电液控制冲击试验机液压系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗冲击性能作为产品可靠性的重要组成部分,现在已备受产品生产者和使用者的关注。冲击试验则是测试产品抗冲击性能的一个重要手段。为了提高检测产品的抗冲击性能的试验水平,改进和完善冲击试验机性能则是一个重要的研究方向。本论文主要针对目前机械式冲击试验机存在的不足,应用电液控制技术提出了一种新型的电液控制冲击试验机的结构,进行了分析和研究。论文分为以下几个章节:
     第一章首先在综合国内外文献的基础上介绍了冲击试验机的发展历史,研究与应用现状,并介绍了冲击试验与冲击波形的运用状况。然后介绍冲击试验机的核心部件力脉冲发生器的发展概况与研究动态。最后介绍了本文的相关技术电液比例/伺服领域的发展现状,在此基础上提出了本文的研究意义和研究内容。
     第二章首先推导出三种力脉冲波形的加速度,速度和位移的时间函数关系,分析了力脉冲成形的要素和实现过程。提出了蓄能器-阀-液压缸系统构成的新型电液控制的冲击试验机结构及系统组成。分析和推导了蓄能器充气和排气工作过程的气体弹簧刚度计算公式,阀控缸系统活塞的位移、速度、加速度以及最高极限速度公式。最后了分析新结构的电液大流量控制阀的结构和工作原理。
     第三章主要利用计算机仿真软件对由蓄能器-阀-液压缸组成的电液控制冲击试验机系统进行了理论分析,包括电液大流量控制阀工作过程的数学建模和电液控制冲击试验机系统控制过程的建模,液压执行元件蓄能器-阀控液压缸工作过程的数学建模,分析了结构参数和工作条件参数对系统性能的影响,以及系统动态响应的过程。
     第四章主要阐述了电液大流量控制阀的液动力产生机理,计算及其对系统的干扰作用,在此基础上针对该阀的结构和工作特点提出阀芯所受液动力的补偿方法和结构,然后对阀口处的流场进行了有限元仿真计算,探索了液动力大小与补偿结构的各参数之间的关系,最后得出能实现液动力补偿的合理结构。
     第五章首先介绍了蓄能器-阀-液压缸试验系统的组成,试验方法,然后对试验结果进行了分析。得出了有价值的结论,为进一步开发新型的电液控制冲击试验机打下基础。
     第六章是论文总结和展望。
Both manufacturers and users are giving their more attention to the shock resistance of products nowadays, which is a important constituent of its reliability, and shock testing is a indispensable means of checking resistance to impact. To. improve the level of shock test, improving and strengthening the performance of the shock machine is an important research objective. Against the disadvantages that existing in current mechanical shock testers, the thesis mainly presents a new-type structure of electro-hydraulic control shock tester and makes much study and analysis on it. It is consisting of six sections as follow.
    Chapter 1 first introduces the development-history, present state on the research and application of product shock testers, the current application situation of shock teasing and its force pulse on the base of having collected and analyzed plenty of documentation. Then it states the general development situation and research trends on the force pulse generator, and the present status of electro-hydraulic proportional/servo control technique. In the end this thesis points out the main content and significance of the research work.
    Chapter 2 derives the acceleration, velocity, and displacement functions of the three force pulse waveforms and states the generation course of corresponding wave profile in its first section. And then puts forward a new-type force pulse generator that is integrated from accumulator, hydraulic cylinder, valve and specifies the mechanical structure of electro-hydraulic proportional/servo system. Furthermore it analyzes and deduces the both the calculatior formula of stiffness coefficient on the pneumatic spring in the accumulator, and the formulas of the acceleration, velocity, displacement, and maximum speed on the piston in the hydraulic cylinder being controlled by a valve. The last part of the chapter illustrates and analyses the structural principle of large-capacity control valve.
    Chapter 3 analyses the design of shock tester system composed of accumulator, hydraulic cylinder, and valve through computer simulation software Matlab6.1, including firstly the modeling of system control structure, secondly the modeling and simulation on the dynamic process of accumulator and hydraulic cylinder controlled by valve, and the force characteristic and dynamic response of large-capacity proportional valve, then summarizes the relation between product characteristic and several main structural parameters. In the last part of the section it calculates and analyses the work process of whole integrated component.
    
    
    Chapter 4 firstly analyses the generation mechanics, calculating method and interference effect of flow force in the outflowing large-capacity proportional valve. Then it not only presents a structural design to compensate the flow force according to the performance characteristic of the cone valve, but also calculates and simulates the flow field at the valve port through CFD software Fluent6.0. At last it studies the influence of compensation structure parameters and obtains better projected dimensions.
    Chapter 5 firstly introduces the experiment platform design of accumulator-valve -hydraulic cylinder system and testing method. Then it summarizes and analyses the experiments result and obtains some valuable conclusions. It has laid the foundation for future research and development of electro-hydraulic control shock tester.
    Chapter 6 summarizes the whole thesis.
引文
[1] 《振动与冲击手册》编辑委员会.振动与冲击手册,第三卷,工程应用.国防工业出版社.1992.6.
    [2] 机械工程手册电机工程手册编辑委员会.机械工程手册,第4卷,机械设计(一).机械工业出版社.1982,12.
    [3] 刘明治.电子设备振动分析与实验.东南大学出版社.1991.5.
    [4] Bradley, Thomas L. Jr.; Daves, Ted M.; McCampbell, Steven L.; Ykema, John I.. Comparison of shock test methods of MIL-S-901 derived from tests on a ciruit breaker & switchboard.. Naval Engineers Journal v 104 n 3 May 1992 p 178-190.
    [5] Ema, S.; Marui, E.. Fundamental study on impact dampers. International Journal of Machine Tools & Manufacture v 34 n 3 Apt 1994. p 407-421
    [6] 章一明.液压缓冲器设计参数研究.华东冶金学院学报.1994(7),54-58.
    [7] 王朝贵.冲击波形发生器.环境条件与试验.1989,(2).-22-24.
    [8] Popplewell, N.; Semercigil, S. E.. Performance of the bean bag impact damper for a sinusoidal external force.. Journal of Sound and Vibration v 133 n 2 Sep 8 1989 p 193-223.
    [9] 金庆铭.冲击试验波形的机械模拟,振动与冲击.1995(4):46-51
    [10] 丁传静.纵向节流心轴式波压缓冲器及性能研究.上海交通大学学报,1996(8),13-16.
    [11] 戴荣禄.多孔式液气缓沖器的设计方法.浙江丝绸工学学院学报.1995(9),38-43.
    [12] Banthia, N.; Mindess, S.; Bentur, A.; Pigeon, M.. Impact testing of concrete using a drop-weight impact machine.. Experimental Mechanics v 29 n 1 Mar 1989 p 63-69.
    [13] Liu, Jiyuan. Digital signal processing method of flight equipment shock test system. IEEE Proceedings of the National Aerospace and Electronics Conference v 1 1996. IEEE, Piscataway, N J, USA, 96CH35934. p 336-338
    [14] Schueneman, Herbert H.. What constitutes a good shock test spec?. Test Engineering & Management v 58 n 3 Jun-Jul 1996. p 10-11.
    [15] Ramon, O.; Mizrahi, S.; Miltz, J. Merits and limitations of the drop and shock tests in evaluating the dynamic properties of plastic foams. Polymer Engineering and Science v 34 n 18 Sept 1994. p 1406-1410.
    [16] Cooper, Craig E.; Schueneman, Herbert H.. SRS applications for package testing dynamics. Test Engineering & Management v 57 n 5 Oct-Nov 1995. p 10-14.
    [17] 仇雪琴.一种新颖的冲击试验设备.环境技术.1997(3),6-9.
    [18] 吕平华.100kg冲击试验机的设计分析与计算.试验技术与试验机.1995(2).p20-22.
    [19] 陈贤标,钟琼华.CP-100型冲击,碰撞试验台..液压气动与密封,1997(5),25-29..
    [20] 季馨.簧片式后峰锯齿波力脉冲成形机理及其装置的研究.振动,测试与诊
    
    断..1995(6),45-50.
    [21] 杨铭,季馨,高艳旭.任意冲击脉冲波形发生器动态仿真研究.新技术新工艺.200(8),75-77.
    [22] 季馨.油阻尼半正弦波力脉冲成形器理论与应用.东南大学学报.Vol.24 1994(9)..p106-109.
    [23] 畅铭,季馨,张友平,刘念.油阻尼后峰锯齿波冲击吹冲发生器动态仿真探讨.电子机械工程.2000(8),38-42.
    [24] 杨铭.油阻尼后峰锯齿波力脉冲成形器理论与应用.南京林业大学学报.2000(6),68-70.
    [25] 詹永麟,孙巍,张世华.液压缓冲器的动态仿真.液压气动与密封.1996(1),5-8..
    [26] 王卫卫,王静.冲压设备液压缓冲器动态响应分析.太原重型机械学院学报.1997(9),210-213.
    [27] 孙基成.液压冲击中压强最大值的类型及判别式.机械工程师,1988,6.p35-37.
    [28] 长耿,李金良.液压控制系统的分析与设计.煤炭工业出版社,1991,2.p26-25
    [29] 疗福成.可变节流式液压缓冲器的设计.液压与气动,1984,10..p15-18.
    [30] 朱雁.油压缓冲原理及其应用.中国铸机,1986.8.p16-18
    [31] 朱华兴.液压系统的最佳缓冲控制及其实施方法的研究.液压与气动,1986.6.p21-23.
    [32] Ema, Satoshi; Marui, Etsuo. Suppression of chatter vibration of boring tools using impact dampers. International Journal of Machine Tools and Manufacture Volume: 40, Issue: 8, June, 2000, pp. 1141-1156.
    [33] Blazejczyk-Okolewska, Barbara; Peterka, Franti(?)ek. An Investigation of the DynamicSystemwith Impacts. Chaos, Solitons & Fractals Volume: 9, Issue: 8, August, 1998, pp. 1321-1338
    [34] Ema, S.; Marui, E. Damping characteristics of an impact damper and its application. International Journal of Machine Tools and Manufacture Volume: 36, Issue: 3, March, 1996, pp. 293-306
    [35] [美]约翰.F.加德纳.机构动态仿真—使用MATLAB利SIMULINK.周进雄译.西安交通大学出版社,2002,9..
    [36] 何清华.行程可调式液压冲击机构的研究.凿岩机械气动工具..TD421-2.1994(4).p38-40
    [37] B. Rich. Cylinder Softening the Blow. Hydraulic & Pneumatic Mechanical Power, january, 1979.
    [38] B. N. Murall. Ananalysis of hydraulic cylinder cushion. Hydraulics & Pneumatics, May, 1979.
    [39] Toshihiho. Fundmendal Investigation on an Oil Damper. Bulletin of JSME Vol. 29. No. 248. Fubruary, 1986.
    [40] What is Available in Cylinder Cushion. A Staff Report, Hydraulics & Pneumatics May, 1979.
    [41] Scanning Modern Cylinder Product. Hydraulic & Pneumatic Mechanical Power, March 1986.
    
    
    [41] Alex Hudson. What you should know about shockabsorbers. Hydraulic & Pneumatics, May 1977.
    [42] Cylinder, Valvesand Controls. Hydraulic & Pneumatic Mechanical Power, March 1986.
    [43] N. R. Stull. All cylinders are not created equal. Hydraulics & PneumaticS October, 1985.
    [44] J. H>Anderton. How to size a cylinder. Hydraulic & Pneumatic Mechanical Power, April 1986.
    [45] Edwin jacobs. Making fluid power cylinder 'smart'. Hydraulics & Pneumatics May 1985.
    [47] G. Hoobler. How to specify cushioning in mill type cylinder. Hydraulics & Pneumatics, May 1979.
    [48] Now you can get the performance advantages of the new stepped cushion with parke heavy duty hydraulic cylinder. Hydraulics & Pneumatics March 1976.
    [49] Cylinder for profitmaking design(cushiong). Hydraulics & Pneumatics March, 1976.
    [50] Hajime Takada, Daisuke Fujimaki, Takao Tsuboi. Neasurement of Strong Shock Pressure. Shock and Vibration, Vol 4, NO.5.6,pp. 403-409(1997).
    [51] 唐思鹤.液压缸缓沖装置设计的探讨.液压与气动,1982,p19-20.
    [52] 芦志乔.液压缸常用缓冲结构及其特性.液压与气动,1985(4)22-26.
    [53] 方平.超高压断路器新型液压操动机构系统分析及高速液压缸缓沖研究.浙大学硕士学位论文,1994
    [54] 方光泽译.一种快速响应的新型液压缸.液压与气动,1986,6.p16-17.
    [55] Oledzki, A. A.; Siwicki, I.; Wisniewski, J. Impact dampers in application for tube, rod and rope structures. Mechanism and Machine Theory Volume: 34, Issue: 2, February, 1999, pp. 243-253
    [56] Richardson, A. S. Performance requirements for vibration dampers. Fuel and Energy Abstracts Volume: 37, Issue: 5, September, 1996, pp. 356
    [57] Paoli, L.; Schatzman, M. Resonance in Impact Problems Mathematical and Computer Modelling Volume: 28, Issue: 4-8, August 10, 1998, pp. 385-406.
    [58] Hale, Michael T.; Adhami, Reza. Time-frequency analysis of shock data with application to shock response spectrum waveform synthesis. Conference Proceedings -IEEE SOUTHEASTCON v 1. Publ by IEEE, IEEE Service Center, Piscataway, N J, USA (IEEE cat n 91CH2998-3). p 213-217
    [59] Richardson, Albert S. Performance requirements for vibration dampers. Electric Power Systems Research Volume: 36, Issue: 1, January, 1996, pp. 21-28
    [60][61] Tandon, N.. Comparison of some vibration parameters for the condition monitoring of rolling element bearings. Measurement: Journal of the International Measurement Confederation v 12 n 3 Jan 1994. p 285-289.
    
    
    [62] Burgess, Gary. Generation of cushion curves from one shock pulse. Packaging Technology & Science v 7 n 4 July-Aug 1994. p 169-173.
    [63] 陈桂明等.应用MATLAB建模与仿真.科学出版社,2001
    [64] 丁凡.高速液压缸缓冲过程的研究.钢铁,1998.8.p18-22.
    [65] 郭荣良,郭清南,祝世兴.流体力学及应用.机械工业出版社.1995,5.
    [66] 路甬祥等.液压气动技术手册.机械工业出版社,2002.1
    [67] Merchant, Carol. Testing for shock and vibration. Mechanical Engineering v 111 n 9 Sep 1989 p 68-73.
    [68] 丁凡.超高压断路器液压操动机构的研究。浙江大学博士学位论文,1994,5。
    [69] 曹培起.液压缸.北京科学技术出版社.1987,6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700