桩承式加筋路堤挂网技术开发与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的飞速发展,对交通运输资源的需求日益增大,高速公路和高速铁路得到了大力发展。在高速公路和高速铁路建设中,不可避免地要穿过一些不适宜修建路堤的不良地基(高压缩性土、淤泥质黏土和泥炭土等)。桩承式加筋路堤具有工期短和成本低的优点,目前已广泛应用于上述基础建设工程。但是,随着桩承式加筋路堤工程应用的增多,发现其应用于工程中仍存在一些不足,包括路堤沉降、不均匀沉降和侧向位移过大,整体或局部路堤失稳以及筋材效率低等。针对桩承式加筋路堤传统技术的不足,研发出了一种新型地基处理技术——桩承式加筋路堤挂网技术。本文从理论研究、试验研究和数值模拟三个方面对挂网技术作用机理进行了系统研究,主要研究内容包括:
     (1)针对传统技术应用于工程中的上述不足,研发出了桩承式加筋路堤挂网技术,提出了该技术的具体施工步骤,并对其作用机理进行了定性分析。采用有限元法和两阶段法对挂网技术作用机理进行了深入研究,研究结果表明挂网技术可有效减小路堤沉降、差异沉降和侧向位移,提高桩体荷载传递效率。
     (2)为了减缓路桥过渡段差异沉降,本文提出了一种包括挂网技术、传统技术和加筋技术的联合地基处理方法,并应用于长安高速公路山西境内MCK40+826大桥东侧路桥过渡段。通过现场试验对桩承式加筋路堤挂网技术与传统技术进行了对比分析,研究了随着路堤荷载的增加两种工况下地基沉降、侧向位移、筋材上下表面土压力以及筋材变形的变化规律。试验结果表明:随着路堤填筑高度的增加,传统技术工况下路堤沉降和侧向位移增幅明显大于挂网技术;相对于传统技术,挂网技术工况下土拱效应对荷载传递的贡献略有减小,但张拉膜效应对荷载传递的贡献显著增大。
     (3)针对桩承式加筋路堤挂网技术受力特性,提出了筋材设计验算简化方法。同时,分析了挂网技术中筋材—桩体—桩间土在路堤荷载作用下荷载传递机理。根据位移和应力连续条件,将路堤填料和加固区视为整体考虑,将筋材视为具有一定刚度的薄板,基于大挠度薄板理论模拟筋材的挠曲变形,并考虑了土拱效应和桩土相互作用,建立了路堤荷载作用下桩承式加筋路堤挂网技术桩帽和桩梁两种工况下受力模型。同时,考虑到加固区土层分布的复杂性,采用有限差分法进行编程计算,提出了挂网技术的理论计算方法。研究结果表明本文方法的计算结果与现场试验监测数据较为接近,证明了本文计算方法的合理性。
     (4)通过数值模拟分析了桩承式加筋路堤挂网技术的工作特性。挂网技术建模时,筋材与桩在桩顶处共结点模拟固定连接体系,通过对比分析数值模拟计算结果与现场试验监测数据,证明了数值建模的合理性。同时,研究了挂网技术中不同地基土弹性模量、不同筋材抗拉刚度、不同桩长、不同桩间距、不同桩体弹性模量和不同交通荷载条件下的作用机理和工作特性。最后,基于数值模拟结果对挂网技术与传统技术两种工况下工程成本进行了对比分析。研究结果表明:相对于传统技术,挂网技术能有效减小路堤沉降,提高路堤稳定性,作用效果明显,经济效益显著。
     (5)通过建立二维流固耦合模型,系统分析了挂网技术中路堤沉降、差异沉降、侧向位移、筋材轴力和超孔隙水压力随时间的变化规律。最后,对挂网技术中筋材抗拉刚度、软黏土弹性模量、桩墙间距、桩墙弹性模量和桩墙宽度等重要设计参数进行了参数分析。数值模拟结果表明:路堤填筑完毕时,传统技术工况下超孔隙水压力明显大于挂网技术;相对于传统技术,挂网技术可有效减小路堤工后沉降、差异沉降和侧向位移,提高路堤稳定性;施工过程中,桩墙间距和桩墙弹性模量对挂网技术中各评价指标的影响较大,参数影响等级为中到高级;运营过程中,软黏土弹性模量、桩墙间距和桩墙弹性模量对挂网技术中各评价指标均有显著影响。
With the rapid economical development, China has undergone a massivedevelopment in transportation infrastructure in recent years. Many highways andrailways have been constructed. However, weak ground soils (for example, highlycompressible soft soil, alluvial clay, peat, etc) are inevitably encountered in engineeringpractice. Geosynthetic-reinforced and pile-supported (GRPS) embankment is wildly usedin the above-mentioned infrastructures due to its short construction period and low costs.However, with increasing application of the conventional technique of GRPSembankment (named CT embankment), many problems are exposed (i.e., intolerabletotal or differential settlements, large lateral displacement, global or local instability, lowefficiency of geosynthetic, etc). To solve these problems, a new ground improvementtechnique referred to as the fixed geosynthetic technique of GRPS embankment (namedFGT embankment) is proposed. For further and better understanding this new technique,the theoretical analysis, field test and numerical analysis are employed to study theperformance of FGT embankment in this dissertation, respectively, and the main contentsare presented as follows:
     (1) In view of those deficiencies of CT embankment, the FGT embankment isdeveloped in this study. The principles and construction techniques involved in the FGTembankment are described firstly. Then, the numerical analysis method and two-stageanalysis method are used to study the performance of FGT embankment, respectively.The results show that the FGT embankment can reduce the total and differentialsettlements, and promote efficient load transfer from the subsoil to piles significantly.
     (2) To distribute the differential settlement between a bridge and adjacent backfillembankment over a longer transition zone, three techniques (a) the FGT embankment,(b)the CT embankment, and (c) geosynthetic-reinforced embankment without piles are usedat the same trial bridge approach site, which is located at the east of MCK+826No.0Bridge in Shanxi Province, the central region of China. The variation of the settlements,the lateral displacements, the pressures at the top and bottom of the geosynthetic layer and the strains of the geosynthetic layer with the increase of the embankment heightbetween the FGT and CT embankments are investigated by field tests. The results showthat the settlements and lateral displacements in the CT embankment are larger than thosein the FGT embankment. The differences of settlement and lateral displacement betweenthe FGT and CT embankments tend to be greater with an increase of the embankmentheight. In the FGT embankment, the soil arching effect is slightly weakened and the loadtransferred through the soil arching effect is reduced. The FGT embankment promotes ahigher tensioned membrane effect and the load transferred through the tensionedmembrane effect is increased significantly.
     (3) Based on the discussion about the mechanical characteristics of FGTembankment, a simplified check method of the requirement of geosynthetic tensilestrength is proposed. Then, the load transfer mechanism of geosynthetic, pile and subsoilunder the embankment load is analyzed. The embankment and improved area are treatedas a whole with continuous displacement and stress. The geosynthetic is modeled as athin plate and the deformation is calculated by the thin plate theory. The soil arching inthe embankment and the interaction between pile and soil are also considered. Amechanical model of FGT embankment is proposed. Two conditions, the pile cap andpile beam conditions are considered in the mechanical model. The finite differencemethod is used to solve the mechanical model owing to the complexity of the soil strata.Then, the numerical procedure is programmed. Finally, a field test is conducted to verifythe mechanical model and the calculated results are in good agreement with fieldmeasured data.
     (4) The numerical analysis is performed to investigate the performance of FGTembankment. In the FGT embankment, the geosynthetic and pile are treated as conode atthe top of pile to model the fixing system. The model calibration is conducted to ensure agood representation of the numerical modeling for the embankment application. Aparametric analysis on the influencing factors is conducted to investigate the performanceof FGT embankment, which include the elastic modulus of soil, tensile stiffness of geosynthetic, pile length, pile spacing, pile elastic modulus and traffic load. Based on thenumerical results, the cost evaluation between the FGT and CT embankments is alsocompared. The results show that the FGT embankment can reduce the settlement,enhance the stability and be a more economical and effective scheme for theembankment construction.
     (5) A two-dimensional numerical simulation by coupled mechanical and hydraulicmodeling is conducted to investigate the time-dependent behaviors of FGT embankmentincluding the settlement, differential settlement, lateral displacement, geosynthetictension, excess pore water pressure, etc. A sensitivity analysis is performed to discuss theinfluencing factors such as tensile stiffness of geosynthetic, pile wall spacing, elasticmodulus of soft clay, elastic modulus of pile wall and pile wall width. The results showthat the excess pore water pressure at the end of construction in the CT embankment ismuch larger than that in the FGT embankment. In comparison with CT embankment, theFGT embankment can sufficiently reduce the post-construction settlement, differentialsettlement and lateral displacement, and enhance the stability of embankment during thepost-construction period. During the construction period, the pile wall spacing and elasticmodulus of pile wall have medium to high influences on the performance of FGTembankment. During the post-construction period, the elastic modulus of soft clay, pilewall spacing and elastic modulus of pile wall have high influences on the performance ofFGT embankment.
引文
[1] Han J, Gabr M A. A numerical study of load transfer mechanisms in geosyntheticreinforced and pile supported embankments over soft soil. Journal of Geotechnical andGeoenvironmental Engineering,2002,128(1):44-53.
    [2] Zheng J J, Chen B G, Abusharar S W. The performance of an embankment on softground reinforced with geosynthetics and pile walls. Geosynthetics International,2009,16(3):171-181.
    [3] Almeida M S S, Ehrlich M, Spotti A P, et al. Embankment supported on piles withbiaxial geogrids. Proceedings of the Institution of Civil Engineers-GeotechnicalEngineering,2007,160(4):185-192.
    [4] Chen B G, Zheng J J, Abusharar S W. Theoretical study and numerical analysis ongeosynthetic reinforced and pile wall supported embankment. Proceeding of the4thAsian Regional Conference on Geosynthetics. Shanghai,2008:709-717.
    [5] Hewlett W J, Randolph M F. Analysis of piled embankment. Ground Engineering,1988,21(3):12-18.
    [6] Robert M K. Emerging and future developments of selected geosynthetic applications.Journal of Geotechnical and Geoenvironmental Engineering,2000,126(4):293-306.
    [7] Wood H, Horgan G, Pedley M. A63Selby bypass-design and construction of a1.6kmgeosynthetic reinforced piled embankment. Proc. Euro Geo3, GeosyntheticConference, Munich, Germany,2004.
    [8] Wachman G S, Biolzi L, Labuz J F. Structural behavior of a pile-supportedembankment. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(1):26-37.
    [9] Lin K Q, Wong I H. Use of deep cement mixing to reduce settlements at bridgeapproaches. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(4):309-320.
    [10]徐林荣,牛建东,吕大伟.软基路堤桩-网复合地基试验研究.岩土力学,2007,28(10):2149-2154.
    [11] Chen R P, Xu Z Z, Chen Y M, et al. Field tests on pile-supported embankment oversoft ground. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(6):777-785.
    [12] Reid W M, Buchanan N W. Bridge approach support piling. Proc. of Conf. on Pilingand Ground Treatment. Thomas Telford, London,1984.
    [13] Jones C J F P, Lawson C R, Ayres D J. Geotextile reinforced piles embankment.Proceedings,5th International Conference on Geotextiles,Geomembrane, and RelatedProducts,1990.
    [14] Card G B, Carter G R. Case history of a piled embankment in London's Docklands.Engineering Geology Special Publication,1995,10:79-84.
    [15] Topolnicki M. Case history of a geogrid-reinforced embankment supported on vibroconcrete columns. Proceedings, Geosynthetics: Applications, Design and Construction,De Groot, De Hoedt, and Termaat,1996.
    [16] Liu H L, Chu J, Deng A. Use of large-diameter cast-in situ concrete pipe piles forembankment over soft clay. Canadian Geotechnical Journal,2009,46(8):915-927.
    [17]夏唐代,王梅,寿旋.筒桩桩承式加筋路堤现场试验研究.岩石力学与工程学报,2010,29(9):1929-1936.
    [18]郑俊杰,张军,马强.路桥过渡段桩承式加筋路堤现场试验研究.岩土工程学报,2012,34(2):335-362.
    [19] Terzaghi K. Stress distribution in dry and in saturated sand above a yielding trap-door.In: Proc.1st Int. Conf. Soil Mechanics. Harvard University, Cambridge,1936:307-311.
    [20] Hewlett W J, Randolph M F. Analysis of piled embankment. Ground Engineering,1988,21(3):12-18.
    [21] Jones C J F P, Lawson C R, Ayres D J. Geotextile reinforced piles embankment.Proceedings,5th International Conference on Geotextiles, Geomembrane, and RelatedProducts,1990:155-160.
    [22]饶为国,赵成刚.桩-网复合地基应力比分析与计算.土木工程学报,2002,35(2):74-80.
    [23]刘吉福.路堤下复合地基桩、土应力比分析.岩石力学与工程学报,2003,22(4):674-677.
    [24]陈云敏,贾宁,陈仁朋.桩承式路堤土拱效应分析.中国公路学报,2004,17(4):1-6.
    [25]曹卫平,陈仁朋,陈云敏.桩承式加筋路堤桩体荷载分担比计算.中国公路学报,2006,19(6):1-6.
    [26]陈福全,李阿池.桩承式加筋路堤的改进设计方法研究.岩土工程学报,2007,29(12):1804-1808.
    [27]郑俊杰,陈保国, Abusharar S W等.双向增强体复合地基桩土应力比分析.华中科技大学学报(自然科学版),2007,35(7):110-113.
    [28] Chen R P, Chen Y M, Han J, et al. A theoretical solution for pile-supportedembankments on soft soils under one-dimensional compression. CanadianGeotechnical Journal,2008,45(5):611-623.
    [29] Abusharar S W, Zheng J J, Chen B G, et al. A simplified method for analysis of a piledembankment reinforced with geosynthetics. Geotextiles and Geomembranes,2009,27(1):39-52.
    [30] Jones B M, Plaut R H, Filz G M. Analysis of geosynthetic reinforcement inpile-supported embankment. Part I:3D plate model. Geosynthetics International,2009,17(2):59-67.
    [31] Halvordson K A, Plaut R H, Filz G M. Analysis of geosynthetic reinforcement inpile-supported embankment. Part II:3D cable-net model. Geosynthetics International,2009,17(2):68-76.
    [32] Plaut R H, Filz G M. Analysis of geosynthetic reinforcement in pile-supportedembankment. Part III: Axisymmetric model. Geosynthetics International,2009,17(2):77-85.
    [33]赵明华,刘敦平,张玲.双向增强体复合地基桩土应力比计算.工程力学,2009,26(2):176-181.
    [34]陈昌富,周志军.双向增强体复合地基桩土应力比分析.岩土力学,2009,30(9):2660-2666.
    [35] Ded K. A mathematic model to study the soil arching effect in stone column-supportedembankment resting on soft foundation soil. Applied Mathematical Modelling,2010,34(12):3871-3883.
    [36]张军,郑俊杰,马强.桩承式加筋路堤荷载分担比计算方法.浙江大学学报(工学版),2010,44(10):1950-1954.
    [37]张军,郑俊杰,马强.路堤荷载下双向增强体复合地基受力机理研究.岩土工程学报,2010,29(9):1392-1398.
    [38]赵明华,孙建兵,张永杰.基于Winkler模型的双向增强体复合地基沉降计算.岩土力学,2010,31(11):3459-3463.
    [39] Van Eekelen S J M, Bezuijen A, Van Tol A F. Analysis and modification of the BritishStandard BS8006for the design of piled embankments. Geotextiles andGeomembranes,2011,29(3):345-359.
    [40]俞缙,周亦涛,鲍胜等.柔性桩承式加筋路堤桩土应力比分析.岩土工程学报,2011,33(5):705-713.
    [41]马强,郑俊杰,张军.考虑桩间土支撑的桩承式加筋路堤受力分析与计算.华中科技大学学报(自然科学版),2011,39(3):30-33.
    [42]费康,王军军,陈毅.桩承式加筋路堤土拱效应简化分析方法.岩土力学,2012,33(8):2408-2414.
    [43]夏元友,芮瑞.刚性桩加固软土路基竖向土拱效应的试验研究.岩土工程学报,2006,28(3):327-331.
    [44]刘俊新,谢强,文江泉等.粉喷桩-土工格栅复合地基地基应力现场测试研究.岩土力学,2007,28(2):376-380.
    [45]徐正中,陈仁朋,陈云敏.软土层未打穿的桩承式路堤现场实测研究.岩石力学与工程学报,2009,28(11):2336-2341.
    [46]连峰,龚晓南,崔诗才等.桩-网复合地基承载性状现场试验研究.岩土力学,2009,30(4):1057-1062.
    [47] Briancon L, Simon B. Performance of pile-supported embankment over soft soil:full-scale experiment. Journal of Geotechnical and Geoenvironmental Engineering,2012,138(4):551-561.
    [48] Liu S Y, Du Y J, Yi Y L, et al. Field investigations on performance of T-shaped deepmixed soil cement column-supported embankments over soft ground. Journal ofGeotechnical and Geoenvironmental Engineering,2012,138(6):718-727.
    [49] Low B K, Tang S K, Choa V. Arching in piled embankments. Journal of GeotechnicalEngineering,1993,120(11):1917-1938.
    [50] Young I O, Eun C S. Reinforcemetn and arching effect of geogrid-reinforced andpile-supported embankment on marine soft ground. Marine Georesources&Geotechnology,2007,25(2):97-118.
    [51] Chen Y M, Cao W P, Chen R P. An experimental investigation of soil arching withinbasal reinforced and unreinforced piled embankments. Geotextiles and Geomembranes,2008,26(2):164-174.
    [52]崔溦,闫澍旺.水泥桩联合土工格栅复合地基的离心模型试验研究.岩土力学,2008,29(5):1315-1319.
    [53]张良,罗强,裴富营等.基于离心模型试验的桩帽网结构路基桩端持力层效应研究.岩土工程学报,2009,31(8):1192-1199.
    [54]李华明,蒋关鲁,刘先峰. CFG桩加固饱和粉土地基的动力特性试验研究.岩土力学,2010,31(5):1550-1554.
    [55]王长丹,王炳龙,王旭等.湿陷性黄土桩网复合地基沉降控制离心模型试验.铁道学报,2011,33(4):84-92.
    [56]蔡德钩,闫宏业,叶阳升等.桩网支承路基结构中土拱效应及网垫受力的模型试验研究.铁道学报,2011,33(11):85-92.
    [57] Van Eekelen S J M, Bezuijen A, Lodder H J, et al. Model experiments on piledembankments. Part I. Geotextiles and Geomembranes,2012,32,69-81.
    [58] Van Eekelen S J M, Bezuijen A, Lodder H J, et al. Model experiments on piledembankments. Part II. Geotextiles and Geomembranes,2012,32,81-94.
    [59]费康,陈毅,王军军.加筋形式对桩承式路堤工作性状影响的试验研究.岩土工程学报,2012.
    [60] Liu H L, Ng C W W, Fei K. Performance of a geogrid-reinforced and pile-supportedhighway embankment over soft clay: case study. Journal of Geotechnical andGeoenvironmental Engineering,2007,133(12):1483-1493.
    [61]陈仁朋,徐正中,陈云敏.桩承式加筋路堤关键问题研究.中国公路学报,2007,20(2):7-12.
    [62]芮瑞,夏元友.桩-网复合地基与桩承式路堤的对比数值模拟.岩土工程学报,2007,29(5):769-772.
    [63] Huang J, Han J.3D coupled mechanical and hydraulic modeling of ageosynthetic-reinforced deep mixed column-supported embankment. Geotextiles andGeomembranes,2009,27(4):272-280.
    [64] Huang J, Han J, Oztoprak S. Coupled mechanical and hydraulic modeling ofgeosynthetic-reinforced column-supported embankments, Journal of Geotechnical andGeoenvironmental Engineering,2009,135(8):1011-1021.
    [65] Le Hello B, Villard P. Embankments reinforced by piles and geosynthetics-numericaland experimental studies dealing with the transfer of load on the soil embankment.Engineering Geology,2009,106(1-2):78-91.
    [66] Jenck O, Dias D, Kastner R. Discrete element modelling of a granular platformsupported by piles in soft soil-validation on a small scale model test and comparison toa numerical analysis in a continuum. Computers and Geotechnics,2009,36(6):917-927.
    [67]郑刚,纪颖波,刘双菊等.桩顶预留净空或可压缩垫块的桩承式路堤沉降控制机理研究,2009,42(5):125-132.
    [68] Sandiford R E, Law S, Roscoe G. Application of geosynthetics in the construction ofan overrun area at La Guardia airport. Geotextiles and Geomembranes,1996,14(3):193-200.
    [69] Eskisar T, Otani J, Hironaka J. Visualization of soil arching on reinforced embankmentwith rigid pile foundation using X-ray CT. Geotextiles and Geomembranes,2012,32,44-52.
    [70] Han J, Bhandari A, Wang F. DEM analysis of stresses and deformations ofgeogrid-reinforced embankments over piles. International Journal of Geomechanics,2012,12(4):440-350.
    [71]杨广庆,李广信,张保俭.土工格栅界面摩擦特性试验研究.岩土工程学报,2006,28(8):948-952.
    [72]刘观仕,孔令伟,李雄威.高速公路软土路基拓宽粉喷桩处治方案分析与验证.岩石力学与工程学报,2008,27(2):309-315.
    [73]费康,刘汉龙.桩承式加筋路堤的现场试验及数值分析.岩土力学,2009,30(4):1005-1012.
    [74]张军,郑俊杰,马强等.桩承式加筋路堤挂网技术侧向位移影响分析.华中科技大学学报(自然科学版),2012,40(1):63-66.
    [75]刘汉龙,费康,马晓辉等.振动沉模大直径现浇薄壁管桩技术及其应用(I):开发研制与设计.岩土力学,2003,24(2):164-168.
    [76]刘汉龙,郝小员,费康等.振动沉模大直径现浇薄壁管桩技术及其应用(II):工程应用与试验.岩土力学,2003,24(3):372-375.
    [77] Xu X T, Liu H L, Lehane B M. Pipe pile installation effects in soft clay. Proceedings ofthe Institution of Civil Engineers-Geotechnical Engineering,2006,159(4):285-296.
    [78]刘汉龙,张建伟,彭劼. PCC桩水平承载特性足尺模型试验研究.岩土工程学报,2009,31(2):161-165.
    [79]刘松玉,席培胜,储海岩.双向水泥土搅拌桩加固软土地基试验研究.岩土力学,2007,28(3):560-564.
    [80]刘松玉,易耀林,朱志铎.双向搅拌桩加固高速公路软土地基现场对比试验研究.岩石力学与工程学报,2008,27(11):2272-2280.
    [81]刘松玉,朱志铎,席培胜等.钉形搅拌桩与常规搅拌桩加固软土地基的对比研究.岩土工程学报,2009,31(7):1059-1068.
    [82]刘松玉,易耀林,杜延军等.变径搅拌桩处理成层软弱地基的现场试验.中国公路学报,2012,25(2):1-8.
    [83]马骥,张东刚,张震等.长短桩复合地基设计技术.岩土工程技术,2001,(2):86-91.
    [84]杨敏,杨桦,王伟.长短桩组合桩基础设计思想及其变形特性分析.土木工程学报,2005,38(12):103-108.
    [85] Liang F Y, Chen L Z, Han J. Integral equation method for analysis of piled rafts withdissimilar piles under vertical loading. Computers and Geotechnics,2009,36(3):419-426.
    [86]黄茂松,李波,程岳.长短组合路堤桩荷载分担规律离心模型试验与数值模拟.岩石力学与工程学报,2010,29(12):2543-2550.
    [87] Dong Y L, Han J, Bai X H. Numerical analysis of tensile behavior of geogrids withrectangular and triangular apertures. Geotextiles and Geomembranes,2010,29(2):83-91.
    [88]马强.高填方涵洞受力特性及新型格栅减载方法研究[博士学位论文].武汉:华中科技大学,2011.
    [89]董彦莉.土工格栅加筋砂土的特性研究及加筋垫层的承载力计算[博士学位论文].太原:太原理工大学,2011.
    [90]肖衡林,瑜珞,李丽华.土工合成材料与砂土界面摩擦特性分析.人民长江,2012,43(7):56-58.
    [91]赵明华,张玲,邹新军等.土工格室碎石桩双向增强复合地基研究进展.中国公路学报,2009,22(1):1-10.
    [92] Zhang L, Zhao M H, Zou X W, et al. Deformation analysis of geocell reinforcementusing Winkler model. Computers and Geotechnics,2009,36(6):977-983.
    [93] Zhang L, Zhao M H, Shi C J, et al. Bearing capacity of geocell reinforcement inembankment engineering. Geotextiles and Geomembranes,2010,28(5):475-482.
    [94] Zhang L, Zhao M H, Zou X W, et al. Analysis of geocell-reinforced mattress withconsideration of horizontal-vertical coupling. Computers and Geotechnics,2010,37(6):748-756.
    [95]詹永祥,蒋关鲁,牛国辉等.桩板结构路基动力模型试验研究.岩土力学,2008,29(8):2097-2101.
    [96]陈保国.山区高速公路涵-土作用机制及路基处理研究[博士学位论文].武汉:华中科技大学,2008
    [97] Huang J. Coupled mechanical and hydraulic modeling of geosynthetic-reinforcedcolumn-supported embankments[Ph.D. Dissertation]. Lawrence: University of Kansas,2007.
    [98] Vesic A S. Bending of beams resting on isotropic elastic solids. Journal of SoilMechanics and Foundation Engineering,1961,87(2):35-53.
    [99] Goh A T C, Teh C I, Wong K S. Analysis of piles subjected to embankment inducedlateral soil movements. Journal of Geotechnical and Geoenvironmental Engineering,1997,9:792-801.
    [100]潘晓东,杜志刚,杨晓光.桥头跳车对行车安全影响评价指标的研究.同济大学学报(自然科学版),2006,34(5):634-637.
    [101] Su Y, Zhou J, Zeng Q Y. Application of settlement-based design methodology topile-foundation for bump at the ends of bridges, Chinese Journal of GeotechnicalEngineering,2006,28(1):68-72.
    [102]羊晔,刘松玉,邓永锋.软土地基过渡段差异沉降控制标准.东南大学学报(自然科学版),2008,38(5):834-838.
    [103] Hoppe E J. Guidelines for the use, design, and construction of bridge approach slabs.Final Report No. VTRC00-R4, Virginia Transportation Research Council,Charlottesville, Virginia.1999.
    [104] Skinner G D, Rowe R K. Design and behaviour of a geosynthetic reinforced retainingwall and bridge abutment on a yielding foundation. Geotextiles and Geomembranes,2005,23(3),234-260.
    [105]俞永华.路桥过渡段差异沉降处治技术研究[博士学位论文].西安:长安大学,2005.
    [106]柳东委.土工格栅在六潜高速公路中处理桥头跳车应用研究[硕士学位论文].阜新:辽宁工程技术大学,2009.
    [107] Robert M K. Emerging and future developments of selected geosynthetic applications.Journal of Geotechnical and Geoenvironmental Engineering,2000,126(4):293-306.
    [108]成祥生.应用板壳理论.济南:山东科学技术出版社,1989.
    [109]易耀林,刘松玉.路堤荷载下复合地基沉降计算方法探讨.工程力学,2009,26(10):147-153.
    [110]陈祥福.沉降计算理论及工程实例.北京:科学出版社,2005.
    [111]钱家欢,殷宗泽.土工原理与计算(第二版).北京:中国水利水电出版社,1996.
    [112]史佩栋.实用桩基工程手册.北京:中国建筑工业出版社,1999.
    [113]郑俊杰,张军,马强等.双向增强体复合地基桩土应力比三维分析.华中科技大学学报(自然科学版),2010,38(2):83-86.
    [114]徐正中,陈仁朋,陈云敏.软土层未打穿的桩承式路堤现场实测研究.岩石力学与工程学报,2009,28(11):2336-2341.
    [115] Brinkgreve R B J, Vermeer P A. Finite Element Code for Soil and Rock Analysis.Rotllendan: A. A. Balkema,1998
    [116] Abusharar S W, Han J. Two-dimensional deep-seated slope stability analysis ofembankments over stone columns-improved soft clay. Engineering Geology,2011,120(1-4):103-110.
    [117] Shukla S K, Yin J H. Time-dependent settlement analysis of a geosynthetic-reinforcedsoil. Geosynthetics International,2003;10(2):70-76.
    [118] Venda Oliveira P J, Pinheiro J L P, Correia A A S. Numerical analysis of anembankment built on soft soil reinforced with deep mixing columns: Parametric study.Computers and Geotechnics,2011,38(4):566-576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700