模型得到的结果进行了对比分析,结果表明两种数据的结合能够有效提高土壤-植被混合地表土壤墒情的监测精度。
Soil moisture is the water condition of soil, it is an important indicator parameter of hydrology, meteorology and the agricultural science, the research about Soil moisture has extremely vital significance for the climate agricultural,and drought monitoring. With the development of remote sensing technology, it comes true that getting the soil moisture quickly and widely, the shortcomings of traditional methods in monitoring soil moisture is overcame.
     In this paper, the methods of soil moisture monitoring based on MODIS and Landsat TM data which has been widely applied was researched, under the goal of complementary advantages with multi-source remote sensing image data, the method of applying both Apparent thermal inertia and Vegetation supply water index in soil moisture monitoring based on MODIS and TM data was put forward. The results show that the dependence of ground measured data was reduced, the spatial scales of soil moisture could be increased, the accuracy of soil moisture under different vegetation coverage surface was improved. The main research work and results are as follows:
     (1)On the basis of collecting remote sensing inversion data, the Apparent thermal inertia method which is suitable for soil/low vegetation coverage area and the Vegetation supply water Index method that is suitable for high vegetation coverage area was selected, the research about monitoring soil moisture based on Apparent thermal inertia with MODIS data, based on Vegetation supply water Index with MODIS data,and based on Vegetation supply water Index with TM data were make.
     (2) The feasibility to achieve complementary advantages for monitoring soil moisture with MODIS and TM data was analyzed, using Normalized Difference Vegetation Index (NDVI) to distinguish between land cover types, the research on the application of monitoring soil moisture applying both the Apparent thermal inertia and Vegetation supply water Index was made.
     (3)Taking Baisha Irrigation of Henan province as experimental area, established the soil moisture monitoring system in the VS2005development environment, using the object-oriented C#language based on ArcGIS and ENVI/IDL secondary platform.The system can realized that monitoring soil moisture applied Apparent thermal inertia and Vegetation supply water Index with MODIS image data, monitoring soil moisture applied Vegetation supply water Index with TM data, monitoring soil moisture applied both MODIS and TM data, and the system can output the intermediate parameters in remote sensing inversion process,output the thematic map of soil moisture monitoring results.
     (4) The results from the method applied MODIS and TM with the results from single image and model was compared, the results show that the method applying multi-source remote sensing can get a high accuracy in soil-vegetation mixed terrain.
引文
[1]肖斌,沙晋明.土壤水分遥感反演方法概述[J].遥感信息.2007,(06):13-17
    [2]Puma M J, Celia M A, Rodriguez-It urbc I, et al. Functional relationship to describe temporal statistics of soil moisture averaged over different depths[J].Advances in Water Resources,2005,28(6):553-566
    [3]Jackson T, Mansfield K, Saafi M, et al. Measuring soil temperature and moisture using wireless MEMS sensors[J]. Measurement,2008,41(4):381-390
    [4]陆孝平.关于水利现代化问题的思考[J],中国水利,2002(10):154-156
    [5]Bowers SA, Hanks R J. Reflection of Radiant Energy from Soils[J].Soil Science,1965,100(2):130-138
    [6]Kahle A B. A Simple Thermal Model of the Earth's Surface for Geologic Mapping by Remote Sensing[J]. Jounral of Geophysical Research,1977(82):1673-1680
    [7]Watson K, Rowen L C. Application of Thermal Modeling in the Geologic interpretation of IR Image [J]. Remote Sensing Environment,1971,(3):98-142
    [8]Price J C. Thermal inertia mapping:a new view of the earth[J] Geophysics Research, 1977(82):75-82
    [9]Price J C. On the analysis of thermal infrared imagery:The limited utility of apparent thermal inertia [J] Remote Sensing of Environment,1985,(18):59-73
    [10]Carlson T N. Regional scale estimates of surface moisture availability and thermal inertia using remote thermal measurements [J]. Remote Sensing Reviews,1986(1):197-247
    [11]刘兴文,冯勇进.应用热惯量编制土壤水分图及土壤水分探测效果[J].土壤学报,1987,24(3):272-280
    [12]隋洪智,田国良,李建军,等.热惯量方法监测土壤水分[A].田国良.黄河流域典型地区遥感动态研究[C].北京:科学出版社,1990.122-132
    [13]陈怀亮,冯定原,邹春辉,尚红敏.用NOAA/AVHRR资料遥感土壤水分时风速的影响.南京气象学院学报.1999,22(2):45-50
    [14]杨宝钢,刘晶森,陈斌.考虑植被的热惯量法反演土壤湿度的一次试验.南京气象学报.2004,27(2):31-36
    [15]邢文渊,肖继东,姚艳丽,等.新疆地区土壤湿度遥感监测初探[J].沙漠与绿洲气象,1(1):42-44
    [16]杨树聪,沈彦俊,郭英,等.基于表观热惯量的土壤水分监测[J].中国生态农业学报,2011,19(5):1157-1161
    [17]Kogan F N.Application of Vegetation Index and Brightness Temperature for Drought Detection. Advances in Space Research,1995,15:91-100
    [18]陈述彭,童庆禧,郭华东.遥感信息机理研究[M].北京:科学出版社,1998.175-185
    [19]Jackson R D, Slater P N, Pinter P J. Discrimination of growth and water stress in wheat by various vegetation indices through clear and turbid atmospheres [J]. Remote Sensing of Environment,1983,13:187-208
    [20]MoranM S, Clarke T R, Inoue U, et al. Estimating Crop Water Deficit Using the Relation Between Surface Air Temperature and Spectral Vegetation Index[J]. Remote Sensing of Environment,1994,49:246-263
    [21]普布次仁.归一化植被指数与降水量、土壤湿度的关系[J].气象,1995,21(12):8-12
    [22]陈维英,肖乾广,等.距平植被指数在1992年特大干旱监测中的应用[J].环境遥感,1994,9(2):106-112
    [23]Gao B C. NDWI-A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space[J]. Remote Sensing of Environment,1996,58(3):257-266
    [24]刘小磊,覃志豪.NDWI与NDVI旨数在区域干旱监测中的比较分析[J].遥感技术与应用,2007,22(5):608-612
    [25]Kogan F N. Remote Sensing of Weather Impacts on Vegetation in Non_homogeneous Areas.Int. J. of Remote Sensing,1990,11:1405-1420
    [26]于君明,周艺,王世新,王丽涛.基于修正角度斜率指数的土壤水分遥感监测方法[J1.土壤通报.2009,40(1):43-47
    [27]GoetzS J. Multisensor Analysis of NDVI, Surface Temperature and Biophysical Variables at a Mixed grassland Site[J]. International Journal of Remote Sensing,1997,18(1):71-94
    [28]张仁华.对定量热红外遥感的一些思考[J].国土资源遥感,1999,(1):1-7
    [29]Carlson TN, et a.l Remote Sensing Estimation of Soil Moisture A-vailability and Fractional Vegetation Cover for Agricultural Fields [J].Agricultural and Forest Meteorology,1990,52: 45-69
    [30]Carlson T N, et a.l. A Method to Make Use of Thermal Infrared Temperature and NDVI Measurement to Infer Surface Soil Water Content and Fractional Vegetation Cover[J].Remote Sensing Environment,1994,9:161-173
    [31]刘丽,周颖,杨凤,等.用遥感植被供水指数监测贵州干旱[J].贵州气象,1998,22(6):17-21
    [32]莫伟华,王振会,孙涵,等.基于植被供水指数的农田干旱遥感监测研究[J].南京气象学院学报,2006,29(3):396-401
    [33]Sandholt, Rasmussen K, Anderson J. A Simple Interpretation of the Surface Temperature/vegetation Index Space for Assessment of the Surface Moisture Status[J]. Remote Sensing ofEnvironment,2002,79:213-224
    [34]王鹏新,龚健雅,李小文.条件温度植被指数及其在干旱监测中的应用[J].武汉大学学报(信息科学版),2001,26(5):412-418
    [35]王鹏新,Wan ZM,龚健雅,等.基于植被指数和土地表面温度的干旱监测模型[J].地球科学进展,2003,18(4):527-533
    [36]闫峰,王艳姣.基于Ts-EVI特征空间的土壤水分估算[J].土壤通报.2009,29(9):4884-4891
    [37]王纯枝,毛留喜,何延波,韩丽娟,陈健,宇振荣.温度植被干旱指数法(TVDI)在黄 淮海平原土壤湿度反演中的应用研究[J].土壤通报.2009,40(5):998-1005
    [38]白志远,邢立新,潘军,李鹏飞,许振北.土壤湿度信息遥感研究[J].测绘与空间地理信息.2011,34(3):50-55
    [39]赵杰鹏,张显峰,廖春华,包慧漪.基于TVDI的大范围干旱区土壤水分遥感反演模型研究[J].遥感技术与应用.2011,(6):56-63
    [40]Kahle A B. A simple thermal model of the Earth's surface for geologic mapping by remote sensing[J]. Journal of Geophysical Research,1977,82(11):1673-1680
    [41]Price J C. On the analysis of thermal infrared imagery:the limited utility of apparent thermal inertia[J]. Remote sensing of Environment,1985,18(1):59-73
    [42]申广荣,田国良.基于GIS的黄淮海平原旱灾遥感监测研究—作物缺水指数模型的实现[J].生态学报,2000,20(2):224-281
    [43]李纪人.旱情遥感监测方法及其进展[J].水文,2001,21(4):15-17
    [44]王丽莉.利用MODIS数据反演土壤含水量-以吉林省西部为例[D].东北师范大学.2008
    [45]邱庆伦,赵鸿燕,郭剑.遥感植被指数在农业生态环境监测中的应用[J].农机化研究,2004,(6):215-171
    [46]刘丽,刘清,周颖等.卫星遥感信息在贵州干旱监测中的应用[J].中国农业气象,1999,20(3):43-47
    [47]BeckerF, LiZ L. Towards a local split window method over land surface [J]. International Journal of Remote Sensing,1990,11(3):369-393
    [48]Wan ZM. MODIS Land-Surface Temperature Algorithm theoretical basic document (LSTATBD) (version3.3)[R]. April 1999. Contract Number:NAS5-31370. Institute for Computational Earth System Science, University of California, Santa Barbara, CA
    [49]Qin Z, DallO' ImoG, KamieliA, etal. Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data [J]. Journal of Geophysical Research,2001,106:22655-22670
    [50]Sobrino JA, RaissouniN. Toward remote sensing methods for land cover dynamic monitoring:Application to Morocco [J]. International Journal of Remote Sensing,2000, 21(2):353-366
    [51]高懋芳,覃志豪,徐斌.用MODIS数据反演地表温度的基本参数估计方法[J].干旱区研究,2007,24(1):113-119
    [52]赵少华,邱国玉,秦其明,等.MODIS数据反演地表温度的应用研究[J].干旱区资源与环境,2010(3):51-54
    [53]Sobrino JA, KharrazEL J, LiZ L. Surface temperature and water vapour retrieval from MODIS data [J]. International Journal of Remote Sensing,2003,24(24):5161-5182
    [54]覃志豪,高懋芳,秦晓敏,等.农业旱灾监测中的地表温度遥感反演方法-以MODIS数据为例[J].自然灾害学报,2005,14(4):64-70
    [55]覃志豪,李文娟,徐斌,等LandsatTM6波段范围内地表比辐射率的估计[J].国土资源遥感,2004,61(3):28-33
    [56]Van de Griend A A, Owe M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces[J]. International Journal of remote sensing,1993,14(6):1119-1131
    [57]覃志豪,李文娟,徐斌,等.利用Landsat TM6反演地表温度所需地表辐射率参数的估计方法[J].海洋科学进展,2004,22:129-137
    [58]高懋芳,覃志豪,徐斌.用MODIS数据反演地表温度的基本参数估计方法[J].干早区研究,2007,24(1):113-119
    [59]毛克彪,覃志豪.用MODIS影像反演环渤海地区的大气水汽含量[J].遥感信息,2004,4:47-49
    [60]Mao, K, Qin Z, Shi J, et a.l A practical split-window algorithm for retrieving land surface temperature from MODIS data [J]. International Journal of remote sensing,2005,26 (10): 3181-3204
    [61]赵立军.基于MODIS数据的北京地区土壤含水量遥感信息模型研究[D]中国农业大学,2004
    [62]French A N, Norman J M, Anderson M C A simple and fast atmospheric correction for spaceborne remote sensing of surface temperature[J]. Remote sensing of environment,2003, 87(2):326-333
    [63]覃志豪,Minghua Z. Karnieli A, et al用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报,2001,56(4):456-466
    [64]Jim6nez-Munoz J C,Sobrino J A.A generalized single channel method for retrieving land surface temperature from remote sensing data [J].Journal of GeophysicalResearch,2003,108(doi:10.1029/2003 JD003480)
    [65]樊辉.基于Landsat TM热红外波段反演地表温度的算法对比分析[J].遥感信息,2009,(1):36-40
    [66]覃志豪,LI Wenjuan, ZHANG Minghua.单窗算法的大气参数估计方法[J].国土资源遥感,2003,(2):31-43
    [67]李净.基于Landsat-5 TM估算地表温度[J].遥感技术与应用,2006,21(4):322-326
    [68]盛裴轩,毛节泰,李建国,等.大气物理学[M].北京:北京大学出版社,2005
    [69]赵晶晶,黄慧萍,李晓松,等.基于TM6城区冬季地表温度反演方法探究[J].2009,全国测绘科技信息交流会暨首届测绘博客征文颁奖论文集,2009
    [70]覃志豪,李文娟,徐斌,等.利用Landsat TM6反演地表温度所需地表辐射率参数的估计方法[J].海洋科学进展,2004,22:129-137
    [71]宫阿都,李京,王晓娣,等.北京城市热岛环境时空变化规律研究[J].地理与地理信息科学,2006,21(6):15-18
    [72]王倩倩,覃志豪,王斐.基于多源遥感数据反演地表温度的单窗算法[J].地理与地理信息科学,2012,28(003):24-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700