沙冬青KS型类脱水素基因家族克隆及非生物胁迫相关基因表达与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙冬青属豆科沙冬青属,是古老的第三纪残遗种,为亚洲中部荒漠地区特有的常绿阔叶灌木,具有极强的抵御低温、干旱、盐、高温胁迫的能力,是一种理想的抗逆基因资源植物。但目前对沙冬青的研究主要停留在生理及植被保护方面,对其抗性分子生物学机理方面的研究较少。据此,我们以沙冬青为材料,对其非生物胁迫相关基因的功能进行了较为系统的研究,探讨沙冬青抗逆机理,从而为抗逆品种选育提供数据和技术支持,同时也期望为通过基因工程技术培育抗逆植物新品种提供新的基因资源。本文的主要研究结果如下:
     1、沙冬青KS型类脱水素基因AmCIP及其基因家族功能分析及鉴定
     1.1沙冬青KS型类脱水素AmCIP的低温保护功能鉴定
     AmCIP编码的脱水素中含一个富K区域(HKEGLVDKIKDKVHG),与典型的脱水素K区(EEKKGIMDKIKELPG)有所不同。AmCIP还含有一个S区,但是不含有Y区,因此我们将其命名为KS型类脱水素。本研究的结果显示:转AmCIP烟草的抗寒性获得提高;在E. coli ER2566中超表达AmCIP能增强宿主菌抵御冻融伤害的能力;纯化得到的重组AmCIP是水溶性的蛋白,并具有热稳定性;重组AmCIP能在冻融胁迫下保护乳酸脱氢酶的活性;YFP/AmCIP融合蛋白定位在洋葱内表皮细胞的细胞质和细胞核中。因此推测沙冬青KS型类脱水素AmCIP可能在沙冬青细胞质和细胞核中发挥作用,并与沙冬青低温防御机制密切相关。
     1.2沙冬青KS型类脱水素基因家族的克隆与序列和功能分析
     根据AmCIP序列设计引物,从低温、干旱、盐、高温胁迫处理的沙冬青中扩增得到一组与AmCIP同源性很高的基因。它们编码的蛋白长106至290个氨基酸残基,这些蛋白与AmCIP的同源性也很高,加上AmCIP共计为126个。我们对这些蛋白采用AmP+氨基酸残基数+字母的命名方式。经过分析,这些蛋白的分子量从11.661 kDa到30.688kDa不等。每个蛋白中所含的甘氨酸、谷氨酸、天冬酰胺、谷氨酰胺以及组氨酸占氨基酸总数的60%以上,其中甘氨酸的含量最高。除AmP200P为碱性蛋白外,其余蛋白均为酸性蛋白。
     这些蛋白具有33个氨基酸残基长的保守N端和71或73个氨基酸残基长的保守C段,在这两段保守序列之间有0-8个22或24或26个氨基酸残基长的重复片段,这些重复片段之间也具有较高的同源性。这些蛋白在保守的C端区域中都含有一个15个氨基酸残基长的富含K的,与典型脱水素K片段类似的区域,并且这些蛋白还都具有一个S片段,但是不存在Y片段,因此我们称这个家族为沙冬青KS型类脱水素家族。这些蛋白均为亲水性蛋白,并含有3-11个酪蛋白激酶Ⅱ磷酸化位点和1-16个N-肉豆蔻酰化位点,推测这些类脱水素可能在沙冬青细胞中参与细胞信号转导活动。另外,某些蛋白还含有RGD细胞附着序列。这些蛋白都有较高比例的柔性区域。这些蛋白内部亲缘关系很近,与4种低温响应的脱水素亲缘关系最近,包括鬼箭锦鸡儿(Caragana jubata)AEJ20970.1,棘豆(Oxytropis campestris subsp.johannensis) AEV59620.1和AEV59619.1,以及棘豆(Oxytropis arctobia)AEV59613.1。
     用纯化的重组AmCIP溶液制备抗血清,用此抗血清对低温、干旱、盐、热胁迫处理的沙冬青进行免疫印迹分析。结果显示,沙冬青KS型类脱水素家族在正常生长条件下的沙冬青中的表达水平很低,但是受低温、干旱、盐、热胁迫信号的诱导,并随着胁迫处理时间的延长表达量也逐渐升高。根据以上结果推测,此沙冬青KS型类脱水素家族可能参与了沙冬青的非生物胁迫防御机制。在此之前尚未有研究发现具有类似特点的大型脱水素家族,沙冬青KS型类脱水素家族的发现可以为脱水素的分子进化以及沙冬青独特的抗逆机理研究提供宝贵的理论基础。
     2、沙冬青防御素基因AmDF的功能鉴定
     沙冬青防御素基因AmDF全长414 bp,含有一个207 bp编码68个氨基酸的开放阅读框,推测编码的蛋白分子量为7.66 kDa,等电点为8.92,包含8个保守的半胱氨酸残基可以形成4对二硫键。蛋白内含有一个Knot1结构,这是具有抗菌活性的γ-硫堇(γ-thionin)和Knottin中常见的结构。此编码蛋白与大车前(Plantago major)防御素CAH58740.1的亲缘关系最近。荧光定量PCR结果显示,AmDF在正常生长条件下的沙冬青中表达水平较低,然而其表达量在低温、干旱、盐以及热胁迫条件下表达量都出现上调,并且主要在低温胁迫后期富集。YFP/AmDF融合蛋白定位在洋葱内表皮细胞的细胞质和细胞核中。然而转AmDF烟草的抗低温、干旱、盐胁迫能力未获得提高。因此推测沙冬青防御素AmDF可能参与低温胁迫下对外界环境中病原体的抵御活动,从而提高沙冬青在低温胁迫下的存活率,不过这还需要进一步实验进行验证。
     3、沙冬青非生物胁迫抗性相关功能基因表达分析
     3.1沙冬青非生物胁迫下荧光定量内参基因选择
     植物对逆境条件的反应不取决于某一单个因子,而是大量基因协同作用的结果。对某一个基因、或某一类基因的功能进行分析,难以完整解释性状的表现机理,而对表达的基因进行综合的研究则有利于揭示植物性状的复杂分子本质。为了探索基因某方面的功能,首先就要了解其在植物体内的表达。实时荧光定量PCR具有准确、灵敏、重复性好、通量高等优点,而被研究者广泛应用于基因的表达分析。为了去除不同样本在RNA产量、质量和反转录效率上可能存在的差别,以得到可靠的目标基因的表达水平和表达模式,选取合适的内参基因显得尤为重要。
     本研究第一次对沙冬青低温、干旱、盐、高温胁迫下荧光定量内参基因的选择进行了系统的分析。利用geNorm和NormFinder两个软件对14个内参候选基因在22个沙冬青样品(包括对照1个,低温、干旱、盐胁迫各5个,热胁迫6个)的表达稳定性进行分析后发现,eIF1和eIF3在22个沙冬青样品中表达稳定性最高,Tub2、Abc1和EF1的表达稳定性最低。通过对AmHsp90的表达进行分析,证明了geNorm和NormFinder两个软件给出的候选基因的排名都是可靠的。
     3.2沙冬青非生物胁迫相关功能基因在低温、干旱、盐以及热胁迫下的表达分析
     采用qPCR分析方法,用eIF1和eIF3作为内参,对沙冬青中55个胁迫相关的功能基因,包括AmSOD01~04、AmCAT01、AmAPX01、AmAPX02、AmGPX01、AmPrx01、AmPrx02、AmTrx01~06、AmFNR01、AmFd01~04、AmGrx01~05、AmHsp70-1~3、AmHsp90-1、AmDnaJ01、AmDnaJ02、AmLEA01、AmLEA14、AmLOX01、AmLOX02、Am1433-01~03、AmCAB01~07、AmFBP01~02、AmFBA01、AmEno01、AmPGK01~02、AmMT01~03、AmFer01在低温、干旱、盐以及热胁迫处理后的沙冬青中的表达情况进行分析。表达结果显示这些基因在正常生长条件下的沙冬青中都有表达,说明它们可能为沙冬青在正常生长条件下维持生理代谢所需要的基因。然而它们的表达大多受胁迫信号调节,在表达水平和表达模式上具有各自的特点。抗氧化相关基因在低温、干旱、盐以及热胁迫的各阶段都出现不同程度的上调,说明沙冬青对氧化胁迫有较强的控制力。光合作用相关的AmCAB01~07以及糖异生和糖酵解相关的AmFBP01~02、AmFBA01、AmPGK01~02和AmEno01在非生物胁迫的后期都出现降低,说明沙冬青为了适应长期的恶劣环境,可能在胁迫后期的降低自身对能量和同化物的需求。其余基因也在在胁迫处理的不同阶段出现了上调或下调的现象。推测这些基因可能对沙冬青胁迫防御机制的建立起到积极的作用。这些基因表达模式的多样性,也说明了植物逆境胁迫响应机制的复杂性。
     总之,经过长期的地质历史时期的适应性进化,沙冬青获得了在沙漠极端恶劣条件下生存的策略,进化得到一些自身特殊的分子防御机制。本研究的成果对沙冬青强抗逆机制的研究提供了重要的实验和理论基础,同时也为农作物和树木抗逆品种的选育提供了许多可供选择的胁迫基因。
Ammopiptanthus mongolicus is the only evergreen broadleaf shrub endemic to the Alashan desert, northwest sand area of China, where the climate is arid, the site is desertification and salinization and the temperature is blow-30℃in winter, up to 40℃in summer. Situating long in adverse environments, A. mongolicus has gradually evolved typical superxeromorphic structures and molecular metabolic characteristics to adapt the adversity, such as drought, salinization, cold, heat and other stresses. Tolerance to various adversities makes A. mongolicus an excellent model of woody plants for the study of molecular mechanisms underlying abiotic stresses tolerance. However, few studies were focused on molecular biology of A. mongolicus. Hereby, we carried out a systematic study on the functions of some A. mongolicus abiotic stress-related genes to explore molecular mechanism of stress tolerance, and to provide data and technical support for stress tolerance and resistance breeding of crops. The main findings in this study are as follows:
     1. Identification of A. mongolicus a KS-type dehydrin-like protein AmCIP and a super KS-type dehydrin-like protein family.
     1.1 Identification of protection role of a KS-type dehydrin-like protein AmCIP from A. mongolicus under cold stress.
     Herein firstly, we report function analysis of a dehydrin-like protein AmCIP unified with a distinct K-segment of HKEGLVDKIKDKVHG similar to the 15-mer consensus sequence EEKKGIMDKIKELPG of typical dehydrin. Expression of AmCIP in transgenic tobacco leaded to enhanced tolerance to cold stress for both geminating seeds and seedlings. Over-expression of AmCIP in transgenic E. coli significantly improved freeze-thawing tolerance of host E. coli cells. Moreover, the recombinant AmCIP kept soluble pre-and post-10 min boiling treatment, and conferred stabilization of the LDH under freeze-thawing stress, consistent with the characteristic of dehydrins. YFP-AmCIP fusion protein was subcellular localized in the cytoplasm and nucleus in onion inner epidermal cells, suggesting that AmCIP might function in the cytoplasm and nucleus in cells. The combined results indicated that AmCIP with a distinct K-segment was a hydrophilic dehydrin-like protein and closely associated with resistance to cold stress. This research offered the valuable information for molecular mechanism of dehydrins and stress responses in A. mongolicus.
     1.2 Cloning, sequencing and functional analysis of a super KS-type dehydrin-like gene family in A. mongolicus.
     A super AmCIP homologous gene family was obtained through PCR by primers pairs according to DNA sequence of AmCIP. The total present members of this AmCIP homologous gene family account for 126 plus AmCIP. The coded proteins of these genes range from 106 to 290 amino acid (aa) residues, which share high degree of homology with AmClP and between each other, while share low degree of homology with other typical dehydrins. And this dehydrin family has not been reported before. These proteins are named through AmP+protein length+different English letters to present different members, such as AmP106A, AmP106B, AmP106C, et al. The calculated molecular mass of these proteins ranged from 11.661 KDa to 30.688 KDa. Glycine, glutamate, asparagines, glutamine and histidine in each of these protein accounted for more than 60% of the total number of amino acid residues, in which the content of glycine is the highest. As predicted, almost all the members of this A. mongolicus KS-type dehydrin-like protein family are acidic proteins, except for AmP200P which is a basic one.
     These proteins have a 33 aa conserved N-terminal region, and a 71 or 73 aa conserved C-terminal region. Between these two conserved regions, there are 0~8 conserved repeated amino acid fragments, the length of which is 22 or 24 or 26 aa. And these repeated amino acid fragments also have high degree of homology. Each of these proteins also has a distinct K-segment similar to the 15-mer consensus sequence EEKKGIMDKIKELPG of typical dehydrin, and an S-segment in the conserved C-terminal region, but has no Y-segment. So this group of proteins was called KS-type dehydrin-like protein family of A. mongolicus. These proteins are all hydrophilic and flexible proteins with 3-11 casein kinaseⅡphosphorylation sites,1-16 N-myristoylation sites, suggesting these proteins may be involved in signal transduction activities during abiotic stress. Some members of this family also have cell attachment sequence. Phylogenetic analysis indicated that the members of the KS-type dehydrin-like protein family of A. mongolicus are closely related to each other, and this group is most closely to AEJ20970.1 of Caragana jubata, AEV59620.1 and AEV59619.1 of Oxytropis campestris subsp Johannensis, AEV59613.1 of Oxytropis arctobia which are all cold responsive dehydrins.
     Expression of this A. mongolicus KS-type dehydrin-like protein was analysed through western blot by using antiserum agains AmCIP. Results showed that this A. mongolicus KS-type dehydrin-like protein family was constitutively expressed with low level, and accumulated at the late stage of cold, drought, salt and heat stresses.
     The combined results indicate that this A. mongolicus KS-type dehydrin-like protein family plays important roles in abiotic stress responses. Prior to this, no such big dehydrin family has been reported, and the discovery of them is valuable for future researched on evolution of dehydrin and anti-stress mechanism of A. mongolicus.
     2 Functional identification of A. mongolicus defensin gene AmDF
     AmDF was obtained through solid-phase subtractive hybridization from cold stressed A. mongolicus. Sequence analysis showed that the overall length of AmDF gene was 414 bp, and the cDNA of AmDF contained a 207 bp ORF encoding a polypeptide of 68 amino acids with a calculated molecular mass of 7.66 kDa and a theoretical pI of 8.92. AmDF contained eight conserved cysteine residues which could form four disulfide bonds, and a Knotl structure which is common in y-thionin and knottin with antimicrobial ability. Phylogenetic analysis indicated that AmDF was most closely related to Plantago major defensin CAH58740.1. Real-time quantitative PCR analysis showed that AmDF was constitutively expressed, up-regulated by cold, drought, salt and heat stress, and specifically accumulated at the late stage of cold treatment. YFP-AmDF fusion protein was subcellular localized in the cytoplasm and nucleus in onion inner epidermal cells, suggesting that AmDF might function in the cytoplasm and nucleus in cells. However, the cold, drought and salt tolerance of AmDF transgenic tobacco was not improved. The combined results indicate that AmDF protein plays some roles in anti-microbial activities under cold stress to elevate the survival rate of A. mongolicus under cold stress, which need to be confirmed by further study.
     3. Expression analysis of abiotic stress-related functional genes in,4. mongolicus
     3.1 Reference gene selection for A. mongolicus under cold, drought, salt and heat stress
     Abiotic stress tolerance of plant is not determined by single gene, but resulted from products of great many genes. The mechanism of stress tolerance could be hardly explained by analysis of one or a class of genes. However, a comprehensive research on expressed genes is advantageous in revealing the complex stress tolerance mechanism, which is more and more based on gene expression. qPCR is more widely used for its multiple advantages of accuracy, sensitivity, reproducibility, and high throughput. Nevertheless, the accuracy of qPCR was significantly influenced by the reference genes used. By now, no report has so far described the selection of reference genes to get stringent normalization for qPCR in A. mongolicus.
     We identified reliable reference genes for normalization of qPCR data in A. mongolicus under abiotic stresses from 14 reference gene candidates (UBQ, Tub1, Tub2, Abel, Ubc1, Ubc2, Ubc4, Ubc5, elF1, elF2, eIF3, eIF4, EF1, EF2). We set a series of 22 experimental samples covering the control and different time points under cold, dry, salt, and heat stresses. According to geNorm and NormFinder, the combination of elF1 and eIF3 was more sufficient to confer an accurate normalization across all the treatments, which was confirmed by normalizing qPCR data of AmHsp90. In contrast, Tub1, Abel, and EF1 were ranked poorly and should be excluded as reference genes.
     3.2 Expression analysis of abiotic stress-related functional genes in A mongolicus.
     55 anti-abiotic stress genes were chosen from an EST data of cold-and drought-stressed A. mongolicus, including AmSOD01~04, AmCAT01, AmAPX01, AmAPX02, AmGPX01, AmPrx01, AmPrx02, AmTrx01~06, AmFd01~04, AmFNR01, AmGrx01~05, AmHsp70-1~3, AmHsp90-1, AmDnaJ01, AmDnaJ02, AmLEA01, AmLEA14, AmLOX01, AmLOX02, Am1433-01~03, AmCAB01~07, AmFBP01~02, AmFBA01, AmPGK01~02, AmEno01, AmMT01~03, AmFerOl, which are known to be involved in anti-stress mechanism. The expression of these genes was analysed in the same above 22 samples by qPCR through normalizing against elF1 and elF3. Results showed that these genes are all constitutively expressed in A. mongolicus, suggesting that they had basic functions under normal growth conditions. The balance and coordination of them provides highly efficient machinery to maintain normal growth and metabolism. The 55 anti-stress genes exhibited diverse expression levels and differentially up-or down-regulated expression patterns under abiotic stresses, indicating different anti-stress protection roles of them under abiotic stresses. The anti-oxidative genes are up-regulated at various stages of cold, drought, salt and heat stresses, suggest a powerful control for generating oxidative damage under abiotic stress.
     Photosynthesis associated genes AmCAB01~07, and gluconeogenesis and glycolysis associated genes AmFBP01~02、AmFBA01、AmPGK01~02 and AmEno01 were down-regulated at the late stages of abiotic stresses, indicating that A. mongolicus may reduce its demand for energy and assimilates at the late stages of abiotic stresses to survive the long-term hard environment. The combined results suggested that these genes may play positive roles in mechanism of A. mongolicus abiotic stress tolerance. The diversity of expression patterns of these genes under abiotic stresses provides a preliminary impression of the complicated stress tolerance mechanisms in A. mongolicus. These results are valuable for future research on gene expression and abiotic stress tolerance in A. mongolicus.
     In conclusion, A. mongolicus has evolved a complete set of defense mechanism to survive in the extreme environment of desert. The findings in this study confer a better understanding of the special anti-stress system of A. mongolicus, and provide important guidance for future researches on plant anti-stress activities.
引文
1. 常团结,朱祯.植物金属硫蛋白研究进展--植物MT的分类、特征及其基因结构[J].生物技术通报,2002,3:6-10.
    2. 代红军,曾洪学.植物抗冻性研究进展[J].农业科学研究,2006,3:71-74.
    3. 丁琼,王华,贾桂霞,郝玉光.沙冬青种子萌发及幼苗生长特性[J].植物生态学报,2006,4:633-639.
    4. 苟萍,索菲娅,马东建.高等植物铁氧还蛋白的结构与功能[J].生物的化学,2007,27(1):51-53.
    5. 郭生祥,刘志银,郝昕.沙冬青的研究进展[J].甘肃林业科技,2005,30(4):6-8.
    6. 郭玉双,张建华,张吉顺,史跃伟,陈静.烟草谷氧还蛋白基因NbGRX1的克隆与表达特性分析[J].东北农业大学学报,2011,42(10):47-51.
    7. 韩建民,史吉平,董永华.干旱且无昼夜温差条件下玉米幼苗叶片φw、φs、φp和叶片延伸速度的变化[J].河北农业大学学报,1996,19(1):22-25.
    8. 胡安生,管彦良,蒋斌芳,王振东,牟莉桦,卢惠智.柑桔热害防御技术及热害机理研究总结[J].中国南方果树,1998,27(2):13-14.
    9. 胡景江,顾振瑜,文建雷,王姝清.水分胁迫对元宝枫膜脂过氧化作用的影响[J].西北林学院学报,1999,14(2):7-11.
    10.胡瑞波,范成明,傅永福.植物实时荧光定量PCR内参基因的选择[J].中国农业科学导报,2009,11(6):30-36.
    11.胡廷章,胡宗利,屈霄霄,任彦荣,陈国平.植物脂肪氧化酶的研究进展[J].生物工程学报,2009,25(1):1-9.
    12.胡孝义,谭晓风,张党权,曾艳玲,陈鸿鹏,田晓明,刘巧.1个油茶Y2SK2型脱水素的全长cDNA克隆及生理功能预测[J].林业科学,2008,44(10):55-62.
    13.胡一鸿,牛健康.超氧化物歧化酶研究进展[J].生物学教学,2005,2005,1:2-3.
    14.焦培培,李志军.濒危植物矮沙冬青研究进展[J].塔里木大学学报,2007,1:79-83.
    15.李建超,王学臣.水分胁迫下细胞延伸生长于细胞膨压和细胞壁特性的关系[J].植物生理学通讯,1998,34(3):161-167.
    16.李娟,薛庆中.拟南芥及水稻转录因子MADS密码子的偏好性比较[J].浙江大学学报农业与生命科学版,2005,31(5):513-517.
    17.李平,白云凤,冯瑞云,王原嫒,张维锋.籽粒苋苹果酸酶(NAD-ME)基因密码子偏好性分析[J].应用与环境生物学报2011,17(1):012-017.
    18.李思义.导入小麦过氧化氢酶培育耐低温水稻[J].生物技术通报,2001,3:48-49.
    19.李占梅,别建波,宋宏锐,徐柏玲.果糖-1,6-二磷酸酶AMP变构抑制剂的研究紧张[J].药学学报,2011,46(11):1291-1300.
    20.刘汉梅,张怀渝,谭振波,黄玉碧.玉米CAT3基因的克隆及低温表达[J].四川农业大学学报,2006,24(3):272-275.
    21.刘家琼,周湘红.几种固沙植物过氧化物酶、过氧化氢酶活性及同工酶的初步分析[A].兰州:甘肃科技出版社,1993.
    22.刘兰,张林生,刑媛,张楠.干旱胁迫下耐旱性小麦在不同生育时期脱水素的表达分析[J].西 北植物学报,2011,31(9):1786-1793.
    23.刘雷,尹钧.硫氧还蛋白的研究[J].东北农业大学学报,2003,34(2):219-225.
    24.刘美芹.沙冬青抗寒基因的克隆、功能分析与遗传转化研究[D].北京林业大学博士学位论文.
    25.刘庆坡,冯英.20个物种同义密码子偏性的比较分析[J].西北农林科技大学学报(自然科学版),2004,32(7):67-71.
    26.吕俊,朱利泉,沈福成,张毅.6-BA诱导的过氧化氢酶及其在提高水稻抗寒力中的作用研究[J].农业生物技术科学,2005,21(12):64-67.
    27.马长乐,王萍萍,曹子谊,赵彦修,张慧.盐地碱蓬(Suaeda salsa) APX基因的克隆及盐胁迫下的表达[J].植物生理与分子生物学学报,2002,28(4):261-266.
    28.孟超敏,姬俊华.高等植物非生物胁迫应答基因及其产物研究进展[J].安徽农学通报(下半月刊),2009,20:27-125.
    29.苗雨晨.拟南芥AtGPX3在ABA和干旱信号转导中的作用[D].北京:中国农业大学,2005.
    30.牛洪斌,尹钧,邓德志,李巧云,任江萍,李永春.大麦铁蛋白基因(HvFerl) cDNA的克隆和表达[J].植物生理学通讯,2007,43(6):1015-1019.
    31.钱刚,平军娇,张珍,王乾兴,刘茂生.3种棱型大麦中脱水素6(DHN6)的性质、突变位点与蛋白质进化分析[J].基因组学与应用生物学,2011,30(3):322-329.
    32.秦佳,杨金莹,伊淑莹,赵春梅,李明辉,刘箭.组成型表达的ClpB基因提高番茄植株的耐冷性[J].植物生理学通讯,2007,43(1):16-20.
    33.石秀凡,黄京飞,柳树群,刘次全.人类基因同义密码子偏好的特征以及与基因GC含量的关系[J].生物化学与生物物理进展,2002,29(3):411-414.
    34.铁双贵,郑用琏.玉米基因组的简单重复序列遗传研究进展[J].生物工程进展,2001,21(5):59-62.
    35.汪本勤,陈勤,向成斌.SOD活性增高的拟南芥晚花突变体具有增强的非生物胁迫耐受性[J].植物学通报,2007,24(5):572-580.
    36.王向阳,王淑俭,彭文博,夏百根,王德勤.高温对小麦幼苗生理特性影响的初步研究[J].河南农业大学学报,1992,26(1):9-15.
    37.王以柔,曾韶西,刘鸿先.冷锻炼对水稻和黄瓜幼苗SOD、GR活性及GSH、AsA含量的影响[J].植物学报,1995,37(10):776-780.
    38.王伟青,李滨,孟庆伟,邹琦.番茄类囊体膜抗坏血酸过氧化酶基因TtAPX,序列.植物生理与分子生物学学报,2002,28(6):491-492.
    39.吴宪明,吴松锋,任大明,朱云平,贺福初.密码子偏性的分析方法及相关研究进展[J].遗传,2007,29(4):420-426.
    40.习阳,刘祥林,黄勤妮.植物铁蛋白转基因的应用[J].植物生理学通讯,2003,39(3):284-288.
    41.夏恩龙,施海,彭祚登.沙冬青抗逆性与培育技术研究进展[J].中国水土保持科学,2006,4:109-113.
    42.续晨,蔡小宁,钱保俐,贲爱玲.葡萄基因组密码子使用偏好模式研究[J].西北植物学报,2012,32(2):0409-0415.
    43.徐红霞,陈俊伟,谢鸣.脱水素在植物低温胁迫响应中的作用[J].西北植物学报,2009,29(1):0199-0206.
    44.杨芳.豌豆过氧化氢酶基因在玉米中的转化[D].山东师范大学硕士论文,2006.
    45.杨平.拟南芥NHX基因密码子使用特性分析[J].南京晓庄学院学报,2011,6.
    46.晁岳恩,吴政卿,杨会民,何宁,杨攀.11种植物psbA基因的密码子偏好性及聚类分析[J].核农学报,2011,25(5):0927-0932.
    47.叶陈亮,柯玉琴,陈伟.大白菜耐热性的生理研究:Ⅲ.酶性和非酶性活性氧清除能力[J].福建农业大学学报,1997,26(4):498-501.
    48.尹林克,张娟.不同环境下沙冬青属植物的蛋白质氨基酸变化[J].干旱区研究,2004,21(3):269-274.
    49.张敬原,范云六,赵军.粳稻品种Dongjin在干旱胁迫下苗期生理反应[J].中国农学通报,2007,23(2):231-235.
    50. Allan A, Snyder AK, Preuss M, NIelsen EE, Shah DM, Smith TJ. Plant defensins and virally encoded fungal toxin KP4 inhibit plant root growth[J]. Planta 2008; 227:331-9.
    51. Alsheikh MK, Heyen BJ, Randall SK. Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation[J]. J Biol Chem,2003,278:40882-40889.
    52. Alsheikh MK, Svensson JT, Randall SK. Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins[J]. Plant Cell Environ,2005,28:1114-1122.
    53. Anderson JA, Guata LV, Buchanan DW, Burke MJ. Freezing of water in citrus leaves[J]. J Am Soc Hort Sci,1983,108:397-400.
    54. Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data:A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Res,2004,64(15): 5245-5250.
    55. Andrews SC, Arosio P, Bottke W, Briat JF, von Harl M, Harrison PM, Laulhere JP, Levi S, Lobreaux S, Yewdall SJ. Structure, function and evolution of ferritins[J]. J Inorg Biochem,1992, 47:161-174.
    56. Arner EJ, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase[J]. Eur J Biochem,2000,267:6102-6109.
    57. Arnon DI. The discovery of ferredoxin:the photosysthetic path[J]. Trends Biochem Sci,1988, 13(1):30-33.
    58. Assmann SM, Shimazaki K. The multisensory guard cell, stomatal response to blue light and abscisic acid[J]. Plant Physiol,1999,119:809-816.
    59. Ayarpadikannan S, Chung E, Cho CW, So HA, Kim SO, Jeon JM, Kwak MH, Lee SW, Lee JH. Exploration for the salt stress tolerance genes from a salt-treated halophyte, Suaeda asparagoides[J]. Plant Cell Rep,2012,31(1):35-48.
    60. Bachmann M, Matile P, Keller F. Metabolism of the raffinose family oligo saccharides in leaves of Ajuga reptans L. Cold acclimation, translocation, and sink to source transition:Discovery of chain elongation enzyme[J]. Plant Physiol,1994,105:1335-1345.
    61. Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K. Overexpress ion of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit[J]. Physiol Plant,2004,121(2):231-238.
    62. Balla G, Jaeob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW, Vercellotti GM. Feritin:a cytoprotective anti-oxidant stratagem of endothelium[J]. J Biol Chem,1992,267(25): 18148-18153.
    63. Barros MD, Czarnecka E, Gurley WB. Mutational analysis of a plant heat shock element[J]. Plant Mol Biol,1992,19:665-675.
    64. Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA. The enigmatic LEA proteins and other hydrophilins[J]. Plant Physiol,2008,148:6-24.
    65. Bhardwaj PK, Kaur J, Sobti RC, Ahuja PS, Kumar S. Lipoxygenase in Caragana jubata responds to low temperature, abscisic acid, methyl jasmonate and salicylic acid[J]. Gene,2011, 483(1-2):49-53.
    66. Bhattarai T, Fettig S. Isolation and characterization of adehydrin gene from Cicer pinnatifidum, a drought resistant wild relative of chickpea[J]. Physiol Plant,2005,123:452-458.
    67. Borges A, Tsai SM, Caldas DG. Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses[J]. Plant Cell Rep,2011, Doi 10.1007/s00299-011-1204-x.
    68. Borovskii GB, Stupnikova IV, Antipina AI, Vladimirova SV, Voinikov VK. Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freeze, drought and ABA treatment[J]. BMC Plant Biol,2002,2:5.
    69. Boston RS, Viitanen PV, Vierling E. Molecular chaperones and protein folding in plant[J]. Plant Mol Biol,1996,32:191-222.
    70. Briat JF. Roles of ferritin in plants[J]. J Plant Nutrition,1996,19(8-9):1331-1342.
    71. Bridges D, Moorhead GB.14-3-3 proteins:A number of functions for a numbered protein[J]. Sci STKE,2005,296:1-10.
    72. Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pages M, Masmoudi K. Overexpression of wheat dehydrin DHN5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana[J]. Plant Cell Rep,2007,26:2017-2026.
    73. BriniF, SaibiW, HaninM, Amaral, GargouriA, MasmoudiK. The wheat dehydrin DHN-5 exerts a heat-protective effect on (3-glucosidase and glucoseoxidase activities[J]. Biosci Biotechnol Biochem,2010,74:1050-1054.
    74. Brini F, Yamamoto A, Jlaiel L, Takeda S, Hobo T, Dinh HQ, Hattori T, Masmoudi K, Hanin M. Pleiotropic effects of the wheat dehydrin DHN-5 on stress responses in Arabidopsis[J]. Plant Cell Physiol,2011,52:676-688.
    75. Broin M, Cuine S, Peltier G, Rey P. Involvement of CDSP32, a drought-induced thioredoxin, in the response to oxidative stress in potato plants[J]. FEBS Lett,2004,467:245-248.
    76. Broin M, Rey P. Potato plants lacking the CDSP32 plastidic thioredoxin exhibit overoxidation of the BAS12-Cysteine peroxiredoxin and increased lipid peroxidation in thylakoids under photooxidative stress[J]. Plant Physiol,2003,132(3):1335-1343.
    77. Brunner AM, Yakovlev IA, Strauss SH. Validating internal controls for quantitative plant gene expression studies[J]. BMC Plant Biol,2004,4:14.
    78. Bruix M, Jimenez MA, Santoro J, Gonzalez C, Colilla FJ, Mendez E, Rico M. Solution structure of gammal-H and gammal-P thionins from barley and wheat endosperm determined by 1H-NMR: a structural motif common to toxic arthropod proteins[J]. Biochemistry,1993,32:715-724.
    79. Bueso E, Alejandro S, Carbonell P, Perez-Amador MA, Fayos J, Belles JM, Rodriguez PL, Serrano R. The lithium tolerance of the Arabidopsis cat2 mutant reveals a cross-talk between oxidative stress and ethylene[J]. Plant J,2007,52:1052-1065.
    80. Bunnel TM, Burbach BJ, Shimizu Y, Ervasti JM. β-Actin specifically controls cell growth, migration and the G-actin pool[J]. Mol Biol Cell,2011,22:4047-4058.
    81. Bunney TD, van Walraven HS, de Boer AH.14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase[J]. Proc Natl Acad Sci USA,2001,98:4249-4254.
    82. Bushweller JH, Aslund F, Wuthrich K, Holmgren A. Structural and functional characterization of the mutant Escherichia coli glutaredoxin (C14----S) and its mixed disulfide with glutathione[J]. Biochemistry,1992,31:9288-9293.
    83. Busk PK, Jensen AB, Pages M. Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rabl7 from maize[J]. Plant J,1997,11(6):1285-1295.
    84. Camoni L, Harper J F, Palmgren M G.14-3-3 proteins activate a plant calcium-dependent protein kinase (CDPK) [J]. FEBS Lett,1998,430:3812384.
    85. Campbell SA, Close TJ. Dehydrins:Genes, proteins, and associations with phenotypic traits[J]. New Phytol,1997,137:61-74.
    86. Campos F, Zamudio F, Covarrubias AA. Two different late embryogenesis abundant proteins from Arabidopsis thaliana contain specific domains that inhibit Escherichia coli growth[J]. Biochem Biophys Res Commun,2006,342:406-413.
    87. Carjuzaa P, Castellion M, Distefano AJ, delVas M, Maldonado S. Detection and subcellular localization of dehydrin-like proteins in quinoa(Chenopodium quinoa Wild.) embryos[J]. Protoplasma,2008,233:149-156.
    88. Cabral KM, Almeida MS, Valente AP, Almeida FC, Kurtenbach E. Production of the active antifungal Pisum sativum defensin 1 (Psdl) in Pichia pastor is:overcoming the inefficiency of the STE13 protease[J]. Pro Expr Purif,2003,31:115-122.
    89. Charles R, Frank J, Michael B. Identification of two cytosolic ascorbate peroxidase cDNAs from soybean leaves and characterization of their products by functional expression in E. coli[J]. Planta, 1998,204:120~126.
    90. Chelysheva VV, Smolenskaya IN, Trofimova MC, Babakov AV, Muromtsev GS. Role of the 14-3-3 proteins in the regulation of H+-ATPase activity in the plasma membrane of suspension-cultured sugar beet cells under cold stress[J]. FEBS Lett,1999,456(1):22-26.
    91. Chen S, Vaghchhipawala Z, Li W, Asard H, Dickman MB. Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by bax and oxidative stresses in yeast and plants[J]. Plant Physiol,2004,135:1630-1641.
    92. Chen KC, Lin CY, Kuan CC, Sung HY, Chen CS. A novel defensin encoded by a mungbean DNA exhibits insecticidal activity against bruchid[J]. J Agric Food Chem,2002,50:7258-7263.
    93. Cheng NH. AtGRX4, an Arabidopsis chloroplastic monothiol glutaredoxin, is able to suppress yeast grx5 mutant phenotypes and respond to oxidative stress[J]. FEBS Lett,2008,582:848-854.
    94. Cheng NH, Liu JZ, Broch A, Nelsono RS, Hirschi KD. AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage[J]. J Biol Chem,2006,281: 26280-26288.
    95. Cheng Z, Targolli J, Huang X, Wu R. Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.)[J]. Mol Breed,2002,10:71-82.
    96. Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R. The JAZ family of repressors is the missing link in jasmonate signalling[J]. Nature,2007,448:666-671.
    97. Cho EK, Hong CB. Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants[J]. Plant Cell Rep,2006,25:349-358.
    98. Choi DW, Zhu B, Close TJ. The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv. Dick too[J]. Theor Appl Genet.1999a,98(8):1234-1247.
    99. Choi HJ, Kang SW, Yang CH, Rhee SG, Ryu SE. Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution [J]. Nat Stuct Biol,1998,5(5):400-406.
    100. Choi HYO, Cheong NE, Lee KO, Jung BG, Hong CH, Jeong JH, Chi YH, Kim K, Cho MJ, Lee SY. Cloning and expression of a new isotype of the Peroxiredoxin gene of Chinese cabbage and its comparison to 2 Cys-peroxiredoxin isolated from the same plant[J]. Biochem BioPhys Res Commu, 1999b,258:768-771.
    101.Churin Y, Adam E, Kozma-Bognar L, Nagy F, Borner T. Characterization of two Myb-like transcription factors binding to CAB promoters in wheat and barley[J]. Plant Mol Biol,2003,52 (2):447-462.
    102. Clark GJ, Drugan JK, Rossman KL, Carpenter JW, Rogers-Graham K, Fu H, Der CJ, Campbell SL.14-3-3 ζ negatively regulates raf-1 activity by interactions with the Raf-1 cysteine-rich domain[J]. Biol Chem,1997,272:20990-20993.
    103. Close TJ. Dehydrins:Emergence of abiochemical role of a family of plant dehydration proteins[J]. Physiol Plant,1996,97:795-803.
    104. Collins GG, Nie XL, Saltveit ME. Heat shock proteins and chilling sensitivity of mung bean hypocotyls[J]. J Exp Bot,1995,46(288):795-802.
    105. Conklin DS, Galaktionov K, Beach D.14-3-3 proteins associate with cdc-5 phosphatases[J]. Proc Natl Acad Sci USA,1995,92:7892-7896.
    106. Cortleven A, Remans T, Brenner WG, Valcke R. Selection of plastid-and nuclear-encoded reference genes to study the effect of altered endogenous cytokinin content on photosynthesis genes in Nicotiana tabacum[J]. Photosynth Res,2009,102:21-29.
    107. Cross JV, Templeton DJ. Oxidative stress inhibits MEKK1 by site-specific glutathionylation in the ATP-binding domain[J]. Biochem J,2004,381:675-683.
    108. Dalal M, Tayal D, Chinnusamy V, Bansal k C. Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance[J]. J Biotechnol,2009,139(2): 137-145.
    109. Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A. Protein S-glutathionylation:a regulatory device from bacteria to hurnans[J]. Trends Biochem Sci,2009,34:85-96.
    110. Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat[J]. Plant Cell,1998,10(4):623-638.
    111.de Almeida MR, Ruedell CM, Ricachenevsky FK, Sperotto RA, Pasquali G, Fett-Neto AG. Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globules Labill[J]. BMC Mol Biol, 2010,11:73.
    112. Demming-Adams B. Carotenoids and photoprotection in plants:A role for the xanthophylls, zeaxanthin[J]. BBA-Bioenergetics,1990,1020:1554-1561.
    113. DiVenere A, Salucci ML, van Zadelhoff G, Veldink G, Mei G, Rosato N, Finazzi-Agro A, Maccarrone M. Structure-to-function relationship of mini-lipoxygenase a 60 kD fragment of soybean lipoxygenase-1 with lower stability but higher enzymatic activity[J]. J Biol Chem,2003, 278(20):18281-18288.
    114. Dure L, Crouch M, Harada J, Thd Ho, Mundy J, Quatrano R, Thomas T, Sung ZR. Common amino acid sequence domains among the LEA proteins of higher plants[J]. Plant Mol Biol,1989, 12:475-486.
    115. Dure L, Green SC, Galau GA. Developmental biochemistry of cotton seed embryogenesis and germination:changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis[J]. Biochemistry,1981,20(4):4162-4168.
    116. Emaus D, Fenton R, Wilson JM. Stomatal behavior and water relations of chilled Phaseolus vulgaris L. and Pisum sativum L[J]. J Exp Bot,1983,34:434-441.
    117. Emes MJ, Neuhaus HE. Metabolism and transport in non-photosynthetic plastids[J]. J Exp Bot, 1997,48:1995-2005.
    118. Eriksson SK, Kutzer M, Procek J, Grobner G, Harryson P. Tuable membrane binding of the intrinsically disordered dehydrin Lti30, a cold-induced plant stress protein[J]. The Plant Cell,2011, 23:2391-2404.
    119. Fernandez P, Di Rienzo JA, Moschen S, Dosio GA, Aguirrezabal LA, Hopp HE, Paniego N, Heinz RA. Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis[J]. Plant Cell Rep,2011,30:63-74.
    120. Finkemeier Ⅰ, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz K. The mitochondrial type Ⅱ peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress[J]. J Biol Chem,2005,280:12168-12180.
    121. Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N. Transcriptional profiling of maturing tomato (Solanumlycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response[J]. J Exp Bot,2009,60:3891-3908.
    122. Fujikawa S, Kuroda K, Ohtani J. Seasonal changes in dehydration tolerance of xylem ray parenchyma cells of Stylax obassia twigs that survive freezing temperatures by deep supercooling[J]. Protoplasma,1997,197:34-44.
    123. Fuller MP, Grout BW, Tapsell CR. The pattern of frost-hardening of leaves of winter cauliflower (Brassica oleraceavar. botrytis cv. Clause30)[J]. Ann Appl Biol,1989,115:161-170.
    124. Gachon C, Mingam A, Charrier B. Real-time PCR:what relevance to plant studies[J]. J Exp Bot, 2004,55:1445-1454.
    125. Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM. Fungal pathogen protection in potato by expression of a plant defensin peptide[J]. Nat Biotechnol,2000,18:1307-1310.
    126. Garnczarska M, Zalewski T, Kempka M. Changes in water status and water distribution in maturing lupin seeds studied by MR imaging and NMR spectroscopy[J]. J Exp Bot,2007,58: 3961-3969.
    127. Garnczarska M, Zalewski T, Wojtyla L. A comparative study of water distribution and dehydrin protein localization in maturing pea seeds[J]. J Plant Physiol,2008,165:1940-1946.
    128. Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death[J]. Bioessays,2006, 28:1091-1101.
    129. Ghezzi P. Oxidoreduction of protein thiols in redox regulation[J]. Biochem Soc Trans,2005,33: 1378-1381.
    130. Goday A, Jensen AB, Culianez-Macia FA, Alba MM, Figueras M, Serratosa J, Torrent M, Pages M. The maize abscisic acid responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals[J]. Plant Cell,1994,6:351-360.
    131. Godoy JA, Lunar R, Torres-Schumann S, Moreno J, Rodrigo RM, Pintor-Toro JA. Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants[J]. Plant Mol Biol,1994,26:1921-1934.
    132. Goffin L, Georgopoulos C. Genetic and biochemical characterization of mutations affecting the carboxy-terminal domain of the Escherichia coli molecular chaperone DnaJ[J]. Mol Microbiol, 1998; 30:329-340.
    133. Gong H, Nilsen S. Effect of temperature on photo inhibition of photosynthesis, recovery and turn over of the 32 KD chloroplast protein in Lemma gibba[J]. J Plant Physiol,1989,135:9-14.
    134. Gomber TJ, Etienne P, Ourr YA, Le Dily F. The expression patterns of SAG12/Cab genes reveal the spatial and temporal progression of leaf senescence in Brassica napus L. with sensitivity to the environment[J]. J Exp Bot,2006,57(9):1949-1956.
    135. Guenin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L. Normalization of qRT-PCR data:the necessity of adopting a systematic, experimental conditions-specific, validation of references[J]. J Exp Bot,2009,60:487-493.
    136. Guo X, Cao Y, Cao Z, Zhao Y, Zhang H. Molecular cloning and characterization of a stress-induced peroxiredoxin Q gene in halophyte Suaeda salsa[J]. Plant Science,2004,167: 969-975.
    137. Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, von Korff G, Varshney RK, Graner A, Valkoun J. Differentially expressed genes between rought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage[J]. J Exp Bot,2009,60(12): 3531-3544.
    138. Guo X, Cao Y, Cao Z, Zhao Y, Zhang H. Molecular cloning and characterization of a stress-induced peroxiredoxin Q gene in halophyte Suaeda salsa[J]. Plant Sci,2004,167(5): 969-975.
    139. Guo YS, Huang C J, Xie Y, Song F, Zhou X. A tomato glutaredoxin gene SIGRX1 regulates plant responses to oxidative, drought and salt stresses[J]. Planta,2010,232:1499-1509.
    140. Gustavsson N, Kokke BP, Harndahl U, Silow M, Bechtold U, Poghosyan Z, Murphy D, Boelens WC, Sundby C. A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein[J]. Plant J,2002,29(5):543-553.
    141. Gutierrez L, Mauriat M, Guenin S. The lack of a systematic validation of reference genes:a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants[J]. Plant Biotechnol,2008,6:609-618
    142. Haberer G, Young S, Bharti AK, Gundlach H, Raymond C, Fuks G, Butler E, Wing RA, Rounsley S, Birren B, Nusbaum C, Mayer KF, Messing J. Structure and architecture of themaize genome[J]. Plant Physiol,2005,139(4):1612-1624.
    143. Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K. Plant dehydrins and stress tolerance: Versatile proteins for complex mechanism[J]. Plant signaling & Behavior,2011,6:1503-1509.
    144. Hanke GT, Kimata-Ariga Y, Taniguchi I, Hase T. A post genomic characterization of Arabidopsis ferredoxins[J]. Plant Physiol,2004,134(1):255-264.
    145. Hara M, Terashima S, Kuboi T. Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu[J]. J Plant Physiol,2001,158:1333-1339.
    146. Hara M, Terashima S, Fukaya T, Kuboi T. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco[J]. Planta,2003,217:290-298.
    147. Hara M, Fujinaga M, Kuboi T. Metal binding by citrus dehydrin with histidine-rich domains[J]. J Exp Bot,2005,56:2695-2703.
    148. Hardtke CS, Gohda K, Osterlund MT, Oyama T, Okada K, Deng XW. HY5 stability and activity in Arabidopsis is regulated by phosphorylation in its COP1 binding domain[J]. EMBO J,2000, 19(18):4997-5006.
    149. Harndahl U, Buffoni-Hall R, Osteryoung KW, Vierling E, Bornman JF, Sundby C. The chloroplast heat shock protein undergoes oxidation-dependent conformational changes and may protect plants against oxidative stress[J]. Cell Stress Chaperon,1999,4:129-138.
    150. Harrison PM, Arosio P. The ferritins:Molecular properties, iron storage function and cellular regulation[J]. Biochimica et Biophysica Act a,1996,1275:161-203.
    151.Hazen SP, Pathan MS, Sanchez A, Baxter I, Dunn M, Estes B, Chang HS, Zhu T, Kreps JA, Nguyen HT. Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array[J]. Funct Integr Genomic,2005,5:104-116.
    152. Heyen BJ, Alsheikh MK, Smith EA, Torvik CF, Seals DF, Randall SK. The calcium-binding activity of avacuole-associated, dehydrin-like protein is regulated by phosphorylation[J]. Plant Physiol,2002,130:675-687.
    153. Hill LM, Reimholz R, Schroder R, Nielsen TH, Stitt M. The onset of sucrose accumulation in cold-stored potato tubers is caused by an increased rate of sucrose synthesis and coincides with low levels of hexose-phosphates, an activation of sucrose phosphate synthase and the appearance of a new form of amylase[J]. Plant Cell Environ,1996,19:1223-1237.
    154. Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J, Mori K, Yodoi J. Disctinct roles of thioredoxin in the cytoplasm and in the nucleus-a two-step mechanism of redox regulation of transcription factor NF-kB[J]. Biol Chem,1991,274:27891-27897.
    155. Holmgren A. Thioredox in and glutaredoxin systems[J]. J Biol Chem,1989,264:13963-13966.
    156. Hong SY, Seo PJ, Yang MS, Xiang F, Park CM. Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR[J]. BMC Plant Biol,2008, 8:112.
    157. Honour SJ, Webb AA, Mansfield TS. The response of stomata to abscisic acid and temperature are interrelated[J]. P Roy Soc B-Biol Sci,1995,259:301-306.
    158. Horling F, Lamkemeyer P, Konig J, Finkemeier I, Kandlbinder A, Baier M, Dietz K. Divergent light-, ascorbate- and oxidative stress-dependent regulation of expression of the peroxiredoxin gene falnily in Arabidopsis thaliana[J]. Plant Physiol,2002,131:317-325.
    159. Houde M, Dhindsa RS, Sarhan F. A molecular marker to select for freezing tolerance in Gramineae[J]. Mol Gen Genet,1992,234:43-48.
    160. Houde M, Daniel C, Lachapelle M, Allard F, Laliberte S, Sarhan F. Immunolocalization of freezing-tolerance associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues[J]. Plant J,1995,8:583-593.
    161. Houde M, Dallaire S, N'Dong D, Sarhan F. Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves[J]. Plant Biotechnol J,2004,2: 381-387.
    162. Huang BK, XuSH, XuanW, Li M, Cao ZY, Liu KL, Ling TF, Shen WB. Carbon monoxide alleviates salt indued oxidative damage in wheat seedling leaves[J]. J Integr Plant Biol,2006,48(3): 249-254.
    163. Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations[J]. Genes Immun,2005,6(4):279-284.
    164. Hughes MA, Dunn MA. The molecular biology of plant acclimation to low temperature[J]. J Exp Bot,1996,47:291-305.
    165. Hughes S, Graether S. Cryoprotective mechanism of a small intrinsically disordered dehydrin protein[J]. Protein Sci,2011,20:42-50.
    166. Huis R, Hawkins S, Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.)[J]. BMC Plant Biol,2010,10:71.
    167. Hundertmark M, Hincha DK. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana[J]. BMC Genomics,2008,9:118.
    168. Ilan N, Moran N, Schwarts A. The role of potassium channels in the temperature control of stomatal aperture[J]. Plant Physiol,1995,108:1161-1170.
    169. Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants[J]. Annu Rev Plant Physiol Plant Mol Biol,1996,47:377-403.
    170. Ismail AM, Hall AE, Close TJ. Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence[J]. Proc Natl Acad Sci USA,1999,96:13566-13570.
    171. Ismail FA, Nitsch LM, Wolters-Arts MM, Mariani C, Derksen JW. Semi-viviparous embryo development and dehydrin expression in the mangrove Rhizophora mucronata Lam[J]. Sex Plant Reprod,2010,23:95-103.
    172. Iturriaga G, Schneider K, Salamini F, Bartels D. Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco[J]. Plant Mol Biol,1992, 20:555-558;
    173.Jarosova J, Kundu JK. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR[J]. BMC Plant Biol,2010,10:146.
    174. Jesen AB, Goda YA, Figueras M, Jessopa C, Pages M. Phosphorylation mediates the nuclear targeting of the maize RAB17[J]. Plant J,1998,13(5):691-697.
    175. Jian B, Liu B, Bi Y, Hou W, Wu C, Han T. Validation of internal control for gene expression study in soybean by quantitative real-time PCR[J]. BMC Mol Biol,2008,9:59.
    176. Jiang C, Iu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus[J]. Plant Mol Bio,1996,30(3):679-684.
    177. Jin S, Cheng Y, Guan Q, Liu D, Liu S. A metallothionein-like protein of rice (rgMT) functions in E. coli and its gene expression is induced by abiotic stresses[J]. Biotechnol Lett,2006,28:1749-1753.
    178. Karlson DT, Zeng Y, Stirm VE, Joly RJ, Ashworth EN. Photoperiodic regulation of a 24-kD dehydrin-like protein in red-osier dogwood (Cornus sericea L.) in relation to freeze-tolerance[J]. Plant Cell Physiol,2003,44:25-34.
    179. Kaye C, Neven L, Hofig A, Li QB, Haskell D, Guy C. Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco[J]. Plant Physiol, 1998,116:1367-1377.
    180. Kazuoka T, Oeda K. Purification and characterization of COR85-oligomeric complex from cold acclimated spinach[J]. Plant Cell Physiol,1994,35:601-611.
    181.Kelley WL. The J-domain family and the recruitment of chaperone power[J]. TIBS,1998,23: 222-227.
    182. Kidou S, Umeda M, Kato A, Uchimiya H. Isolation and characterization of a rice cDNA similar to the bovine brain-specific 14-3-3 protein gene[J]. Plant Mol Biol,1993,21(1):191-194.
    183. Kim BR, Nam Hy, Kim SU, Kim SI, Chang YJ. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice[J]. Biotechnol Letters,2003,25(21):1869-1872.
    184. Koag MC, Willkens S, Fenton RD, Resnik J, Vo E, Close TJ. The K-segment of maize DHN1 mediated binding to an ionic phosphipid vesicles and concomitant structural changes[J]. Plant Physiol,2009,150:1503-1514.
    185. Koike M, Okamoto T, Tsuda S, Imai R. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation[J]. Biochem Biophys Res Commun,2002,298: 46-53.
    186. Kong W, Shiota S, Shi YX, Nakayama H, Nakayama K. A novel peroxiredoxin of the plant Sedum lineare is a homologue of Escherichia coli bacterioferritin co-migratory protein (Bcp) [J]. Biochem J,2000,351:107-114.
    187. Konig J, Baier M, Horling F, Kahmann U, Harris G, Schiirmann P, Dietz K. The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox hierarchy of photosynthetic electon flux[J]. Proc Natl Acad Sci USA,2002,99:5738-5743.
    188. Konig J, Lotte K, Plessow R, Rrockhinke A, Baier M, Dietz KJ. Reaction mechanism of plant 2-Cys peroxiredoxin:Role of the C-terminus and the quarternary structure[J]. J Biol Chem,2003, 278:24409-24420.
    189. Kornyeyev D, Logan BA, Payton P, Allen RD, Holaday AS. Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpression genes encoding chloroplast-targeted antioxidant enzymes[J]. Physiol Plant,2001, 113(3):323-331.
    190. Kosova K, Vitamvas P, Prasil IT. The role of dehydrins in plant response to cold[J]. Biologia Plantarum,2007,51:601-617.
    191. Kosova K, Holkova L, PrasjlI T, Prasilova P, Bradacova M, Vitamvas P, Capkava V. Expression of dehydrin 5 during the development of frost tolerance in barley(Hordeum vulgare) [J]. J Plant Physiology,2008,165:1142-1151.
    192. Kosova K, Tom Prasil I, Prasilova P, Vitamvas P, Chrpova J. The development of frost tolerance and DHN5 protein accumulation in barley(Hordeum vulgare) doubled haploid lines derived from Atlas 68 x Igri cross during cold acclimation[J]. J Plant Physiol,2010,167(5):343-50.
    193. Koussevitzky S, Suzuki N, Huntington S, Armiyo L, Sha W, Cortes D, Shulaev V, Mittler R. Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination[J]. J Biol Chem,2008,283(49):34197-34203.
    194. Kovacs D, Kalmar E, Torok Z, Tompa P. Chaperone activity of ERD10 and ERD14, two disordered stress related plant proteins[J]. Plant Physiol,2008,147:381-390.
    195. Kragh KM, Nielsen JE, Nielsen KK, Dreboldt S, Mikkelsen JD. Characterization and localization of new antifungal cysteine-rich proteins from Beta vulgaris[J]. Mol Plant Microbe Interact,1995,8: 424-434.
    196. Kruger C, Berkowitz O, Stephan UW, Hell R. A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L[J]. J Biol Chem, 2002,277:25062-25069.
    197. Kroll J. Molecular chaperones and process of cellular immortalization in vitro[J]. Bilgerontology, 2002,3:183-185.
    198. Kufryk G, Hernandez-Prieto MA, Kieselbach T, Miranda H, Vermaas W, Funk C. Association of small CAB-like proteins (SCPs) of Synechocystis sp. PCC 6803 with photosystem II[J]. Photosynth Res,2008,95(2-3):135-145.
    199. Kushnir S, Babiychuk E, Kampfenkel K, Belles-Boix E, Van Montagu M, Inze D. Charaterization of Arabidopsis thaliana cDNAs that render yeasts tolerant toward the thiol-oxidizing drug diamide[J]. Proc Natl Acad Sc i USA,1995,92:10580-10584.
    200. Labhilili M, Joudrier P, Gautier MF. Characterization of cDNAs encoding Triticum durum dehydrins and their expression patterns in cultivars that differ in drought tolerance[J]. Plant Sci, 1995,112:219-30.
    201. Lai F-M, Delong C, Mei K, Wignes T, Fobert PR. Analysis of the DRR230 family of pea defensins: gene expression pattern and evidence of broad host-range antifungal activity [J]. Plant Sci,2002, 163:855-864.
    202. Lane BG, Kajioka R, Kennedy TD. The wheat germ Ecprotein is a zinc containing metallothionein[J]. Biochem Cell Biol,1987,65:1001-1005.
    203. Lang V, Palva ET. The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh[J]. Plant Mol Biol,1992,20: 951-62.
    204. Laulhere JP, Briat JF. Iron release and uptake by plant ferritin:Effects o f pH, reduction and chelation[J]. Biochemical J,1993,290:693-696.
    205. Lay FT, Anderson MA. Defensins—components of the innate immune system in plants[J]. Curr Prot Pept Sci,2005,6:85-101.
    206. Lay FT, Brugliera F, Anderson MA. Isolation and properties of floral defensins from ornamental tobacco and petunia[J]. Plant Physiol,2003,131:1283-1293.
    207. Lay FT, Schirra HJ, Scanlon MJ, Anderson MA, Craik DJ. The three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein alfAFP[J]. J Mol Biol,2003,225:175-188.
    208. Layton BE, Boyd MB, Tripepi MS, Bitonti BM, Dollahon MN, Balsamo RA. Dehydration-induced expression of a 31-KD a dehydrin in Polypodium Polypodioides (Polypodiaceae) may enable large, reversible deformation of cell wall[J]. Am J Bot,2010,97(4):535-544.
    209. Lee JM, Roche JR, Donaghy DJ, Thrush A, Sathish P. Validation of reference genes for quantitative RP-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.)[J]. BMC Mol Biol,2010,11:8.
    210. Lee S, Owen HA, Prochaska DJ, Barnum SR. HSP16.6 is involved in the development of thermotolerance and thylakoid stability in the unicellular cyanobacterium, Synechocystis sp. PCC6803[J]. Curr Microbiol,2000,40:283-287.
    211. Lemaire SD, Collin V, Keryer E, Quesada A, Miginiac-Maslow M. Characterization of thioredoxin y, a new type of thioredoxin identified in the genome of Chlamydomonas reinhardtii[J]. FEBS Lett, 2003,543(1-3):87-92.
    212. Li L, Yi H. Differential expression of Arabidopsis defense-related genes in response to sulfur dioxide[J]. Chemosphere,2012,87(7):718-24.
    213. Li S, Lauri A, Ziemann M, Busch A, Bhave M, Zachgo S. Nuclear activity of ROXY1, a glutaredoxin interacting with TGA factors, is required for petal development in Arabidopisis thaliana[J]. Plant Cell,2009,21:429-441.
    214. Libauh M, Thibivilliers S, Bilgin DD, Radwan O, Benitez M, Clough SJ, Stacey G. Identification of four soybean reference genes for gene expression normalization[J]. Plant Genome,2008, 1:44-54.
    215. Lim CC, Krebs SL, Arora R. A 25 kDa dehydrin associated with genotype- and age-dependent leaf freezing tolerance in Rhododendron:a genetic marker for cold hardiness[J]. Theor Appl Genet, 1999,99(5):912-920.
    216. Lin JM, Kilman VL, Keegan K, Paddock B, Emery-Le M, Rosbash M, Allada R. A role for casein kinase 2alpha in the Drosophila circadian clock[J]. Nature,2002,420(6917):816-820.
    217. Liu C, Li C, Liu B, Ge S, Dong X, Li W, Zhu H, Wang B, Yang C. Genome-wide identification and characterization of a dehydrin gene family in poplar (Populus trichocarpa)[J]. Plant Mol Biol Rep,2012, DOI:10.1007/s11105-011-0395-1.
    218. Liu M, Chen Y, Lu C. Cold acclimation induced accumulation of phenolic compounds and freezing tolerance in Ammopiptanthus mongolicus[J]. For Stud China,2007,9(3):203-207.
    219. Liu D, Zhang X, Cheng Y, Takano T, Liu S. rHsp90 gene expression in response to several environmental stresses in rice (Oryza sativa L.)[J]. Plant Physiol Biochem,2006,44(5):380-386.
    220. Liu M, Lu C, Shen X, Yin W. Characterization and function analysis of a cold-induced AmCIP gene encoding a dehydrin-like protein in Ammopiptanthus mongolicus[J]. DNA Sequence,2006, 17(5):342-349.
    221. Liu R, Liu M, Liu J, Chen Y, Chen Y, Lu C. Heterologous expression of an Ammopiptanthus mongolicus late embryogenesis abundant protein gene (AmLEA) enhances Escherichia coli viability under cold and heat stress[J]. Plant Growth Regul,2010,60:163-168.
    222. Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis[J]. Plant Cell,2004,16:1938-1950.
    223. Manley RC, Hummel RL. Index of injury compared to tissues ionic conductance for calculating freezing damage of cabbage tissues[J]. J Am Soc Hortic Sci,1996,121:1141-1146.
    224. Mantri NL, Ford R, Coram TE, Pang EC. Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought[J]. BMC Genomics,2007,8:303.
    225. Matsumura T, Taba yashin, Kamagata Y, Souma C. Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress[J]. Plant Physiol,2002,116(3):317-327.
    226. McCarthy D, Kramer G, Hardesty B. Reactivation of thermally inactivated pre-beta-lactamase by DnaK, DnaJ and GrpE[J]. Protein Sci,1998; 7:1164-1171.
    227. Mediavilla MG, Di Venanzio GA, Guibert EE, Tiribelli C. Heterologous Ferredoxin Reductase and Flavodoxin Protect Cos-7 Cells from Oxidative Stress[J]. Plos one,2010,5(10):e13501.
    228. Mehta P, Rebala KC, Venkataraman G, Parida A. A diurnally regulated dehydrin from Avicennia marina that shows nucleo-cytoplasmic localization and is phosphorylated by Casein kinase in vitro[J]. Plant Physiol Biochem,2009,47:701-709.
    229. Melan MA, Enriquez ALD, Peterman TK. The LOX1 gene of Arabidopsis is temporally and spatially regulated in germinating seedlings[J]. Plant Physiol,1994,105(1):385-393.
    230. Mendonca YA, Ramos CH. Cloning, purification and characterization of a 90kDa heat shock protein from Citrus sinensis (sweet orange)[J]. Plant Physiol Biochem,2012,50(1):87-94.
    231. Meyer Y, Vignols F, Reichheld JP. Classification of plant thioredoxins by sequence similarity and intron position[J]. Methods Enzymol,2002,347:394-402.
    232. Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses[J]. Plant Cell,2006,18:2749-2766.
    233. Millar AJ, Kay SA. Integration of circadian and phototransduction in the network controlling CAB gene transcription in Arabidopsis[J]. Proc Natl Acad Sci USA,1996,93:15491-15496.
    234. Mingeot D, Dauchot N, VanCutsem P, Watillon B. Characterisation of two cold-induced dehydrin genes from Cichorium intybus L[J]. Mol Biol Rep,2009,36:1995-2001.
    235. Mogk A, Deurling E, Vorderfulbecke S, Vierling E, Bukau B. Small heat shock proteins, CIpB and the DnaE system form a functional triade in reversing protein aggregation [J]. Mol Microbiol,2003, 50(2):585-595.
    236. Mouillon J, Eriksson SK, Harryson P. Mimicking the plant cell interior under water stress by macromolecular crowding:disordered dehydrin proteins are highly resistant to structural collapse[J]. Plant Physiol,2008,148:1925-1937.
    237. Mowla SB, Thomson JA, Farrant JM, Mundree SG. A novel antioxidant enzyme from the resurrection plant Xerophyta viscose Baker[J]. Planta,2002,215:716-726.
    238. Mu P, Feng D, Su J, Zhang Y, Dai J, Jin H, Liu B, He Y, Qi K, Wang H, Wang J. Cu2+ triggers reversible aggragation of a disordered His-rich dehydrin MpDhn12 from Musa paradisiacal[J]. J Biochem,2011,150(5):491-499.
    239. Munkhbaatar P, Kim MK, Samdan N, Deok CY.Isolation of a novel fructose-1,6-bisphosphate aldolase gene from Codonopsis lanceolata and analysis of the response[J]. Mol Biol,2008,42(2): 179-186.
    240. Munns R, Garden A, Tonnet ML, Rawson HM. Growth and development in NaCl-treated Plants: Do Na+ or Cl- concentrations in dividing or expanding tissues determine growth in barley[J]. Aust J Plant Physiol,1988,15:529-540.
    241. Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y. Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants[J]. Mol Breed,2004,13:165-175.
    242. Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C. Arabidopsis thaliana plant overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell death[J]. Plant J,2004,38(6):940-953.
    243. Murgia I, Briat JF, Tarantino D, Soave C. Plant feritin accumulates in response to photoinhibition but its ectopic overexpression does not protect against photoinhibition[J]. Plant Physiol Biochem, 2001,39:797-805.
    244. Muthalif MM, Rowland LJ. Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium, section Cyanococcus)[J]. Plant Physiol,1994,104:1439-1447.
    245. Ndamukong I, Al Abdallat A, Thurow C, Fode B, Zander M, Weigel R, Gatz C. SA-induced Arabidopsis glutaredoxin interacts with TGA factor and suppresses JA-responsive PDF 1.2 transcription[J]. Plant J,2007,50:128-139.
    246. Nemchenko A, Kunze S, Feussner I, Kolomiets M. Duplicate maize 13-lipoxygenase genes are differentially regulated by circadian rhythm, coldstress, wounding, pathogen infection, and hormonal treatments[J]. J Exp Bot,2006,57(14):3767-79.
    247. Neuhaus HE, Emes MJ. Non-photosynthetic metabolism in plastids[J]. Annu Rev Plant Physiol Plant Mol Biol,2000,51:111-14
    248. Neumann PM. The role of cell wall adjustment in plant resistance to water deficits[J]. Crop Sci, 1995,35:1258-1266.
    249. Neunann D, Lichenberger O, Gunther D, Tschiersch K, Nover L. Heat-shock proteins induce heavy-metal tolerance in higher plants[J]. Planta,1994,194:360-367.
    250. Nicot N, Hausman JF, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress[J]. J Exp Bot,2005,56:2907-2914.
    251.Nishihar AE, Kondo K, Parvezm MM, Takahashi K, Watanabe K, Tanaka K. Role of 5-amino Ievulinic acid (ALA) on active oxygen scavenging system in NaCl-treated spinach(Spinacia oleracea) [J]. J Plant Physiol,2003,160(9):1085-1091.
    252. Nordstrand K, Slund F, Holmgren A, Otting G, Berndt KD. NMR structure of Escherichia coli glutaredoxin 3-glutathione mixed disulfide complex:implication for the enzymatic mechanism[J]. J Mol Biol,1999,286:541-552.
    253. Nylander M, Svensson J, Palva ET, Welin BV. Stress-induced accumulated and tissue-specific localization of dehydrins in Arabidopsis thaliana[J]. Plant Mol Biol,2001,45:263-279.
    254. Obsil T, Ghirlando R, Klein DC, Ganguly S, Dyda F. Crystal structure of the 14-3-3 serotonin N-acetyltransferase complex:A role for scaffolding in enzyme regulation[J]. Cell,2001,105: 257-267.
    255. Ochoa-Alfaro AE, Rodriguez-Kessler M, Perez-Morales MB, Delgado-Sanchez P, Cuevas-Velazquez CL, Gomez-anduro G, Jimenez-Bremont JF. Functional characterization of an acidic SK3 dehydrin isolated from an Opuntia streptacantha cDNA library[J]. Planta,2011,235: 565-578.
    256. Ohno R, Takumi S, Nakamura C. Kinetics of transcript and protein accumulation of low-molecular weight wheat LEA D-11 dehydrin in response to low temperature[J]. J Plant Physiol,2003,160(2): 193-200.
    257. Olien CR and Clark JL. Freeze-induced changes in carbohydrates associated with hardiness of barley and rye[J]. Crop Sci,1995,35:245-250.
    258. O'Neill SD, Priestley DA, Chabot BF. Temperature and aging effects on leaf membranes of a cold hardy perennial, Fragaria virginiana[J]. Plant Physiol,1981,68:1409-1415.
    259. Oomen RJ, Seveno-Carpentier E, Ricodeau N, Bournaud C, Conejero G, Paris N, Berthomieu P, Marques L. Plant defensin AhPDFl.1 is not secreted in leaves but it accumulates in intracellular compartments[J]. New Phytol,2011,192(1):140-50.
    260. Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB, Broekaet WF. Isolation and characterization of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae[J]. FEBS Lett 1995; 368:257-62.
    261.Ouellet F, Vazqueztello A, Sarhan F. The wheat wcsl20 promoter is cold inducible in both monocotyledonous and dicotyledonous species[J]. FEBS Lett,1998,423(3):324-328.
    262. Ozrurk ZN, Talame V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ. Monitoring large-scale changes in transcript abundance in drought and salt-stressed barley[J]. Plant Mol Biol,2002,48:551-573.
    263. Palatnik JF, Tognetti VB, Poli HO, Rodriguez RE, Blanco N, Gattuso M, Hajirezaei M, Sonnewald U, Valle EM, Carrillo N. Transgenic tobacco plants expressing antisense ferredoxin-NADP(H) reductase transcripts display increased susceptibility to photo-oxidative damage[J]. Plant J,2003, 35:332-341.
    264. Palta JP, Whitaker BD, Weiss LS. Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of Solanum species[J]. Plant Physiol,1993,103:793-303.
    265. Park HC, Kang YH, Chun HJ. Characterization of a stamen-specific cDNA encoding a novel plant defensin in Chinese cabbage[J]. Plant Mol Biol,2002,50:59-69.
    266. Park SY, Noh KJ, Yoo JH, Yu JW, Lee BW, Kim JG, Seo HS, Paek NC. Rapid upregulation of dehydrin3 and dehydrin4 in response to dehydration is a characteristic of drought tolerant genotypes in barley[J]. J Plant Biol,2006,49:455-462.
    267. Park TK, Holland MA, Laskey JG, Polacco JC. Germination-associated lipoxygenase transcripts persist in maturing soybean plants and are induced by jasmonate[J]. Plant Sci,1994,96(1-2): 109-117.
    268. Pastenes C, Horton P. Effect of high temperature on photo-synthesis in beans (Ⅱ:CO2 Assimilation and metabolite contents)[J]. Plant Physiol,1996,112:1253-1260.
    269. Pearce RS. Molecular analysis of acclimation to cold[J]. Plant Growth Regula,1999,29:47-76.
    270. Pearce RS, Willison JHM. A freeze-etch study of the effect of extracellular freezing on cellular membranes of wheat[J]. Planta,1985,163:304-316.
    271. Pei ZM, Murata Y, Benning G, Thomine S, Klbsener B, Allen J, Grill, Schroeder JI. Calcium channels activated by hydrogen peroxide mediate abscises acid signaling guard cells[J]. Nature, 2000,406(6797):731-734.
    272. Peng Y, Reyes JL, Wei H, Yang Y, Karlson D, Covarrubias AA, etal. RcDhn5, a cold acclimation responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants[J]. Physiol Plant,2008,134:583-597.
    273. Perl-Treves R, Galum R. The tomato Cu, Zn superoxide dismutase genes are developmentally regulated and respond to light and stress[J]. Plant Mol Biol,1991,17:745-760.
    274. Pervieux I, Bourassa M, Laurans F, Hamelin R, Seguin A. A spruce defensin showing strong antifungal activity and increased transcript accumulation after wounding and jasmonate treatments[J]. Physiol Mol Plant P,2004,64:331-341.
    275. Pitcher LH, Zilinskas BA. Overexpression of copper/zinc superoxide dismutase in the cytosol of transgenic tobacco confers partial resistance to ozone-inducible foliar necrosis[J]. Plant Physiol, 1996,110:583-588.
    276. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Res,2001,29(9):e45.
    277. Porta H, Rueda-Benitez P, Campos F, Colmenero-Flores JM, Colorado JM, Carmona MJ, Covarrubias AA, Rocha-Sosa M. Analysis of lipoxygenase mRNA accumulation in the common bean (Phaseolus vulgaris L.) during development and under stress conditions[J]. Plant Cell Physiol, 1999,40(8):850-858.
    278. Puhakainen T, Hess MV, Makela P, Svensson J, Heino P, Palva ET. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis[J]. Plant Mol Biol,2004,54: 743-753.
    279. Pulla RK, Kim YJ, Kim MK, Senthil KS, In JG, Yang DC. Isolation of a novel dehydrin gene from Codonopsis lanceolata and analysis of its response to abiotic stresses[J]. BMB Rep,2008,41: 338-343.
    280. Qi Y, Wang H, Zou Y, Liu C, Liu Y, Wang Y, Zhang W. Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice[J]. FEBS Lett,2011,585(1):231-239.
    281. Rahman LN, Chen L, Nazim S, Bamm VV, Yaish MW, Moffatt BA, Dutcher JR, Harauz G. Interactions of intrinsically disordered Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes—synergistic effects of lipid composition and temperature on secondary structure[J]. Biochem Cell Biol,2010,88:791-807.
    282. Rahman LN, Bamm VV, Vover JA, Smith GS, Chen L, Yaish MW, Moffatt BA, Dutcher JR, Harauz G. Zinc induces disorder-to-order transitions in free and membrane-associated Thellungiella salsuginea dehydrin TsDHN-1 and TsDHN-2:a solution CD and solid-state ATR-FTIR study[J]. Amino Acids,2011,40(5):1485-1502.
    283. Rhodes D, Hanson AD. Quaternary ammonium and tertiary sulfonum compounds in higher plants[J]. Ann Rev Plant Physiol Plant Mol,1993,44:357-384.
    284. Richard S, Morency MJ, Drevet C, Jouanin L, Seguin A. Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresses[J]. Plant Mol Biol,2000,43:1-10.
    285. Richter M, Ruhle W, Wild A. Studies on the mechanism of photosystem Ⅱ photo inhibition. Ⅱ. The involvement of toxic oxygene species[J]. Photosynth Res,1990,24:237-243.
    286. Riera M, Figueras M, Lopez C, Goday A, Pages M. Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rabl7 from maize[J]. Proc Natl Acad Sci USA, 2004,101(26):9879-9884.
    287. Rinna A, Torres M, Forman HJ. Stimulation of the alveolar macrophage respiratory burst by ADP causes selective glutathionylation of protein tyrosine phosphatase 1B[J]. Free Radic Bio Med,2006, 41:86-91.
    288. Rinne PL, Kaikuranta PL, van der Plas LH, van der Schoot C. Dehydrins in cold-acclimated apices of birch(Betula pubescens Ehrh.):production, localization and potential role in rescuing enzyme function during dehydration[J]. Planta,1999,209:377-388.
    289. Rocha EP, Matic I, Taddei F. Over-represention of repeats in stress response genes:A stategy to increase versatity under stressful conditions[J]. Nucleic Acid Res,2002,30(9):1886-1896.
    290. Rodrigo J. Spring frost in deciduous fruit trees-morphological damage and flower hardiness[J]. Sci Hortic,2000,85:155-173.
    291. Rorat T, Szabala BM, Grygorowicz WJ, Wojtowicz B, Yin Z, Rey P. Expression of SK3-type dehydrin in transporting organis associated with cold acclimation in Solanum species[J]. Planta, 2006,224:205-221.
    292. Rouhier N, Lemaire SD, Jacquot JP. The role of glutathione in photosynthetic organisms: Emerging functions for glutaredoxins and glutathionylation[J]. Annu Rev Plant Biol,2008,59: 143-166.
    293. Rouse DT, Marotta R, Parish RW. Promoter and expression studies on an Arabidopsis thaliana dehydrin gene[J]. FEBS Lett,1996,381:252-256.
    294. RoyChoudhury A, Roy C, Sengupta DN. Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress[J]. Plant Cell Rep,2007,26:1839-1859.
    295. Rurek M. Diverse accumulation of several dehydrin-like proteins in cauliflower (Brassica oleracea var. Botrytis), Arabidopsis thaliana and yellow lupin (Lupinus luteus) mitochondria under cold and heat stress[J]. BMC Plant Biol,2010,10:181.
    296. Sakamoto W. Protein degradation mechineries in plastids[J]. Ann Rev Plant Biol,2006,57: 599-621.
    297. Savino G, Briat JF, Lobreaux S. Inhibition of the iron-induced ZmFerl maize feritin gene expression by antioxidants and serine/threonine phosphatase inhibitors[J]. J Biol Chem,1997, 272(52):33319-33326.
    298. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K. Monitoring the expression profiles of 7,000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray[J]. Plant J,2002,31: 279-292.
    299. Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stress by using a full-length cDNA microarray[J]. Plant Cell,2001,13:61-72.
    300. Selim M, Legay S, Berkelmann-Lohnertz B, Langen G, Kogel KH, Evers D. Identification of suitable reference genes for real-time RT-PCR normalization in the grapevine-downy mildew pathosystem[J]. Plant Cell Rep,2012,31(1):205-216.
    301. Shekhawat UK, Srinivas L, Ganapathi TR. MusaDHN-1, a novel multiple stress-inducible SK(3)-type dehydrin gene, contribute affirmatively to drought-and salt-stress tolerance in banana[J]. Planta,2011,234(5):915-932.
    302. Shen Y, Tang MJ, Hu YL, Lin ZP. Isolation and characterization of a dehydrin-like gene from drought tolerant Boea crassifolia[J]. Plant Sci,2004,166:1167-1175.
    303. Silveira ED, Alves-Ferreira M, Guimaraes LA, da Silva FR, Carneiro VT. Selection of reference genes for quantitative real-time PCR expression studies in the apomictic and sexual grass Brachiaria Brizantha[J]. BMC Plant Biol,2009,9:84.
    304. Silverstein KA, Graham MA, Paape TD, VandenBosch KA. Genome organization of more than 300 defensin-like genes in Arabidopsis[J]. Plant Physiol,2005,138:600-610.
    305. Smale ST, Kadonaga JT. The RNA polymerase Ⅱ core promoter[J]. Annu Rev Biochem,2003,72: 449-479.
    306. Soulages JL, Kim K, Arrese EL, Walters C, Cushman JC. Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly (L-proline)-type Ⅱ structure[J]. Plant Physiol,2003,131:963-975.
    307. Sreenivasulu N, Miranda M, Prakash H, Wobus U, Weschke W. Transcriptome changes in foxtail millet genotypes at high salinity:identification and characterization of a PHGPX gene specifically upregulated by NaCl in a salt-tolerant line[J]. J Plant Physiol,2004,161:467-477.
    308. Stotz HU, Spence B, Wang Y. A defensin from tomato with dual function in defense and development[J]. Plant Mol Biol 2009,71:131-43.
    309. Sturzenbaum SR, Cater S, Morgan AJ, Kille P. Earthworm pre-procarboxypeptidase:a copper responsive enzyme[J]. Biometals,2001,14:85-94.
    310. Sueoka N, Kawanishi Y. DNA G+C content of the third codon position and codon usage biases of human genes[J]. Gene,2000,261 (1):53-62.
    311. Sun X, Xi DH, Feng H, Du JB, Lei T, Liang HG, Lin HH. The dual effects of salicylic acid on dehydrin accumulation in water-stressed barley seedlings[J]. Russ J Plant Physiol,2009,56: 348-354.
    312. Sun W, van Montagu M, Verbruggen N. Small heat shock proteins and stress tolerance in plants[J]. Biochem Biophys Acta,2002,1577(1):1-9.
    313. Szalaine Agoston BS, Kovacs D, Tompa P, Perczel A. Full backbone assignment and dynamics of the intrinsically disordered dehydrin ERD14[J]. Biomol NMR Assign,2011,5(2):189-193.
    314. Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X. Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins[J]. Science,2008,321:952-956.
    315. Talame V, Ozturk NZ, Bohnert HJ, Tuberosa R. Barley transcript profiles under dehydration shock and drought stress treatments:a comparative analysis[J]. J Exp Bot,2007,58:229-240.
    316. Tamas L, Dudikova J, Durcekova K, Haluskova L, Huttova J, Mistrik I. Effect of cadmium and temperature on the lipoxygenase activity in barley root tip[J]. Protoplasma,2009,235(1-4):17-25.
    317. Taylor K, Barran PE, Dorin JR. Structure-activity relationships in beta-defensin peptides[J]. Biopolymers,2008,90:1-7.
    318. Temporini C, Calleri E, Massolini G, Caccialanza G. Integrated analytical strategies for the study of phosphorylation and glycosylation in proteins[J]. Mass Spectrom Rev,2008,27:207-236.
    319. Thomashow MF. Role of cold-responsive genes in plant freezing tolerance[J]. Plant Physiol,1998, 118:1-7.
    320. Thomma BP, Cammue BP, Thevisson K. Plant defensin[J]. Planta,2002,216:193-202.
    321. Thornalley PJ, Vasak M. Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals[J]. Biochim Biophys Acta,1985,827:36-44.
    322. Tommasini L, Svensson JT, Rodriguez EM, Wahid A, Malatrasi M, Kato K, Wanamaker S, Resnik J, Close TJ. Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome based analysis of Barley(Hordeum vulgare L.)[J]. Func Integr Genomics,2008,8: 387-405.
    323. Torok Z, Goloubinoff P, Horvath I, Tsvetkova NM, Glatz A, Balogh G, Varvasovzki V, Los D, Vierling E, Crowe JH, Vigh L. Synechovystis HSP17 is an amphitropic protein that stabilizes heat stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding[J]. Proc Natl Sci USA,2001,98:3098-3103.
    324. Tsvetkova NM, Horvath I, Torok Z, Wolkers WF, Balogi Z, Shigapova N, Crowe LM, Tabin F, Vierling E, Crowe JH, Vigh L. Small heat-shock proteins regulate membrane lipid polymorphism[J]. Proc Natl Acad Sci USA,2002,99:13504-13509.
    325. Tunnacliffe A, Wise MJ. The continuing conundrum of the LEA proteins[J]. Naturwissenschaften, 2007,94:791-812.
    326. Turco E, Close TJ, Fenton RD, Ragazzi A. Synthesis of dehydrin-like proteins in Quercusi lex L. and Quercus cerris L. seedlings subjected to water stress and infection with Phytophthora cinnamomi[J]. Physiol Mol Plant Pathol,2004,65:137-144.
    327. Turrini A, Sbrana C, Pitto L, Ruffini Castiglione M, Giorgetti L, Briganti R, Bracci T, Evangelista M, Nuti MP, Giovannetti M. The antifungal Dm-AMP1 protein from Dahlia merckii expressed in Solanum melongena is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis[J]. New Phytol,2004,163:393-403.
    328. Ueda A, Kathiresan A, Inada M, Narita Y, Nakamura T, Shi W, Takabe T, Bennett J. Osmotic stress in barley regulates expression of a different set of genes than salt stress does[J]. J Ex Bot, 2004,55:2213-2218.
    329. Urrutia AO, Hurst LD. Codon usage bias covaries with expression breadth and the rate of synonymous evolution in humans, but this is not evidence for selection[J]. Genetics,2001,159 (3): 1191-1199.
    330. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biol,2002,3:1-11.
    331. Vierling E. The roles of heat shock proteins in plants[J]. Annu Rev Plant Physiol Plant Mol Biol, 1991,42:579-620.
    332. Virdi AS, Pareek A, Singh P. Evidence for the possible involvement of calmodulin in regulation of steady state levels of Hsp90 family members (Hsp87 and Hsp85) in response to heat shock in sorghum[J]. Plant Signal Behav,2011,6:393-399.
    333. Vitamvas P, KosovaK, PrasilovaP, PrasilIT. Accumulation of WCS120 protein in wheat cultivars grown at 9℃ or 17℃ in relation to their winter survival [J]. Plant Breed,2010,129:611-616.
    334. Wagner D, Schneider-Mergener J, Forreiter C. Analysis of chaperone function and formation of hetero-oligomeric complexes of Hspl8.1 and Hspl7.7, respresenting two different cytoplasmic sHSP classes in Pisum sativum[J]. J Plant Growth Regul,2005,24:226-237.
    335. Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ. Expression analysis of barley (Hordeum vulgare L.) during salinity stress[J]. Funct Integr Genomic,2006,6:143-145.
    336. Wang CY. Physiological and biochemical responses of plants to chilling stress[J]. Hort Science, 1982,17:173-186.
    337. Wang L, Zhou B, Wu L, Guo B, Jiang T. Differentially expressed genes in Populus simonii x Populus nigra in response to NaCl stress using cDNA-AFLP[J]. Plant Sci,2011,180(6):796-801.
    338. Wang WX, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends Plant Sci,2004,9:244-252.
    339. Wang XS, Zhu HB, Jin GL, Liu HL, Wu WR, Zhu J. Genome scale identification and analysis of LEA genes in rice (Oryza sativa L.)[J]. Plant Sci,2007,172(2):414-420
    340. Weeden NF, Buchanan BB. Leaf cytosolic fructose-1,6-bisphosphatase:a potential target site in low temperature stress[J]. Plant Physiol,1983,72(1):259-61.
    341.Wijaya R, Neumann GM, Condron R, Hughes AB, Polya GM. Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin[J]. Plant Sci,2000,159:243-255.
    342. Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Van Camp W. Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants[J]. EMBO J,1997,16(16):4806-4816.
    343. Wisniewski M, Davis G. Immunogold localization of pectins and glycoproteins in tissues of peach with reference to deep supercooling[J]. Tress,1995,9:253-260.
    344. Wisniewski M, Webb R, Balsamo R, Close TJ, Yu XM, Griffith M. Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60:A dehydrin from peach (Prunus persica)[J]. Physiol Plant,1999,105:600-608.
    345. Wong JH, Xia L, Ng TB. A review of defensins of diverse origins[J]. Curr Protein Peptide Sci 2007; 8:446-59.
    346. Wu G, Wilen RW, Robertson AJ, Gusta LV. Isolation,chromosomal localization and differential expression of mitochondrial manganese superoxide dismutase and chloroplastic copper/zinc superoxide dismutase genes in wheat[J]. Plant Physiol,1999,120(2):513-520.
    347. Wu K, Rooney MF, Ferl RJ. The Arabidopsis 14-3-3 multigene family[J]. Plant Physiol,1997, 114(4):1421-1431.
    348. Xing SP, Rosso MG, Zachgo S. ROXY1, a member of the plant of glutaredoxin family, is required for petal development in Arabidopsis thaliana[J]. Development,2005,132:1555-1565.
    349. Xing S, Zachgo S. ROXY1 and ROXY2, two Arabidopsis glutaredoxin genes, are required for another development[J]. Plant J,2008,53:790-801.
    350. Xu J, Zhang YX, Wei W, Han L, Guan ZQ, Wang Z, Chai TY. BjDHNs confer heavy-metal tolerance in plants[J]. Mol Biotechnol,2008,38:91-98.
    351. Xue T, Li XZ, Zhu W, Wu C, Yang C, Zheng C. Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast[J]. J Exp Bot,2009,60(1):339-349.
    352. Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T, Shigeoka S. Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress[J]. Plant J,2002,32(6):915-925.
    353. Yaffe MB. How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis[J]. FEBS Lett,2002,513:53-57.
    354. Yamada S, Komori T, Hashimoto A, Kuwata S, Imaseki H, Kubo T. Differential expression of plastidic aldolase genes in Nicotiana plants under salt stress[J].Plant Sci,2000,154(1):61-69.
    355. Yang L, Mi C, Huo YY. Role of peroxiredoxin in H2O2 mediated signaling[J]. Intern J Pathol & Clin Med,2006,26(5):417-419.
    356. Yang XY, Jiang WJ, Yu HJ. The Expression Profiling of the Lipoxygenase (LOX) Family Genes During Fruit Development, Abiotic Stress and Hormonal Treatments in Cucumber (Cucumis sativus L.)[J]. Int J Mol Sci,2012,13(2):2481-2500.
    357. Yang Z, Zhang T, Bolshoy A, Beharav A, Nevo E. Adaptive microclimatic structural and expressional dehydrin 1 evolution in wild barley, Hordeum spontaneum, at'Evolution Canyon', Mount Carmel, Israel[J]. Mol Ecol,2009,18:2063-2075.
    358. Yin Z, Rorat T, Szabala BM, Ziolkowska A, Malepszy S. Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings[J]. Plant Sci,2006, 170:1164-1172.
    359. Yin ZM, Rorat T, Szabala BM, Ziolkowska A, Malepszy S. Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings[J]. Plant Science,2006,170:1164-1172.
    360. Zhai C, Lan J, Wang H, Li L, Cheng X, Liu G. Rice dehydrin K-segment have in vitro antibacterial activity[J]. Biochem (Moscow),2011,76:645-650.
    361. Zhang C, Ding Z, Xu X, Wang Q, Qin G, Tian S. Crucial roles of membrane stability and its related proteins in the tolerance of peach fruit to chilling injury[J]. Amino Acids,2010,39: 181-194.
    362. Zhang XN, Qu ZC, Wan YZ, Zhang HW, Shen DL. Application of suppression subtractive hyhridization (SSH) to cloning differentially expresed cDNA in Dunaliella salina (Chlorophyta) under hyperosmotic shock[J].Plant Mol Biol Rep,2002,20:49-57.
    363. Zhao X, Zhan LP, Zou XZ. Improvement of cold tolerance of the half-high bush Northland Blueberry by transformation with the LEA gene from Tamarix androssowii[J]. Plant Growth Regul, 2010,63(1):13-22.
    364. Zhu JK, Shi J, Bressan RA, Hasegawa PM. Expression of an Atriplex nummularia gene encoding a protein homologous to the bacterial molecular chaperone DanJ[J]. Plant Cell,1993,5:341-349.
    365. Zhu W, Zhao DX, Miao Q, Xue T, Li X, Zheng C. Arabidopsis thaliana metallothionein, AtMT2a, mediates ROS balance during oxidative stress[J]. Plant Biol,2009,52:585-592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700