供体抗原特异性CD4~+CD25~+调节性T细胞对大鼠移植肾慢性排斥反应作用效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
〔背景〕目前,随着对调节性T细胞(Regulatory T cells,Treg)免疫学特性和功能特点的深入研究,以及调控同种抗原免疫反应特性的深入了解。移植界学者运用CD4+CD25+调节性T细胞作为临床器官移植治疗的新策略已成为移植免疫研究中的热点。CD4+CD25+调节性T细胞可以通过分泌调节性细胞因子(如IL-10、TGF-β1)或者通过抑制树突状细胞成熟等方式参与免疫调节。体外实验表明,CD4+CD25+Treg细胞通过细胞接触机制以及分泌IL-10的方式对效应性T细胞产生抑制作用,其中以通过分泌IL-10的方式作用为著;并以通过细胞接触机制直接对致敏B淋巴细胞产生抑制作用,降低抗体的分泌水平。可见,CD4+CD25+调节性T细胞对机体细胞免疫和体液免疫方面均有直接的调节作用。进而为CD4+CD25+调节性T细胞作为诱导移植免疫耐受的工具细胞奠定了较为坚实的理论基础。
     〔目的〕我们在建立大鼠肾移植慢性排斥反应动物模型的基础上,体外分选、富集受体源性CD4+CD25+调节性T细胞并诱导获得供体抗原特异性,继而在移植受者体内应用。利用供体抗原特异性CD4+CD25+调节性T细胞下调效应T淋巴细胞和致敏B淋巴细胞对移植肾脏免疫应答的作用,获得稳定的移植免疫耐受,以对抗肾移植术后慢性排斥反应的启动和续贯进行,从而防止移植肾脏慢性功能损坏。为推动肾移植术后慢性排斥反应的深入研究和对开发利用CD4+CD25+调节性T细胞作为介导其他实体器官移植免疫耐受的临床应用工具细胞提供理论和实验依据。
     〔方法〕
     1、构建大鼠肾移植慢性排斥反应动物模型。选择清洁级封闭群SD及Wistar大鼠分别为供受体构建大鼠肾移植动物模型,通过监测血肌酐水平、组织病理分析、存活状况分析以确定移植肾慢性排斥反应获得证据。同时,应用内支架法进行移植肾静脉原位端端吻合、应用包埋法进行尿路重建以改进模型制作手术方案。
     2、分选供体抗原特异性CD4+CD25+调节性T细胞。受体大鼠脾脏细胞同供体移植肾组织混合培养;分离获取单个核细胞;应用磁板法分选CD4+CD25+调节性T细胞,流式细胞学检测目的细胞纯度。CD4+CD25+调节性T细胞供体抗原特异性诱导。将分选后的CD4+CD25+调节性T细胞分别等数量加入SD同Wistar大鼠脾细胞悬液混合体系(测定组1)和BN同Wistar大鼠脾细胞悬液混合体系(测定组2)。同时,以Wistar大鼠脾细胞悬液为阴性对照、以SD同Wistar大鼠脾细胞悬液混合体系为阳性对照组,按MTT法常规检测各组吸光度OD值,观察其对两个体系的抑制效率,证实分选之CD4+CD25+调节性T细胞获得抗原特异性。
     3、供体抗原特异性CD4+CD25+调节性T细胞在体应用的初步量效关系分析。根据不同数量(2X105、5X105、1X106、2X106)供体抗原特异性CD4+CD25+调节性T细胞在肾移植术中单剂量尾静脉注射分为I、II、III、IV四组(ni= 6),并以未注射组(n=6)为对照。移植肾脏存活状况分析;术后血肌酐(Cr)水平监测;移植肾脏病理检查,按照Banff Schema标准进行诊断,并根据Watanabe的方法进行半定量评分。术后第4天,MTT法检测受体脾细胞对供体抗原刺激的反应。以雌性SD、Wistar大鼠分别为供受体构建异体肾移植模型,体外分选雄性Wistar大鼠脾脏CD4+CD25+调节性T细胞并获得雌性SD大鼠供体抗原特异性,肾移植术中尾静脉注射入受体内应用。PCR法检测受者体内Y染色体基因表达,以确定供体抗原特异性CD4+CD25+调节性T细胞在体应用组织分布状况并初步推算衰竭周期。
     4、CD4+CD25+Treg细胞在体应用对移植肾慢性排斥反应的效能评价。以SD、Wister大鼠分别为供、受体建立同种异体肾移植慢性排斥反应动物模型;受体脾细胞悬液同供体肾组织抗原孵育培养,诱导获得对供体抗原的特异性;采用MACS法分选具有供体抗原特异性的CD4+CD25+T细胞,FACS流式细胞法检测分选的CD4+CD25+T细胞及CD4+CD25+Treg细胞纯度;获得之供体抗原特异性CD4+CD25+Treg细胞于同种异体肾移植术后2、4、6、8、10周,分别经尾静脉注射入受者体内(实验组,n=12),选取未注射组为对照(n=12)。观察两组移植肾脏存活时间;术后第10、40、80天MTT法检测比较两组受体脾细胞对供体抗原刺激反应程度;术后第10、20、40、60、80天分别监测各组血肌酐水平。
     〔结果〕
     1、进行大鼠肾移植手术成功率91.7%;慢性排斥反应动物模型制作成功率77.8%。平均存活时间为A组:(67.00±20.29)天;B组: (8.43±1.23)天;C组:(66.22±11.89)天。
     2、FACS流式细胞法检测MACS磁珠双阳性分选法能够成功分选出CD4+ CD25+调节性T细胞,分选平均纯度达到79.2%±2.8% ,分选细胞活力为91.3%±3.4%。MTT法测定各组OD值,通过公式I计算测定组1、2抑制效率(IR)分别为75.7%及5.4% ,两者间有显著性差异,证明CD4+CD25+调节性T细胞对供体抗原具有特异性。MACS磁珠双阳性分选法能够成功分选出CD4+ CD25+调节性T细胞,分选平均纯度达到79.2%±2.8% ,分选细胞活力为91.3%±3.4%。
     3、术后大鼠III组平均存活时间最长(31.4±4.6)天,II组次之(23.7±5.1 )天,IV组为(19.4±6.8)天,I组为(18.8±5.7)天,而对照组平均存活时间最短(11.7±6.2)天。III组同其余各组间均有显著性差异(P<0.05)。术后对照组动物均死于明显的急性排斥反应,而2X106组则有8例死于感染并发症。CD4+CD25+Treg细胞在体应用后呈逐渐衰减状态,至14天左右基本消失基因表达。
     4、治疗组移植肾存活时间为(98.83±6.66)d,显著长于对照组的(78.25±4.71)d,组间有显著性差异(P<0.05);术后第40、80天治疗组脾细胞对供体抗原刺激反应程度均明显低于对照组,两组间有显著性差异(P<0.05)。术后20、40、60、80天对照组血肌酐指标明显高于治疗组,同治疗组间有显著性差异(P<0.05)。
     〔结论〕
     1、应用文献方法及手术方案改进可成功构建大鼠肾移植慢性排斥反应动物模型。移植术后8周(58天)最早获得轻度慢性排斥反应病理证据,术后10周(75天)获得较为典型慢性排斥反应病理证据。
     2、体外分选获得的Treg细胞可成功获得供体抗原特异性,为Treg细胞的在体应用及保证其生物学特性的稳定发挥奠定了有力的基础。
     3、低剂量的供体抗原特异性CD4+CD25+Treg细胞在体应用不能够获得有效的免疫耐受,而过高剂量的应用则明显增加术后合并感染的危险性。1X106剂量组为安全有效的应用剂量,初步推断CD4+CD25+Treg细胞在体应用补给周期为2周左右。
     4、供体抗原特异性CD4+CD25+Treg细胞可特异性抑制受体供体抗原的免疫反应,有效延缓了移植肾慢性排斥反应的发生。
Background
     In decades,inducing transplantation immune tolerance,a more attractive method of inducing graft acceptance through the recipient immune response into accepting the transplanted organ,has been the hot point in region of conquering immunology rejection after allograft or exnograft transplantation. The induction and maintenance of immune tolerance to transplanted tissues constitute an active process involving multiple mechanisms that work cooperatively to prevent graft rejection. These mechanisms are similar to inherent tolerance toward self antigens and have a requirement for active immunoregulation that promotes specific unresponsiveness to donor alloantigens.These mechanisms include T cell depletion through activation-induced cell death, "ignorance" of self antigens and the induction of T cell anergy.While these mechanisms are clearly important in the maintenance of self tolerance, they are by themselves not sufficient, as there is also a need for active suppression of autoreactive T cells by Tregs Although initial characterization of these Treg subsets defined their role in the maintenance of tolerance to self, it is now clear that CD4+CD25+Treg cells play an important role in suppressing immune responses directed against alloantigens expressed on transplanted organs and tissues.
     CD4+CD25+Treg cells have the potent suppressive effect not only on responder T cells either directly via cell contract or secretion of IL-10 and TGF-β1 or alternatively by influencing the stimulating APC but also on B cell Ig response directly via cell contact. Accordingly, CD4+CD25+Treg cells had been look on as effctive tool cells in region of transplantation and autoimmune diseases recently.So it is very meaningful to study the functions of CD4+CD25+Treg cells in vivo.
     Objective
     1. To establish the chronic rejection animal models of kidney transplantation in rats according to the conference,and even to find new ways to enhance the achievement ratio of operation and prolong the survival rate of models.
     2. To achieve the donor antigenic specificity CD4+CD25+Treg cells in vitro.
     3. To investigate the dose-effect relationship of donor antigenic specificity CD4+CD25+Treg cells on survival of rat kidney allograft.
     4. To study the effects of donator antigenic specificity CD4+CD25+Treg cells on the inducing immune tolerance of transplanted kidney in rats.
     Methods
     1、Allograft kidney transplantation animal models were established with SD rats as donors ,while Wister rats as recepters.
     2、CD4+CD25+ T cells were separated from Wister rats’spleens by way of MACS and induced phenotype of donor antigenic specificity in vitro ;
     3、According to the quantities of prepared CD4+CD25+ T cells inject through tail vein in kidney transplantation , models were devided into four experiment groups : 2X105(groupI)、5X105(groupII)、1X106(groupIII)、2X106(groupIV)(ni=12).The models which had no injection as controls(n=12);Analyses the survival condition of transplanted kidney after kidney transplantation;The level of blood serum creatinine were checked and transplanted kidney histopathology were undertaken at day 4、day 9 and day 15.The results of histopathology were evaluated according to the standard of Banff Schema and gain semi-quantitative scores by way of Watanabe.The reaction indexes of receptor spleen cells to the donor antigens were checken by way of MTT at day 15.
     4、The treatment group(n=12) moulds were injected CD4+CD25+Treg cells through tail vein at 2,4,6,8,10 weeks after allograft kidney transplantation ,while the controls(n=12) without injection.To observe the mean survival time .To compare the reaction of receptor spleen cells to the donor antigens by way of MTT on day 10, day 40, day 80 postoperative .To detect the level of blood serum creatinine(Cr) on day 10,day 20,day 40,day 60 and day 80 postoperative.
     Results
     1、The achievement ratio of building allograft kidney transplantation models was 91.7%,while it was 77.8% in harvesting chronic rejection models.The mean survival time of chronic rejection models was (66.22±11.89)d.
     2、CD4+CD25+ Regulatory T Cell( Treg) can be successfully classified by the MACS and the average classifying purity could reach 79.2%±2.8% and the activity of classified cell could be higher than 90 %. There are significant difference in the inhibited rate(IR) between the experimental group I and group II. and we could tell the CD4+CD25+Treg cells isolated owed the phenotype of donor antigenic specificity in vitro.
     3、The mean survival time of transplanted kidneys was the highest in group 1X106[(31.4±4.6)d]and lowest in controls[(11.7±6.2)d]. Significant diviation was found between groupIII and controls in level of serum creatinine(P<0.05)at day 4、day 9 and day 15; Significant diviation was found between controls with groupIII(P<0.05)in semi-quantitative scores of histopathology.The reaction index of models’spleen cells co-cultivate with donor antigen had significant diviation between controls with groupIIIand groupIV(P<0.05).
     4、Compared with that in the control,the survival time of transplanted kidney in treatment group was prolonged significantly (P<0.05).There was a significant difference between treatment group with controls in responsing of receptors’spleen cells to donor antigen on day 40 and 80 postoperative (P<0.05). In controls,the level of Cr was significant higher than treatment group on day 20, day 40, day 60 and day 80 postoperative(P<0.05).
     Conclusion
     1、Since the slight and the typical pathologic evdience of chronic rejection had been harvested in 8 and 10 weeks after kidney transplantation,can we confirm the sucesses of construction allograft chronic rejection animal modles.
     2、It is the optimized method for separating the CD4+CD25+Treg cells by way of MACS,and the tool cells could achieved donor antigenic specificity in vitro.
     3、It can be tentative confirmation that low quantities of CD4+CD25+Treg cells can not prevent the early rejection effectively while the high amount of CD4+CD25+Treg cells will lead to high risk of infection. 1X106 should be the right single dosage in vivo.The tool cells should be injected every two weeks.
     4、Donor antigenic specificity CD4+CD25+Treg cells can specifically suppress recipient immune response to donor antigen and prolong the survival of transplanted kidney significantly.
引文
[1]. Wilson JL , Proud GR , John LR , et al. Renal allograft rejection. Transplantation,1995:59(1):91-97.
    [2]. Fung JJ,Thomson AW,Pinna A,et al.State of immunosuppressive agents in organ transplantation. Transplantation proc,1992:24(6):2372-2374.
    [3]. Serdar Yimaz,Asci Yimaz,et al.Chronic renal allograft rejection can be predicted by area under the serum creatinine versus time curve.Kidney Int,1995;48:251-263.
    [4]. IshimuraT,FujisawaM,HiguchiA,etal.Transforming growth factor-beta1 expression in early biopsy specimen predicts longterm graft function following pediatric renal transplantation Clin Transplant,2001,15:1852191.
    [5]. Heer ED,Davidoff AE,Wal AV,et al. Chronic renal allograft rejection in the rat .Lab Investigation, 1994;70(4):494-502.
    [6]. NL, Tilney,et al. Thoughts on the immunobiology of chronic allograft rejection. Transplantation Proceedings,1995;27:2123
    [7]. Eevavon Willeberand,Anu Soots,et al.In situ effector mechanisms in rat kidney allograft reiection . Cellular Immuology, 1974; 46: 309.12-14.
    [8]. Dimeny E,Fellstrom B,Larsson E,et al.Can chronic vascular rejection of a renal transplant db predicted?Transplantation Proc,1995;27(1):881-883.
    [9]. Halloran PF. Racusen LC, Solez K ,et al. Renal injury and preservation in transplantation. Kidney transplant rejection, 1998; 3:149–176.
    [10]. Randhawa PS, Finkelstein S, Scantlebury V, et al. Human polyoma virus-associated interstitial nephritis in the allograft kidney. Transplantation 1999; 67:103–109.
    [11]. weber M, Deng SP, Olthoff K, et al. Organ transplantation in the twenty-first century[J].Tech Adv Urol, 1998, 25(1): 51-56.
    [12]. GudmundSDottir H. The road toward transplantation tolerance. Transplant-Proc. 2003; 35(2): 758-759.
    [13]. Gavin MA,Clarke SR,Negrou E,et al.Homeostasis and anergy of CD4+CD25+ suppressor T cells in vitro.Nature Immunology, 2002; 3(1): 33-41.
    [14]. Margenthaler JA, Kataoka M, Flye MW, et al. Donor-specific antigen transfusion-mediated skin-graft tolerance results from the peripheral deletionofdonor-reactive CD8+ T cells. Transplantation. 2003; 75(12): 2119-2127.
    [15]. Billingham RE,Brent L,Medawar PB, Actively acquired tolerance of foreign cells. Nature.1953;172:603-606.
    [16]. Mottram PL, Murray-Segal LJ, Han W, et al. Remission and pancreas isograft survival in recent onset diabetic NOD mice after treatment with low-dose anti-CD3 monoclonal antibodies. Transplant-Immunol. 2002;
    [17]. Toussaint C, Vienne A, Pauw LD, et al. Combined liver-kidney transplantation in primaryhyperoxaluria type I. bone histopathology and oxalate body content. Transplantation.1995; 59: 1700-1704 10(1): 63-72.
    [18]. Ugurulu MM, Griffin MD, OBrien T, et al. The effects of CTLA-4Ig on acute lungallograft rejection: a comparison of intrabronchial gene therapy withsystemicadministration of protein. Transplantation. 2001; 71(12): 1867-1871.
    [19]. Kumar V, Sercarz E, Zhang J, Cohen I. T-cell vaccination: from basics to the clinic.Trends Immunol. 2001; 22(10): 539-540.
    [20]. Kirk AD,Tadaki DK,Celmiker A,et al. Transplantation, 2001, 72: 377-84.
    [21]. Calne R,Friend P,Moffatt S,et al.Lancet,1998,351:1701.
    [22]. Kirk AD,Hale DA,Manoon RB,et al.transplantation,2003,7:6120.
    [23]. Sharabi Y,Sachs DH.J Exp Med, 1989,169:493-502.
    [24]. Wekerle T,Sykes M, Transplantation,1999,68:459-467.
    [25]. Anne O’Garral, Paulo Vieira. Regulatory T cells and mechanisms of immune system control.Nature Medicine,2004;10(8):801-805.
    [26]. Rossini AA,Mordes JP,Greiner DL,The pathogenesis of autoimmune diabetes mellitus,Curr.Opin.Immunol.1989;2:598-603.
    [27]. Saddon B,Mason D,Peripheral autoantigen induces regulator T cells that prevent autoimmunity, J. Exp. Med. 1999; 189:877-882.
    [28]. Whalen BJ,Greiner DL,Mordes JP, et al.Adoptive transfer of autoimmune diabetes mellitus to athymic rats:synergy of CD4+ and CD8+ T cells and prevention by RT6+T cells ,J.Autoimmune.1994;7:819-831.
    [29].郑峻松,吴军,罗高兴,易绍萱。CD4+CD25+Treg细胞调节性T细胞的作用机制分析。第三军医大学学报,2003;25(21):1881-1884.
    [30]. Edinger M, Hoffmann P, Ermann J,et al.CD4+CD25+ regulatory T cells preservegraft-Versus-tumor activity while inhibiting graft-versus-disease after bone marrow transplantation, Nature Medicine,2003;9(9):1144-1150.
    [31]. Yin JL,Pilmore HL,Yan YQ,et al.Expression of growth arrest-specific gene 6 and its receptor in a rat model of chronic renal transplant rejection [J].Transplantation,2002,73(4):657-660.
    [32]. Chang SH, Park HK,Eryilmaz R,et al.A new alloantigen-independent control for chronic allograft nephropathy rat models. [J]Surgery. 2005; 128(1): 50-4.
    [33]. Cornell LD; Colvin RB .Chronic allograft nephropathy. Curr-Opin- Nephrol -Hypertens.2005 May; 14(3): 229-34.
    [34]. Park YH; Min SK; Lee JN; Lee HH .et al .Risk factors on graft survival of living donor kidney transplantation. Transplant-Proc. 2004 Sep; 36(7): 2023-5.
    [35]. Andres,-A; Mazuecos,-A; Garcia-Garcia-Doncel,-A .A disproportionately greater body weight of the recipient in regards to the donor causes chronic graft nephropathy. A study of paired kidneys .Nephrol-Dial-Transplant. 2004 Jun; 19 Suppl 3: iii21-5.
    [36]. Carrel A.The transplantation of organs.N Y Med J,1914;99:389.
    [37]. Fisher B,Lee S.Microvascular surgical technique in research,with special reference to renal transplantation in the rat[J]. Surgery, 1965, 58(5): 904-914.
    [38]. Lee S.An improved technique of renal transplantation in the rat [J].Surgery,1967,61(5):771-773.
    [39]. Kamada N, A description of cuff techniques for renal transplantation in the rat use in study of tolerance induction during Combined liver grafting. Transpla -ntation,1985;35:93.
    [40]. Fabre J,Mueller EA.Renal transplantation in the rat: Details of technique.The Australian and New Zealand Journal of surgery, 1971;41:69.
    [41]. Silber SJ,Crudop J.Kidney transplantation in inbredrats[J]. AmJSurg, 1973,125(5):551-553.
    [42].陈金芝,夏穗生.大白鼠异体肾移植术[J].中华器官移植杂志1981, 2(2): 72-76.
    [43]. Chin J, Zhong R, Duff J, et al. Microsurgical renal transplant models in rats: a comparison of four anastomotic techniques[J]. TransplantProc, 1989,21:3351.
    [44].黄赤兵,吴军,罗高兴,等,一种改良的静脉吻合技术用于大鼠肾移植模型的建立,重庆医学2002,31(8):666-667.
    [45]. Bach JF.Regulatory T cells under scrutiny.Nature Rev. Immunol. 2003;3:189-198.
    [46]. [Masaki H,Cherry IK,Masanori N,et al.IL-10 is required for regulatory T cells to mediate tolerance to alloantigen in vivo.Journal of Immunol,2001,166(9):3789-3796.
    [47]. Feng NH, Wu HF, Wu J,et al.Immunology Mechanism of CD4+CD25+ T regulatory cells acting on effector T cells. Journal of Nanjing Medical University. -2004,18(4):178-182.
    [48]. Hyung WL,Peter H,Allison H,et al.Cutting edge:direct suppression of B cells by CD4+CD25+ regulatory T cells.Journal of Immunology, 2005,175:4180-4183.
    [49]. Racusen LC,Solez K,Colvin RB.The Banff 97 working classification of renal allograft pathology.Kidney Int,1999,55:713.
    [50]. Racusen LC,Solez K,Colvin RB.The Banff 97 working classification of renal allograft pathology.Kidney Int,1999,55:713.
    [51]. Watanabe Y,Yoshimura R,Wada S,et al.Expression ofnonmuscle myosin heavy chain B(Smemb) in rat allogeneic kidney transplantation. Nephron, 2002, 91: 316-323.
    [52]. Li XC, Strom TB,Turka LA,et al.T cell death and transplantation tolerance. Immunity, 2001, 14:407-416.
    [53]. Anne O’Garral, Paulo Vieira. Regulatory T cells and mechanisms of immune system control.Nature Medicine,2004;10(8):801-805.
    [54]. Sakaguchi S.Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self.Nat Immunol,2005,6(4):345-52.
    [55]. Hara M.IL-10 is required for regulatory T cells to mediate tolerance to Alloantigens in vivo.J Immunol,2001,166:3789-3796.
    [56]. KuniyasuY.Naturally anergic and suppressive CD25(+)CD4(+) T Cells as a functionally and phenotypically distinct immunoregulatory T Cells ubpopulation.IntImmunol,2000,12:1145-1155.
    [57]. HL Pilmore,Y Yan,JM Eris,et al. Time course of upregulation of fibrogenic growth factors and cellular infilteration in a rodent model of chronic renal allograft rejection.Transplant Immunology,2002;10:245-254.
    [58]. X He,A Johnston.Early acute rejection does not affect chronic allograft nephropathy and death censored graft failure. Transplantation Proceedings,2004;36(10):2993-2996.
    [59]. Yvo WJ,Sijpkens SA,Joosten,et al.Chronic rejection in renal transplantation.Transplantation Reviews, 2003;17(3): 117-130.
    [60]. Scott HA,Laurence A,Turka, et al. Immunotherapy as a means to induce transplantation tolerance.Current Opinion in Immunology, 2002;14(5):660-665.
    [61]. YH.Park,SK.Min,JN.Lee, et al. Risk factors on graft survival of living donor kidney trsnsplantation.Transplantation Proceedings, 2004;36(7):2023-2025.
    [62]. Kathryn J.Wood,Shimon Sakaguchi.Regulatory Lymphocytes: Regulatory T cells in transplantation tolerance. Nature Reviews Tmmunology,2003;3:199-210.
    [63]. Wood K,Luo SQ,A Ahmed.Regulatory T cells:potential in organ transplantation.Transplantation,2004;77(1):6-8.
    [64].李健,黄赤兵,郑峻松,张艮甫,等.大鼠肾移植三种尿路重建术式的比较[J].重庆医学,2007; 36(3): 227-229.
    [65]. GudmundSDottir H. The road toward transplantation tolerance. Transplant-Proc. 2003; 35(2): 758-759。
    [66]. Anne O’Garral, Paulo Vieira. Regulatory T cells and mechanisms of immune system control.Nature Medicine,2004;10(8):801-805.
    [67]. Sakaguchi S.Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self.Nat Immunol,2005,6(4):345-52.
    [68]. Hara M.IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo.J Immunol,2001,166:3789-3796.
    [69]. KuniyasuY.Naturally anergic and suppressive CD25(+)CD4(+) T Cells as a functionally and phenotypically distinct immunoregulatory T Cells population.IntImmunol,2000,12:1145-1155.
    [1]. Wilson JL ,Proud GR,John LR,et al. Renal allograft rejection. Transplantation, 1995:59(1):91-97
    [2]. Fung JJ,Thomson AW,Pinna A,et al.State of immunosuppressive agents in organ transplantation. Transplantation proc,1992:24(6):2372-2374
    [3]. weber M, Deng SP, Olthoff K, et al. Organ transplantation in the twenty-first century[J].Tech Adv Urol, 1998, 25(1): 51-56
    [4]. Gudmundottir H. The road toward transplantation tolerance. Transplant-Proc. 2003; 35(2): 758-759
    [5]. Gavin MA,Clarke SR,Negrou E,et al.Homeostasis and anergy of CD4+CD25+ suppressor T cells in vitro.Nature Immunology, 2002; 3(1): 33-41.
    [6]. Margenthaler JA,Kataoka M,Flye MW,etal.Donor-specific antigen transfusion-mediated skin-graft tolerance results from the peripheral deletion ofdonor-reactive CD8+ T cells. Transplantation. 2003; 75(12): 2119-2127
    [7]. Billingham RE,Brent L,Medawar PB, Actively acquired tolerance of foreign cells. Nature.1953;172:603-606.
    [8]. Mottram PL, Murray-Segal LJ, Han W, et al. Remission and pancreas isograft survival in recent onset diabetic NOD mice after treatment with low-dose anti-CD3 monoclonal antibodies. Transplant-Immunol. 2002; 10(1): 63-72.
    [9]. Toussaint C, Vienne A, Pauw LD, et al. Combined liver-kidney transplantation in primaryhyperoxaluria type I. bone histopathology and oxalate body content. Transplantation.1995; 59: 1700-1704
    [10]. 6. Ugurulu MM, Griffin MD, OBrien T, et al. The effects of CTLA-4Ig on acute lungallograft rejection: a comparison of intrabronchial gene therapy withsystemicadministration of protein. Transplantation. 2001; 71(12): 1867-1871.
    [11]. 7. Kumar V, Sercarz E, Zhang J, Cohen I. T-cell vaccination: from basics to the clinic.Trends Immunol. 2001; 22(10): 539-540.
    [12]. Kirk AD,Tadaki DK,Celmiker A,et al. Transplantation, 2001, 72:377-84.
    [13]. Calne R,Friend P,Moffatt S,et al. Lancet, 1998,351:1701.
    [14]. Kirk AD,Hale DA,Manoon RB,et al. transplantation, 2003, 7: 6120
    [15]. Sharabi Y,Sachs DH.J Exp Med, 1989,169:493-502
    [16]. Wekerle T,Sykes M, Transplantation, 1999, 68:459-467
    [17]. HoriSetal.Science,2003,299:1057-1061
    [18]. Wood KJ, Sakaguchi S .et al. Regulatory T cells in transplantation tolerance Nat-Rev-Immuonl, 2003 Mar; 3(3): 199-210
    [19]. Bluestone JA ,Abbas ak .et.al. Natural versus adaptive regulatory T cells. Nat-Rev-Immunol, 2003 Mar; 3(3): 253-7.
    [20]. Baecher C, Brown JA, Freeman GL,Hafler DA, CD4+CD25 high regulatory cells in human peripheral blood. [J] Immunol. 2001(167):1245–1253.
    [21]. Cao D, Malmstrom V, Baecher C, et al, Isolation and functional characterization of regulatory CD25 bright CD4+ T cells from the target organ of patients with rheumatoid arthritis.[J] Eur Immunol. 33 2003(33):215–223.
    [22]. Wing K, Lindgren S, Kollberg G, et al., CD4 T cell activation by myelin oligodendrocyte glycoprotein is suppressed by adult but not cord blood CD25+ T cells.[J] Eur. Immunol. 2003(33):579–587.
    [23]. Lepault F,Gagnerault MC, Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice. [J]. Immunol. 2000(164):240–247.
    [24]. Taams LS, Smith J, Rustin MH,et al, Human anergic/suppressive CD4(+)CD25(+) T cells: a highly differentiated and apoptosis-prone population. Eur. J. Immunol. 31 (2001), pp. 1122–1131.
    [25]. [Dieckmann D, Plottner H, Berchtold S, et al, Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. [J] Exp. Med. 2001(193): 1303–1310.
    [26]. Jonuleit H, Schmitt E, Stassen M, et al, Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. [J] Exp. Med. 2001(193): 1285–1294.
    [27]. Sempowski GD ,Cross SJ .et al. CD7 and CD28 are required for murine CD4+CD25+ regulatory T cell homeostasis and prevention of thyroiditis. J Immunol,2004, Jan 15; 172(2): 787-94.
    [28]. Cobbold,-S-P; Castejon,-R; Adams,-E,et al. Induction of foxP3+ regulatory T cells inthe periphery of T cell receptor transgenic mice tolerized to transplants. J-Immunol. 2004 May 15; 172(10): 6003-10.
    [29]. Piccirillo CA,Letterio JJ, Thornton AM, et al. CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J-Exp-Med. 2002 Jul 15; 196(2): 237-46.
    [30]. Nakamura K, Kitani A; Fuss I,et al. TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol.2004,172:834.
    [31]. Peng Y,Laouar Y; Li MO,et al. TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc-Natl-Acad-Sci-U-S-A. 2004 Mar 30; 101(13): 4572-7.
    [32]. Graca L,Thompson S, Lin C Y. et al.Both CD4+CD25+ and CD4+CD25- regulatory cells mediate dominant transplant tolerance[J].Immunol,2002;168:5558-5565
    [33]. Fontenot JD,Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat-Immunol. 2003 Apr; 4(4): 330-6.
    [34]. Khattri R, Cox T, Yasayko SA.et al.An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat-Immunol. 2003 Apr; 4(4): 337-42.
    [35]. Hori S, Nomura T,Sakaguchi S,et al. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003 Feb 14; 299(5609): 1057-61
    [36]. Eggena MP, Walker LS, Nagabhushanam V, et al. Cooperative roles of CTLA-4 and regulatory T cells in tolerance to an islet cell antigen. J-Exp-Med. 2004 Jun 21; 199(12): 1725-30.
    [37]. Piccirillo CA, Shevach EM. Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J-Immunol. 2001 Aug 1; 167(3): 1137-40.
    [38]. Uraushihara,-K; Kanai,-T; Ko,-K.et al. Regulation of murine inflammatory bowel disease by CD25+ and CD25- CD4+ glucocorticoid-induced TNF receptor family-related gene+ regulatory T cells. J-Immunol. 2003 Jul 15; 171(2): 708-16.
    [39]. Tone M,Tone Y; Adams E,et al. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Proc-Natl-Acad-Sci-U-S-A. 2003 Dec 9; 100(25): 15059-64.
    [40]. Feng NH, Wu HF, Wu J,et al.Immunology Mechanism of CD4+CD25+ T regulatorycells acting on effector T cells. Journal of Nanjing Medical University.2004, 18(4): 178-182.
    [41]. Hyung WL,Peter H,Allison H,et al.Cutting edge:direct suppression of B cells by CD4+CD25+ regulatory T cells.Journal of Immunology,2005,175:4180-4183.
    [42]. Louis S,Braudeau C,Giral M,et al. Contrasting CD25hiCD4+T cells/FOXP3 patterns in chronic rejection and operational drug-free tolerance. [J]Transplantation. 2006, 81(3): 398-407

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700