鄂尔多斯盆地陇东地区低渗透储层特征及分级评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯盆地是我国重要的含油气盆地和油气生产基地,其油气资源总量巨大,但迄今为止在盆地内已发现的油气储量90%以上赋存于低渗透储层之中,油气藏(田)开发以低渗、低产为主要特征。随着勘探开发的进一步展开与深入,长庆油田资源接替转为0.5×10-3μm2左右的储层,并且低渗(超低渗)储量的总量及其所占比例将不断上升。如何有效评价与开发这类低渗(超低渗)储层,提高低渗透储量的动用程度和利用价值,已成为亟待攻关解决的重大课题与难题。
     储层评价是油气田开发过程中的核心研究内容。鄂尔多斯盆地西南部陇东地区以往的研究多是仅利用静态资料,集中在对长8油层组的岩石学与矿物学特征、微观非均质性、成岩作用及其对低渗透的影响作用等储层特征的单因素分析方面,但长8油层组低渗透储层的地质条件复杂,垂向上和横向上的非均质性均极强,要求相应的研究工作必须更为细化和深化,开展多学科协同攻关与综合研究。
     本次研究以位于鄂尔多斯盆地西南部的陇东地区为剖析工区,旨在分析上三叠统延长组长8油层组低渗透储层的形成地质背景、沉积—成岩条件及其宏观与微观特征,筛选出有效的评价指标并对低渗透储层进行综合评价。本文在广泛调研目前国内外低渗透储层研究现状及最新进展的基础上,充分收集研究区的地质、钻井、测试化验及生产动态等资料,以层序地层学、石油地质学、沉积学、储层地质学、油气田开发地质学及地质统计学等理论为指导,多学科系统、综合研究了长8油层组砂岩储层的沉积相、成岩相、宏观与微观非均质性等特征,优选了低渗透储层的分级评价参数,确定出分级标准,并评价了不同级别低渗透储层的纵、横向展布特征及其对油气储量的贡献。
     1.地层划分与对比
     以高分辨率层序地层学理论为指导,应用高频旋回的分析对比方法,根据地层接触关系、沉积层序或旋回、岩性组合等要素,选定标志层,选择标准井建立综合柱状剖面对长8油层组进行小层划分,在此基础上对全区进行骨架连井剖面的小层对比和层位闭合。将长8油层组划分为长8,和长82两个砂层组,长81砂层组自上而下细分为长811、长812及长813三个小层;长82砂层组自上而下进一步细分为长821和长822两个小层。
     2.沉积相分析
     在岩心观察和显微薄片鉴定的基础上,结合测井资料,进行重点钻井的长8油层组沉积相分析;结合测井相(识别泥质岩、粉砂岩和砂岩)和砂地比分析,采取突出水下分流河道微相的方法,确定各小层沉积微相的剖面和平面分布特征。
     长8油层组发育辫状河三角洲的三角洲前缘和前三角洲2个亚相,其中三角洲前缘亚相以水下分流河道微相和水下分流河道间微相为主,次为河口坝微相;前三角洲亚相划分1个前三角洲微相。
     三角洲前缘砂体类型主要为截削河、叠加河、孤立河、坝上河、河上坝、孤立坝等6类,其中截削河砂体厚度大、分布频率高,为最佳储渗砂体。
     水下分流河道是油层赋存的主要微相,各小层水下分流河道微相“捕获”的油层累计厚度平均占钻遇油层累计厚度的88.9%。
     3.成岩相分析
     基于岩心观察、薄片鉴定、压汞分析等资料,分析长8油层组砂岩储层的岩性特征、孔隙类型及孔喉组合,确定成岩作用类型及其成岩作用阶段和孔隙演化历史,划分成岩相类型并分析其在单井、剖面和平面上的展布特征,分小层、分区评价成岩相。
     长8储层以细-中粒、极细-细粒长石岩屑砂岩为主,具成份成熟度低、结构成熟度较低和填隙物含量高并以成岩矿物为主等特点。成岩矿物含量18.5%,杂基仅1.6%。成岩矿物以自生的绿泥石、方解石最发育,含量分别为5.7%、5.1%。砂岩可见孔以粒间孔为主,长石溶孔次之;微孔分布于杂基和胶结物中。粒间孔含量为1.6%,多分布在单层厚度较大且主要由绿泥石胶结的砂岩中。砂岩的孔喉组合以中孔-中-微喉型为主。可见孔多呈由胶结物包围的四面体、多面体,喉道为颗粒间片状、弯片状间隙(张开宽度多<1μm);而微孔既是孔隙又是管束状喉道。
     砂岩经历以压实压溶、胶结为主的多种成岩作用,现今处于中成岩阶段A期的A2亚期。成岩作用发生的序次大致为:压实压溶-早期方解石胶结-绿泥石胶结-硅质胶结-高岭石胶结-中期方解石胶结-长石加大-伊利石胶结-溶蚀-自生石英充填。
     砂岩初始孔隙度为30-37%,现今孔隙度8.3-17.2%。在成岩过程中,因压实压溶作用减少的孔隙量为1.3-20.4%,胶结作用减少的为3.3-19.5%;因溶蚀作用增加的为0.2-2.5%。
     砂岩划分为早期胶结、压实压溶-微孔、压实胶结-微孔、绿泥石胶结-粒间孔微孔、溶蚀-粒间孔微孔、绿泥石胶结-粒间孔、溶蚀-溶孔粒间孔等7个成岩相。其中,绿泥石胶结-粒间孔微孔、绿泥石胶结-粒间孔等2个成岩相储渗透性较好分布且分布较广(分布频率>10%),属有利成岩相;溶蚀-溶孔粒间孔、溶蚀-粒间孔微孔(分布频率4%±)属较有利成岩相;压实胶结-微孔成岩相储渗性差且分布又广(分布频率64.5%),属不利成岩相。
     4.储层非均质性分析
     依据压汞曲线特征将长8储层划分为3大类、6亚类:Ⅰ大类为低门槛压力、相对高渗型,岩心分析孔隙度均在10%以上,分析渗透率在1mD以上;根据孔喉的分布状况又可分为分选较差型和分选较好型。Ⅱ大类为中等门槛压力、中等渗透率型,岩心分析孔隙度在8%-10%之间,渗透率在0.3-1mD之间;根据门槛压力和分选特征又可分为较低门槛压力、分选较好型和较高门槛压力、分选较好型。Ⅲ大类为高门槛压力、低渗透率型,岩心分析孔隙度在10%以下,渗透率在0.3mD以下:根据门槛压力、渗透率、分选类别又可细划分为高门槛压力、低渗透率、分选较好型和很高门槛压力、极低渗透率、分选较差型。
     敏感性试验结果揭示长8储层具有弱速敏、弱-无水敏、弱-无盐敏、强-极强土酸敏及中等-弱盐酸敏等敏感性特征。
     单砂层内砂岩的粒度、粒序、物性的韵律性变化与层内夹层分布特征及渗透率的纵向变化相关分析表明岩性对物性有一定的控制作用,但不是唯一的控制因素。
     对28口井的层间渗透率变异系数和渗透率突进系数统计分析表明,层间渗透率变异系数呈现双峰特征,其中弱非均质和强非均质所占比例较高;层间渗透率突进系数呈现单峰偏态特征,弱非均质所占比例较高。综合来看,研究区长8储层内砂层间的非均质性并不强。
     用岩心取芯井段的分析孔隙度、渗透率计算流动层指数,分成不同的流动单元级别,再利用对应层段的孔隙度、渗透率、含油饱和度、泥质含量等参数建立流动单元的判别函数,将研究区长8油层组分为A、B、C、D四类流动单元,其中A类流动单元分布局限,多呈孤立状分布;B、C两类流动单元多呈顺河道方向的条带状分布;D类流动单元多分布于河道的边部。
     5.储层综合评价
     建立了一套适用于研究区乃至整个鄂尔多斯盆地0.3毫达西低渗透储层评价的指标体系及其评价流程,其中以物性参数作为分类评价的关键参数,岩性参数和含油性参数为重要参数,孔隙结构参数为重要参考参数。据此将研究区长8砂岩储层划分为为五类(级),其中Ⅰ类储层(特低渗储层)为最好的储集层,Ⅱ类储层(超低渗Ⅰ类)为有利储层,Ⅲ类储层(超低渗Ⅱ类)为较有利储层,Ⅳ储层(超低渗Ⅲ类)为不利储层,V类储层为非有效层。
     研究区储集层在纵向分布、平面展布上均受沉积相带的控制。超低渗透储层在纵向上层位相对集中发育,且非均质性强,构成了不同分类的砂岩层叠置分布;纵向上厚度较大的水下分流河道砂体在小层中具较强的继承性。顺延水流方向砂体延伸距离较远,构成了储集主体,横向上(垂直物源方向)的砂体呈透镜状,延伸距离有限。在平面上,不同类别的储层有呈环带分布的特点,类储层在主砂体的主体核部位置,环绕其外呈环带状分布依次为差一级的储集砂层。总体上,陇东地区纵向上好的储层集中于长811和长822,且长811优于长822,其后依次为长812、长821、长8,3。
     在分析各类(级)储集层纵、横向分布的基础上,应用容积法,对不同类别的储集岩做储量分析,并对不同小层和不同类别储层的储量进行计算。陇东地区长8油层组油气储量总计为44963.58×104t,其中Ⅰ类储层的储量为996.88×104t,占总储量的2.22%;Ⅱ类储层的储量为4440.61×104t,占总储量的9.88%;Ⅲ类储层的储量为21022.49×104t,占总储量的46.75%;Ⅳ类储层的储量为18533.6×104t,占总储量的41.22%。Ⅲ类和Ⅳ类储层的储量占总储量的87.97%,是研究区油气开发的主要对象。
The Ordos Basin is an important petroliferous basin and an oil and gas producing base in China, which has a huge amount of oil and gas resources. But more than90%of the oil and gas resources found there so far accumulate in low permeable reservoirs mainly characterized as low permeability and low production in development phases. With the further development of exportation and development, Changqing oilfield has paid more attention to the reservoirs with the permeability of about0.5×10-3μm2for the future work, with the rising of the percentage and amount of reserves in low or ultra-low permeability reservoirs. So it has been a great issue and challenge to be solved urgently, that how to efficiently evaluate and develop the low and ultra-low permeability oil-gas reservoirs to improve the producing degree and use value of the reserves in low permeability reservoirs.
     Reservoir evaluation is a core part during the oil-gas field development. The previous research in region of Longdong in the southwest ordos basin only used static data, and focused on single factor analysis of reservoir characteristics, such as Chang8oil-bearing formation's petrological and mineralogical characteristics, microscopic heterogeneity, diagenesis and its effect on low permeability. While the low permeability reservoir of Chang8oil-bearing formation occurs in complex geological conditions, the heterogeneities of which are very strong vertically and horizontally, the corresponding work need to be refined and deepened, comprehensive research through multidisciplinary.
     Taking the region of Longdong as example, this thesis is aimed at the analysis of low permeability reservoir of Chang8oil-bearing formation, including geological background for its forming, conditions for its deposition and diagenesis, and its macro-and microeconomic characteristics, screens effective evaluation indicators, and evaluates the low permeability reservoir comprehensively. Based on the extensive investigation of the research status and latest evolution of low permeability reservoirs in the world, this thesis amply gathers the data in the research area, including geology, drilling, testing and analytical data, production dynamic data, and so on. Directed with the theories of sequence stratigraphy, petroleum geology, sedimentology, reservoir geology, oil and gas field development geology and geological statistics, this thesis comprehensively researches the sandstone reservoir characteristics of Chang8oil-bearing formation through multidisciplinary, such as sedimentary facies, diagenetic facies, macro and micro heterogeneity, optimizes the classification evaluation parameters for the low permeability reservoir, determine the classification standard, and evaluate the vertical and horizontal distributing feature and the contribution to oil-gas reserves of the low permeability reservoir with different levels.
     1. Stratigraphic classification and correlation
     Guided by high-resolution sequence stratigraphy, applying the method of correlation using high frequency cycle, according to stratigraphic contact relations, depositional sequence or cycle, lithological association, and so on, determine the marker bed, and chose standard wells to build comprehensive columnar sections to divide Chang8oil-bearing formation, on the basis of which the single layers in skeleton well profiles are correlated in all region. Chang8oil-bearing formation is divided into Chang81and Chang82sand group, the former is subdivided into Chang811,Chang812and Chang813from top to bottom, and the later is subdivided into Chang821, Chang822from top to bottom.
     2. Sedimentary facies analysis
     On the basis of core observation and microsection appraisal, combing the logging data, the sedimentary facies of Chang8oil-bearing formation is analyzed in key wells. Together with the electrofacies and sand content analysis, with the method of highlighting underwater distributary channel, determine the Section and plane distribution characteristics of sedimentary microfacies in each layer.
     The delta front subfacies and prodelta subfacies of braided river delta is developed in Chang8oil-bearing formation, the former is mainly underwater distributary channel microfacies and underwater distributary interchannel microfacies with secondary estuary dam microfacies, and the later is divided into prodelta microfacies.
     The types of sand bodies in delta front are mainly cutting river, stack river, isolated river dam, river, river dam and isolated dam, among which the cutting river is best sand body for permeability and accumulation with thick and widely distributed sand body.
     Underwater distributary channel is the main microfacies to accumulate the oil, in which in each layer the average ratio of the total thickness of oil layers to the total thickness of oil layers in researched area is0.889.
     3. Diagenetic facies analysis
     Based on core observation, thin section identification and mercury injection analysis and so on, the author analyzes lithologic characteristics, pore types and pore throat combination of Chang8oil-bearing formation's reservoirs, determines the types and phases of diagenesis and the evolution history of porosity, groups the types of diagenesis, analyzes the distribution characteristics in single well, vertically and horizontally, and evaluates the diagenetic facies in different layers and regions.
     The lithology of Chang8reservoir is mainly fine-medium grained, very fine-fine grained feldspar lithic sandstone, mainly composed of diagenetic minerals with low compositional and textural maturity. The content of diagenetic mineral is18.5%, and the matrix only1.6%. The compositions of diagenetic mineral are mainly authigenic chlorite and calcite with the content of5.7%and5.1%respectively. The visible pores in sandstone are mainly intergranular pores with secondary feldspar dissolved pores, and micropores are mainly distributed in matrix and cement. The content of intergranular pores is1.6%, which mainly distribute in sandstones composed of chlorite cementation with thick single layer. The pore throat combination in sandstone is mainly mesoporous-micro throat type. The visible pores are commonly tetrahedron and polyhedron surrounded by cement, and the throats are flake-bending sheet interspace among grains (open width μm<1). The micropores are pores and bundle shape throats.
     The sandstone has undergone many kinds of diagenesis dominated by compaction pressure solution and cementation, and is in the substage A2of stage A of mesogenetic stage now. The order of different kinds of diagenesis is roughly compaction and pressolution-early calcite cementation-chlorite cementation-siliceous cementation-kaolinite cementation-middle calcite cementation-feldspar increase-illite cementing-corrosion-authigenic quartz filling.
     The initial porosity of sandstone is30~37%, but8.3~17.2%in place now. During the diagenetic process, the reduced porosity due to compaction and pressolution is1.3~20.4%, the reduced porosity due to cementation is3.3~19.5%, and the increased porosity due to dissolution is0.2~2.5%.
     Seven types of diagenetic facies have been grouped in the sandstone, including early cementation, compaction and pressolution-micropores, compaction and cementation-micropores, chlorite cementation-intergranular micropores, corrosion-intergranular micropores, chlorite cementation-intergranular pores, and corrosion-dissolution and intergranular pores. Chlorite cementation-intergranular micropores and chlorite cementation-intergranular pores are favorable diagenetic facies due to good reservior properties and wide distribution (distribution frequency>10%), corrosion-dissolution and intergranular pores and corrosion-intergranular micropores are relatively favorable diagenetic facies with distribution frequency4%, and the type of compaction and cementation-micropores is adverse diagenetic facies with bad reservoir properties and wide distribution (distribution frequency64.5%).
     4. Analysis of reservoir heterogeneity
     Based on the characteristics of pressure mercury curve, the Chang8reservoir can be divided into3types and6sub-types. The main feature of type1reservoir is low threshold pressure and relatively high permeability, with the porosity above10%and permeability above lmd. According to the distribution feature, type1can be divided into poorly sorted and well sorted sub-types. The main feature of type2reservoir is medium threshold pressure and permeability, with the porosity8%-10%and the permeability0.3-1mD. According to threshold pressure and distribution feature, type2can be divided into lower threshold pressure, well sorted and higher threshold pressure, well sorted sub-types. The main feature of type3is high threshold pressure and low permeability, with the porosity below10%and permeability below0.3mD. According to threshold pressure, permeability and sorting type, type3can be divided into high threshold pressure, low peameability, well sorted and very high threshold pressure, very low permeability, poorly sorted sub-types.
     The result of sensitivity report revealed that the Chang8reservoir are weak velocity sensitivity, weak-no water sensitivity, weak-no salinity sensitivity, strong-very strong soil acid sensitivity and medium-weak hydrochloric acid sensitivity.
     From the studies of the variation of sandstone grain size, grain sequence and physical property in single sand layer, the studies of interlayer distribution feature and the studies of the vertical variation of permeability, it was indicated that lithology has certain control function to physical property, but it is not the only control factor.
     The statistic anylysis of interlayer varation and heterogeneity coefficient of permeability from28wells indicate that the varation coefficient has the feature of double peaks, within which weak heterogeneity and strong heterogeneity make a high percentage, and the heterogeneity coefficient has the feature of single peak, within which weak heterogeneity makes a high percentage. Generally speaking, the interlayer heterogeneity of Chang8reservoir is not obvious.
     Using the constructed flow unit discrimination function, the Chang8reservoir can be divided into A, B, C and D4types, in which type A is confined to certain area and isolately distributed, type B and C are mainly distributed along with river channel, type D are mainly distributed at the edge of river channel.
     5. Comprehensive Reservoir Evaluation
     An evaluation system and evaluation process of0.3mD-low-permeability reservoir is set up, suitable for research area and even the whole Ordos Basin. Physical parameter is the key parameter, lithologic parameter and oiliness are important parameters, and pore structure is a reference data. Hereby the C-8sandstone reservoir of the research area is divided into5kinds:Class Ⅰ reservoir (super-low permeability reservoir) is the best reservoir, Class Ⅱ reservoir (Class Ⅰ ultralow permeability reservoir) is favorable reservoir, Class Ⅲ reservoir (Class Ⅱ ultralow permeability reservoir) is comparatively favorable reservoir, Class Ⅳ reservoir (Class Ⅲ ultralow permeability reservoir) is unfavorable reservoir and Class Ⅴ reservoir is useless reservoir.
     The planar distribution of Reservoir of the research area is controlled by sedimentary facies zone. The horizons of ultralow permeability reservoirs grow fixedly, and the heterogeneity is strong, thus different kinds of sandstone formations distribute and superpose. In the longitudinal direction large-thickness subagueous distributary channel sandstone have stronger inheritance in small layers. Along the flow direction, the extended distance of sand bodies is relatively long, constituting the main reservoirs. Along the vertical flow direction, the sandbody present lenticular and the extended distance of sand bodies is relatively near. Different kinds of reservoirs distribute in ring zones on the plane. Class Ⅰ reservoir is located in the kern of the host sand body. Secondary reservoirs surround Class Ⅰ reservoir successively. The good reservoirs of the east Gansu Province is concentrated in Chang811and Chang822generally and Chang811is better than Chang822. Secondly, Chang812is better than Chang821and Chang812is better than Chang823.
     After clarifying the planar distribution and the vertical distribution of different kinds of reservoirs, the reserve evaluation of different kinds of reservoirs is analyzed. The reserve of different small layers and different kinds of reservoirs is calculated. In the east Gansu Province the total oil and gas reserves of Chang8are44963.58×104t. The oil and gas reserves of Class Ⅰ reservoir is996.88×104t, account for2.22%of the total reserve. The oil and gas reserves of Class Ⅱ reservoir is4440.61×104t, account for9.88%of the total reserve. The oil and gas reserves of Class Ⅲreservoir is21022.49×104t, account for46.75%of the total reserve. The oil and gas reserves of Class Ⅳ reservoir is18533.6×104t, account for41.22%of the total reserve. The oil and gas reserves of Class Ⅲ reservoir and Class Ⅳreservoir is account for87.97%of the total reserves, which is the main oil and gas development object.
引文
[1]邹才能,陶士振,谷志东.中国低丰度大型岩性油气田形成条件和分布规律[J],地质学报,2006,80(11):1739-1753
    [2]罗蛰潭,王允诚.油气储集层的孔隙结构[M].1986,北京:科学出版社
    [3]李道品,罗迪强,刘雨芬.低渗透油田概念及我国储量分布状况[J].低渗透油气田,1996,1(1):1-7
    [4]唐曾熊.油气藏的开发分类及描述[M].1994,北京:石油工业出版社
    [5]李道品,罗迪强,刘雨芬.低渗透砂岩油田开发[M].1997,北京:石油工业出版社
    [6]中华人民共和国石油天然气行业标准[S].1997,SY/T6285
    [7]王允诚.油气储层评价[M].1999,北京:石油工业出版社
    [8]王允诚.油气储层地质学[M].2008,北京:地质出版社
    [9]王多云,郑希民,李风杰,等.低孔渗油气富集区优质储层形成条件及相关问题[J].天然气地球科学,2003,14(2):87-91
    [10]杨晓萍,赵文智,邹才能,等.低渗透储层成因机理及优质储层形成与分布[J].石油学报,2007,28(4):57-61
    [11]肖芝华,钟宁宁,赵占银,等.低渗透油藏“甜点”成藏模式及主控因素分析—以松辽盆地南部扶杨油层为例[J].岩性油气藏,2008,20(4):53-58
    [12]杨晓萍,赵文智,邹才能,等.川中气田与苏里格气田“甜点”储层对比研究[J].天然气工业,2007,27(1):4-7
    [13]李会军,吴泰然,马宗晋,等.苏里格气田优质储层的控制因素天然气工业[J].2004,24(8):12-16
    [14]李会军,张文才,朱雷.苏里格气田优质储层控制因素[J].天然气工业,2007,27(12):16-18
    [15]兰朝利,何顺利,张君峰,等.苏里格气田储层“甜点”控制因素探讨[J].西安石油大学学报(自然科学版),2007,22(1):45-49
    [16]吕强,赵俊兴,朱平,等.苏里格气田西部山1段储层特征及影响因素[J].天然气工业,2009,29(3):13-16
    [17]高星,陈洪德,朱平,等.苏里格气田西部盒8段储层成岩作用及其演化[J].天然气工业,2009,29(3):17-20
    [18]刘锐娥,龙利平,肖红平,等.鄂尔多斯盆地中东部下二叠统山西组2段优质储层主控因素探讨[J].西安石油大学学报(自然科学版),2010,25(2):26-29
    [19]王琪,禚喜准,陈国俊等.鄂尔多斯西部长6砂岩成岩演化与优质储层石油学报[J].2005,26(5):17-23
    [20]吕正祥,刘四兵.川西须家河组超致密砂岩成岩作用与相对优质储层形成机制岩石学报[J].2009,25(10):73-83
    [21]钟广法,邬宁芬.成岩岩相分析:一种全新的成岩非均质性研究方法[J].石油勘探与开发,1997,24(5):62-66
    [22]孙玉善,申银民,徐讯,等.应用成岩岩相分析法评价和预测非均质性储层及其含油性—以塔里木盆地哈得逊地区为例[J].沉积学报,2002,20(1):55-59
    [23]Martin K R, Baker J C, Hamilton P J, et al. Diagenesis and reservoir quality of Paleocene sandstones in the Kupe South Field, Taranaki Basin, New Zealand[J]. AAPG Bulletin,1994, 78(4):624-643
    [24]Dutton S P, Diggs T N. Evolution of porosity and permeability in the Lower Cretaceous Travis Peak Formation, East Texas [J]. AAPG Bulletin,1992,76(2):252-269
    [25]史基安,陈国俊,王琪,等.塔里木盆地西部层序地层与沉积、成岩演化[M].2001,北京:科学出版社
    [26]Braith W C J R, Rizzi G, Darke G. The geometry and petrogenesis of dolomite hydrocarbon reservoirs[M].2004, London:Geological Society Special Publication
    [27]林会喜.济阳坳陷桩海地区下古生界白云岩储集空间形成机理[J].油气地质与采收率,2006,13(3):5-7
    [28]王宝清,章贵松.鄂尔多斯盆地苏里格地区奥陶系古岩溶储层成岩作用[J].石油实验地质,2006,28(6):518-522
    [29]胡九珍,刘树根,冉启贵,等.塔东地区寒武系—下奥陶统成岩作用特征及对优质储层形成的影响[J].成都理工大学学报(自然科学版),2009,36(2):138-146
    [30]张荣虎,张惠良,沈安江,等.塔里木盆地西部石炭系生屑灰岩段沉积环境与优质储层关系[J].天然气地球科学,2007,18(4):501-508
    [31]刘树根,马永生,黄文明,等.四川盆地上震旦统灯影组储集层致密化过程研究[J].天然气地球科学,2007,18(4):485-496
    [32]刘树根,马永生,王国芝,等.四川盆地震旦系—下古生界优质储层形成与保存机理[J]. 油气地质与采收率,2008,15(1):1-5
    [33]罗静兰,魏新善,姚泾利,等.物源与沉积相对鄂尔多斯盆地北部上古生界天然气优质储层的控制[J].地质通报,2010,29(6):811-820
    [34]王峰,田景春,张锦泉,等.鄂尔多斯盆地姬塬—胡尖山地区长6油层组的物源和优质储层分布[J].天然气地球科学,2006,17(6):783-788
    [35]罗文军,李延钧,李其荣,等.致密砂岩气藏高渗透带与古构造关系探讨—以川中川南过渡带内江—大足地区上三叠统须二段致密砂岩气藏为例[J].天然气地球科学,2008,19(1):70-74
    [36]李明诚,李剑.“动力圈闭”低渗透致密储层中油气充注成藏的主要作用[J].石油学报,2010,31(5):718-722
    [37]寿建峰,郑兴平,斯春松,等.中国叠合盆地深层有利碎屑岩储层的基本类型[J].石油与天然气地质,2006(1):11-16
    [38]贝尔J著,李竞生,陈崇希译.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983
    [39]杨俊杰.低渗透率油气藏开发技术.低渗透砂岩油气层的地质特征[M].1993,北京:石油工业出版社
    [40]Kniesa J, Mann U. Depositional environment and source rock potential of Miocene strata from the central Fram Strait:Introduction of new computing tool for simulating organic facies variations [J]. Marine and Petroleum Geology,2002,19:811-828
    [41]陈程,孙义梅.砂岩孔隙结构分维及其应用网[J].沉积学报,1996,14(4):108-113
    [42]贾文瑞,李福恺,肖敬修.低渗透油田开发部署中几个问题的研究[J].石油勘探与开发,1995,22(4):47-51
    [43]Surdam R C, Boese S W, Crossey L J. The chemistry of secondary porosity[J]. AAPG Memoir, 1984,37:127-149
    [44]Surdam R C, Crossey L J, Hagen E S, et al. Organic-inorganic and sandstone diagenesis[J]. AAPG Bulletin,1989,73:1-23
    [45]黄思静,黄培培,王庆东,等.胶结作用在深埋藏砂岩孔隙保存中的意义[J].岩性油气藏,2007,19(3):7-13
    [45]Bloch S, Lander R H, Bonnell L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs:Origin and predictability [J]. A APG Bulletin,2002,86:301-328
    [46]师永民,霍进,张玉广.陆相油田开发中后期油藏精细描述[M].2004,北京:石油工业出版社
    [47]穆龙新,油藏描述技术的一些发展动向[J].石油勘探与开发,1999,26(6):42-46
    [48]宋凯,吕剑文,杜金良,等.鄂尔多斯盆地中部上三叠统延长组物源分析与三角洲沉积体系[J].古地理学报,2002,4(3):59-66
    [49]杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].2002,北京:石油工业出版社
    [50]刘新社,席胜利,付金华,等.鄂尔多斯盆地上古生界天然气生成[J].天然气工业,2000,20(6):19-25
    [51]刘新社,席胜利,周焕顺.鄂尔多斯盆地东部上古生界煤层气储层特征[J].煤田地质与勘探,2007,35(1):37-40
    [52]何自新.鄂尔多斯盆地演化与油气[M].2003,北京:石油工业出版社
    [53]李德生.重新认识鄂尔多斯盆地油气地质学[J].石油勘探与开发,2004,31(6):1-7
    [54]李鲜蓉,柳益群,高辉,等.鄂尔多斯盆地西峰油田合水地区长8层段储层特征[J].天然气勘探与开发,2008,31(4):9.12
    [55]李鲜蓉,孙国智.西峰油田合水地区长8储层特征研究[J].科技情报开发与经济,2008,18(15):142-145
    [56]王金鹏,彭仕宓,赵艳杰,等.鄂尔多斯盆地合水地区长6-8段储层成岩作用及孔隙演化[J].石油天然气学报,2008,30(2):170-174
    [57]代勇,韩永林,李继红.鄂尔多斯盆地上里塬地区长8特低渗储层孔隙结构特征[J].内蒙古石油化工,2008,(5):162-164
    [58]高辉,孙卫,宋广寿,等.鄂尔多斯盆地合水地区长8储层特低渗透成因分析与评价[J].地质科技情报,2008,27(5):71.76
    [59]陈杰,周鼎武.鄂尔多斯盆地合水地区长8储层微观非均质性的试验分析[J].中国石油大学学报(自然科学版),2010,34(4):13.18
    [60]陈杰,周鼎武.鄂尔多斯盆地合水地区长8油层组非均质性研究[J].科技导报,2010,28(17):67-71
    [61]高辉,孙卫.鄂尔多斯盆地合水地区长8储层成岩作用与有利成岩相带[J].吉林大学学报(地球科学版),2010,40(3):542-548
    [62]杜玮喧,张红玲,刘广峰,等.合水地区庄19井区长82储层现今地应力场有限元模拟[J].石油天然气学报,2010,32(5):210-213
    [63]樊婷婷,柳益群,黄进腊,等.合水地区长8储层成岩作用及对储层物性的影响[J].西北大学学报(自然科学版),2010,40(3):481-487
    [64]吴大康,吴学庆,李克华,等.合水油田长8储层敏感性及酸化适应性研究[J].长江大学学报(自然科学版),2010,7(4):72.75
    [65]朱聪,施冬,张春生,等.鄂尔多斯盆地合水地区长8段储层岩矿特征及成岩作用研究[J].长江大学学报(自然科学版),2011,8(2):50-53
    [66]卢玉杰,冯乔,赵伟,等.鄂尔多斯盆地合水地区长3油层组砂岩储集层物性差异原因分析[J].内蒙古石油化工,2011,(9):141-145
    [67]杨建鹏.鄂尔多斯盆地合水地区长4+5储层特征与低渗成因探讨[J].石油地质与工程,2011,25(2):23-26
    [68]冯杨伟,孙卫,屈红军,等.西峰油田合水区块长8岩性油藏流动单元划分[J].断块油气田,2011,18(2):223-227
    [69]王轶平,邓志刚,文志刚.上里塬地区侏罗系油藏成藏规律研究[J].石油天然气学报,2005,27(4):585-586
    [70]张云鹏,向蓉,岑学文,等.宁县-合水地区延安组煤层气开发潜力分析[J].内蒙古石油化工,2008,(10):126-129
    [71]陈永峤,汪凌霞,李伟华.合水地区长3地层油气分布控制因素分析[J].长江大学学报(自然科学版),2009,6(4):43-46
    [72]陈永峤,李伟华,汪凌霞,等.鄂尔多斯盆地合水地区延长组—延安组地层分布特征[J].地层学杂志,2011,35(1):41-48
    [73]赵重远,刘池阳.华北克拉通沉积盆地形成与演化及其油气赋存[M].1990,西安:西北大学出版社
    [74]杨俊杰.鄂尔多斯盆地西缘掩冲带构造与油气[M].1990,北京:石油工业出版社
    [75]杨俊杰.中国天然气地质学卷四(鄂尔多斯盆地)[M].1996,北京:石油工业出版社
    [76]张抗.华北断块区中生代大型沉积盆地的发育特征[J].石油天然气地质,1983,4(2):202-208
    [77]柯保嘉.晚三叠世鄂尔多斯含油气盆地分析[R].1988,中国科学院地质研究所
    [78]郑荣才.鄂尔多斯盆地靖安地区长6油层组沉积微相和储层特征研究[R].1998,长庆石油勘探开发研究院,成都理工学院
    [79]李凤杰,千多云,张庆龙,等.鄂尔多斯盆地陇东地区延长组沉积相特征与层序地层分析[J].沉积学报,2006,24(4):549-554
    [80]王峰.鄂尔多斯盆地三叠系延长组沉积、层序演化及岩性油藏特征研究[D].2007,成都理工大学博士位论文
    [81]付金华,郭正权,邓秀芹.鄂尔多斯盆地西南地区上三叠统延长组沉积相及石油地质意义[J].古地理学报,2005,7(1):34-44
    [82]成都地质学院陕北队.碎屑岩(物)粒度分析及其应用[M].1976,北京:地质出版社
    [83]黄思静,谢连文,张萌,等.中国三叠系陆相砂岩自生绿泥石的形成机制及其与储层孔隙保存的关系[J].成都理工大学学报(自然科学版),2004,31(3):273-281
    [84]郑浚茂,庞明.碎屑储集岩的成岩作用研究[M].1989,武汉:中国地质大学出版社
    [85]谢渊,王剑,刘家铎,等.鄂尔多斯盆地东南部延长组湖盆致密砂岩储层层序地层与油气勘探[M].2004,北京:地质出版社
    [86]刘孟慧,赵澄林.油气储层研究进展与展望[J].石油大学学报(自然科学版),1991,15(3):115-124
    [87]罗平,裘怿楠,贾爱林,等.中国油气储层地质研究面临的挑战和发展方向[J].沉积学报,2003,21(1):142-147
    [88]应风祥,罗平,何东博.中国含油气瓮地碎屑岩储集层成岩作用与成岩数值模拟[J].2004,北京:石油工业出版社
    [89]杨秋莲,李爱琴,孙燕妮,等.超低渗透储层分类方法探讨[J].岩性油气藏,2007,19(4):51-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700