基于SSSLs的QTL鉴定及抗玉米SCMV标记开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以我国优良的玉米杂交种豫玉22号的一个亲本自交系综3为供体亲本、另一个亲本自交系87-1为受体亲本,通过杂交、回交和SSR标记跟踪检测供体染色体片段,构建了以87-1为背景的综3的染色体单片段代换系群体。利用其中的部分纯合的单片段代换系材料对玉米的产量及产量相关性状进行了QTL鉴定。同时,基于玉米矮花叶病抗病“一致性”QTL区间查询了抗病基因的功能保守序列,根据抗感材料同源克隆序列的多态性开发了可用于玉米矮花叶病抗性鉴定的分子标记,进一步利用已知抗性的自交系和分离群体对新开发标记的有效性进行了验证,并建立了相应标记的高效、快速检测体系。主要结果如下:
     1、本试验获得了57份以玉米自交系87-1为背景的综3染色体单片段代换系。57个供体代换片段不均匀地分布在玉米的10条染色体上,代换片段长度在1.75~68.35cM之间,代换片段总长度为1111.45cM,平均长度为19.50cM。覆盖基因组长度为907.70cM,覆盖率为39.09%。
     2、利用获得的玉米染色体单片段代换系材料,在郑州和三亚两个试验点进行了玉米产量及产量相关性状的QTL鉴定,其中郑州点在22个单片段代换系中检出了30个QTL,三亚点在39个单片段代换系中检出了53个QTL。两个试验点检测到的玉米产量及产量相关性状的QTL总数为83个;平均每个代换片段上检出了1.73个QTL,平均每个性状检出了11.86个QTL。其中,42个QTL座位在两试验点同时检测到,占QTL座位总数的50.6%,平均每个QTL的重复检出的次数为3.23个。
     3、基于玉米Bin3.04-3.05、Bin6.00-6.01区域的抗甘蔗花叶病毒“一致性”QTL区间,寻找抗病基因的功能保守域,设计特异引物,在抗感材料中扩增保守域序列,依据序列多态性开发出抗病分子标记InDel-186和InDel-130、InDel-110,对已知抗性的102份玉米自交系、BC2F2群体[(掖478ⅹ齐319)×掖478]的379个单株及重组近交系群体(X178ⅹB73)的183个家系的标记验证结果表明,InDel-186和InDel-110为共显性标记,与甘蔗花叶病毒抗性高度相关。
Many important agronomic traits are quantitative. It is very important to accurately identify and finely map quantitative trait loci (QTL). In our experiment, a series of single segment Substitution lines (SSSLs) in an elite inbred line 87-1 gnetic background of maize was developed. QTL mapping with the SSSLs at Zhengzhou and Sanya in 2008. In this study, conserved domains of disease-resistant genes were investigated within the consensus SCMV-resistance QTL on the maize bin 6.00-6.01, and furthermore the polymorphic sequences were used to develop markers InDel-130 and InDel-110. The main results are as follows:
     1. A series of chromosome single segment substation lines was developed, included 57 SSSLs with one homogeneous donor segment and recipient background was developed. The 57 SSSLs were distributed on all 10 chromosomes unevenly. In the 57 SSSLs, the donor segment length is 1111.45 cM in total, the average lengenth was 19.50 cM , the maize coverd genome length was 907.70cM, the coverage was 39.09% of maize genome.
     2. QTL mapping of grain yield and its components with the SSSLs at Zhengzhou and Sanya in 2008. 30 QTL was detected in 22 SSSLs in Zhengzhou, and 53 QTL was detected in 39 SSSLs in Sanya, the total QTLs was 83 in two sites. The average of each chromosome was was detected with 8.3 SSSLs, each segment was 1.73, each character was 11.86. Compare the same SSSL material in two sites, .it was found that 56 QTLs was detected in the same 17 SSSLs, and 42 QTLs was found in two sites, the percentage was 75% , the average of each repeat SSSLs was 2.47.
     3. Conserved domains of disease-resistant genes were investigated within the consensus SCMV-resistance QTL on the maize bin 3.04-3.05 and bin 6.00-6.01, and furthermore the polymorphic sequences were used to develop markers InDel-186 and InDel-130, InDel-110 and susceptible marker genotypes in 102 inbred lines, It was investigated in 379 individuals of [(Ye478×Hai9-21)×Ye478] BC2F2 population and 183 lines of (X178xB73) RIL population evaluated under field condition with artificial inoculation, respectively.Furthermore, the DNA extraction, PCR amplification, and electrophoresis procedures were optimized for two markers InDel-186 and InDel-110. As a result, InDel-186、InDel-110 that was significantly associated with SCMV resistance. It was suggested that the maize breeding materials with SCMV resistance would be effectively obtained by marker-assisted selection approach with InDel-186 and InDel-110.
引文
1. AblerB S, Edwards M D, Stuber C W. Iso enzymatic identification of quantitative trait loci in crosses of elite maize inbreds.Crop Sci, 1991, 31:267-274.
    2. Agrama H A S, Moussa M E. Identification of RAPD markers tightly linked to the dwarf mosaic virus resistance gene in maize. Mydica, 1996a, 41: 205-210
    3. Agrama H A S, Moussa M E. Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica, 1996b, 91:89-97.
    4. Marsan A P, Mmonfredini G, Brandolini A, Melchinger A E, Garay G, Motto M. Identification of QTL for grain yield in an elite hybrid of maize: Repeatability of map position and effects in independent samples derived from the same population. Maydica, 1996, 41:49-57.
    5. Marsan A P, Monfredini G, Ludwig WF, Melchinger AE, Franceschini P, Pagnotto G, Motto, M. In an elite cross of maize a major quantitative trait locus controls one-fourth of the genetic variation for grain yield. Theor Appl Genet, 1995, 90:415-424.
    6. Alber B S B, Edwards M D, Stuber C W. Isoenzymatic identification of quantitative trait loci in crosses of elite maize inbreeds. Crop Science, 1991, 31:267-274.
    7. Austin D F, Lee M. Comparative mapping in F2∶3 and F6∶7 generation of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet, 1996, 92: 817-826.
    8. Austin D, Lee M. Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Sci, 1998, 38:1296-1308.
    9. Balley J, Barker G O, Sullivan H, Edwards K J, Edwards D. Mining for single nucleotide polymorphisms and insertion/deletion in maize expressed sequence tag data. Plant Physiol, 2003, 132(1):84-91
    10. Beavis W D. The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Wilkinson D B (ed). Proc 49th Ann. Corn and Sorghum Res.Conf. ASTA, Washington. 1994a, 250~266.
    11. Beavis W D, Smith O S, Grant D, Fincher R. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci, 1994b, 34:882-896.
    12. Berke T G, Rocheford T R. Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci, 1995, 35: 1542-1549
    13. Blanc G, Charcosset A, Mangin B, Gallals A, Moreau L. Connected populations for detecting quantitative trait loci and testing for epistasis:an application in maize. Theor Appl Genet, 2006, 113: 206-224.
    14. Botstein B, White L, Skolonck M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980,32(3): 314-331
    15. Brondani C, Rangel P, Brondani R, Ferreira M. QTL mapping and introgression of yield- relatedtraits from Oryza glumaepatula to cultivated rice (Oryza sativa L.) using microsatellite markers. Theor Appl Genet, 2002,104(67): 1192-1203
    16. Camp W V. Yield enhancement genes: seeds for growth. Current Opinion Biotechnology, 2005, 16(2): 147-153.
    17. Cermakova L, Sharpe A, Trick M, Bechyne M, Lydiate D. Genetic analysis of quantitative traits in brassica napus using substitution lines. The 10th International Rapeseed Congress, Canberra, Australia, 1999.
    18. Darvasi A, Winreb A, Minke V, Weller JI, Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics, 1993, 134: 943-951
    19. Austin D F, Lee M, Veldboom L R, Hallauer A R. Genetic mapping in maize with hybrid progeny across testers and generations: grain yield and grain moisture. Crop Sci, 2000, 40:30-39.
    20. Dhalowal H S, Uchimiya H. Genetic engineering for disease and pest resistance in plants. Plant Biotechnology, 1999, 16(4): 255-261.
    21. Dholakia B B, Ammiraju J S S, Singh H, Lagu M D, Rader M S, Rao V S, Dhaliwal H S, Ranjekar P K, Gupta V S. Molecular marker analysis of kernel size and shape in bread wheat. Plant Breeding, 2003,122(5): 392 - 395
    22. Doebley J, Bacigalupo A, Stec A. Inheritance of kernel weight in two maize-teosinte hybrid populations: implications for crop evolution. Hered, 1994.85:191-195.
    23. Doi K, lwata N, Yoshimura A. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of japonica rice (O.sativa L.). Rice Genet Newsl, 1997,14:39-41.
    24. Dollinger E J, Findley W R, Willams L E. Resistance inheritance to maize dwarf mosaic virus in maize (Zea mays L.). Crop Sci, 1970, 10:412-415.
    25. Dussle C M, Melchinger A E, Kuntze L, Stork A, Lübberstedt T. Molecular mapping and gene action of Scm1 and Scm2, two major QTLs contributing to SCMV resistance in maize. Plant Breed, 2000, 119: 299-303
    26. Dussle C M, Quint M, Xu M L, Melchinger A E, Lübberstedt T. Conversion of AFLP fragments tightly linked to SCMV resistance genes Scmv1 and Scmv2 into simple PCR-based markers. Theor Appl Genet, 2002, 105: 1190-1195
    27. Edwards M D, Helentjaris T, Wright S, Stuber C W. Molecular-marker-facilitated investigations of quantitative trait loci in maize:4. Analysis based on genome saturation with isozyme and restriction fragment length polymorphism markers, Theoretical And Applied Genetics, 1992, 83:765-774.
    28. Edwards M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics, 1987,116(1): 113~125.
    29. Eshed Y, Zamir D. A genomic library of Lycopersicon pennellii in L.esculentum:a tool for fine mapping of genes. Euphytica, 1994, 79:175-179
    30. Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995,14:1147-1162
    31. Goldman I L, Rocheford T R, Dudley J W. Molecular markers associated with maize kernel oil concentration in an Illinois high protein Illinois low protein cross. Crop Sci, 1994, 34: 908-915
    32. Goldman I L, Rocheford T R, Dudley J W. Quantitative trait loci influencing protein and starch concentration in the Illinois Long Term Selection maize strains. Theor Appl Genet, 1993, 87:217-224.
    33. Graham G I, Wolff D W, Stuber C W. Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Sci, 1997, 37: 1601-1610
    34. Hallauer A R, Miranda J B. Quantitative genetics in maize breeding. Ames, IA: Iowa State University, 1988.
    35. Ho J C, McCouch S R, Smith M E. Improvement of hybrid yield advanced backcross QTL analysis in elite maize. Theor Appl Genet, 2002, 105(2): 440-448.
    36. Hospital F, Charcosset A. Marker-assisted introgression of quantitative trait loci. Genetics, 1997, 147: 1469-1485
    37. Huang N, Angeles E R, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush G S. Pyramiding of bacterial blight resistance genes in rice: marker-aided selection using RFLP and PCR. Theor Appl Genet, 1997, 95:313-320.
    38. Huang N, Courtois B, Khush G S, Lin H X Wang G L Wu P Zheng K L . Association of quantitative trait loci for plant height with major dwarfing genes in rice. Heredity, 1996, 77: 130-137
    39. Hyne V, Kearsey M J, Pike D J, Snape J W. QTL analysis: unreliability and bias in estimation procedures. Mol Breed, 1995, 1:273-282
    40. Jeuken M J W, Linshout P. Future perspective of backcross inbred lines for exploitation of wild germplasm: a case study on Lactuca saligna as a donor for quantitative resistance to lettuce downy mildew. Eucarpia Leafy Vegetables. 2003., 69-74
    41. Jones M W, Redinbaugh M G, Louie R. The Mdm1 locus and maize resistance to maize dwarf mosaic virus. Plant Dis, 2007, 91: 185-190
    42. Kozumplik V, Pejic I, Senior L, Pavlina R, Graham G, Stuber C W. Molecular markers for QTL detection in segregating maize populations derived from exotic germplasm. Maydica, 1996, 41:211-217
    43. Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-181.
    44. Lander E S. The New Genomics: Global Views of Biology. Science, 1996, 274: 536 -539
    45. Lima M, Souza C, Bento D, Souza, A, Carlini-Garcia L. Mapping QTL for grain yield and plant traits in a tropical maize. Molecular Breeding, 2006, 17, (3), 227-239.
    46. Loesch P J. and Zuber M S. An inheritance study of resistance to maize mosaic virus in corn. Agron. J, 1967, 59: 423-426.
    47. Loesch P J. and Zuber M S. Inheritance of resistance to maize dwarf mosaic virus. Crop Sci, 1972, 12(3): 350-352.
    48. Louie R, Findley W R, Knoke J K, McMullen M D. Genetic basis of resistance in maize to five maize dwarf mosaic virus strains. Crop Sci, 1991, 31: 14-18
    49. Ma X Q, Tang J H, Teng W T, Yan J B, Meng Y J, Li J S. Epistatic interaction is an important genetic basis of grain yield and its components in maize. Molecular Breeding, 2007, 20: 41~51.
    50. Marsan G, Monfredini W F, Ludwig, A E, Melchinger P, Franceschini G, Pagnotto M, Motto. In an elite cross of maize a major quantitative trait locus controls one-fourth of the genetic variation for grain yield. Theor Appl Genet,1995, 90:415-424
    51. Marsan P A, Gorni C, ChittòA, Redaelli R, van Vijk R, Stam P, Motto M. Identification of QTLs for grain yield and grain-related traits of maize (Zea mays L.) using an AFLP map,different testers, and cofactor analysis. Theor Appl Genet, 2001,102:230-243
    52. McCouch S R, Chen X, Panaud O, Temnykh S, Xu Y, Cho Y G, Huang N, Ishii T, Blair M. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, 1997, 35:89-99
    53. McMullen M D, Louie R. The linkage of molecular markers to a gene controlling the symptom response in maize dwarf mosaic virus. Molecular Plant-microbe Interactions, 1989, 2(6): 309-314.
    54. Melchinger A E, Kuntze L, Gumber R K, Lubberstedt T, Fuchs E. Genetic basis of resistance to sugarcane mosaic virus in European maize germplasm. Theor Appl Genet, 1998, 96:1151-1161
    55. Melchinger A E, Utza H F, Sch?nb C C. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics, 1998, 149:383-403.
    56. Olsen M, Hood L, Cantor C, Botstein D. A common language for physical mapping of the human genome. Science, 1989, 245:1434-1435
    57. Paran I, Michelmore R W. Development of reliable PCR-based linked to downy mildew resistance genes in lettuce. Theor Appl Genet, 1993, 85:985-993
    58. Paterson A H, Deverna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci usingselected overlapping recombinant chromosomes in an interspecies cross of tomato. Genetics, 1990, 124:735-742
    59. Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics, 1991,127:181-197
    60. Paterson A H, Lander E S, Hewitt J D, Peterson S, Lincoln S E, Tanksley S D. Resolution of quantitative traits into Mendelian factors using a complete linkage map of resistance fragment length polymorphisms. Nature, 1988,335:721-726
    61. Paterson A H. Mapping genes responsible for differences in phenotype. In: Paterson A H (ed.), Genome mapping in plants. R G Landes Company, Austin. 1996,41-45
    62. Prevost A, Wilkinson M J. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet, 1999, 98: 107-112
    63. Ragot M, Sisco P H, Hoisington D A. Molecular - marker - mediated characterization of favorable exotic alleles at quantitative trait loci in maize. Crop Sci ,1995 ,35 (5) :1306-1315
    64. Ray M, Liu S-C, Paul H. Moore J E. QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane.Genome Research, 2001, 11: 2075-2084.
    65. Ribaut, J. Identification of quantitative trait loci under drought conditions in tropical maize .2. Yield components and marker-assisted selection strategies. Theor Appl Genet, 1997,94:887-896.
    66. Saghai M A, Yue Y G, Xiang Z X, Stromberg E L, RufenerSaghai G K. Identification of quantitative trait loci controlling resistance to gray leaf spot disease in maize. Theor Appl Genet, 1996, 93:539-546
    67. Schon C C, Melchinger A E, Boppenmaier J, Brunklaus-Jung E, Herrmann R G, Seitzer J F. RFLP mapping in maize: quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci, 1994, 34: 378-389
    68. Schon C C, Utz H F, Groh S, Truberg B, Openshaw S, Melchinger A E. QTL mapping based on resembling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics, 2004, 167: 485-498.
    69. Scott G E, Nelson L R. Locating genes for resistance to maize dwarf mosaic in maize seedlings by using chromosomal translocations. Crop Sci., 1971, 11: 801-803
    70. Scott G E., Rosenkranz E. A new method to determine the number of genes for resistance to maize dwarf mosaic in maize. Crop Sci, 1982, 22: 756-761.
    71. Simcox K D, McMullen M D, Louie R. Cosegregation of the maize dwarf mosaic virus resistance gene,mdm1,with the nucleolous organizer region in maize. Theor Appl Genet, 1995, 90:341-346
    72. Stuber C W, Edwards M D, Wendel J F. Molecular marker facilitated investigation of quantitative trait loci in maize: Factors influencing yield and its component traits. Crop Sci, 1987, 27: 639-648.
    73. Stuber C. Yield improvement success using marker-facilitated QTL transfer between maize lines. Abstract of Plant GenomeⅢConference, San Diego, CA, 1995
    74. Tanksley S D, Grandillo S, Fulton T M, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet, 1996, 92:213-224
    75. Tanksley S D. Mapping polygene. Annual Reviews of Genetics. 1993, 27: 205-233
    76. Tanksley S D, Medina-Filho H, Rick C M. Use of naturally occurring enzyme variation to detect and map gene controlling quantitative traits in an inter specific backcross of tomato. Heresity, 1982,49:11-25
    77. Thoday J M. Location of polygene's. Nature, 1961, 191:368-370
    78. Thomas L, Albrecht E, Melchinger, DuBle C, Vuylsteke M, Kuiper M. Relationships among early european maize inbreds: IV. Genetic diversity revealed with AFLP markers and comparison with rflp, rapd, and pedigree data. Crop Sci, 2000, 40:783 - 791.
    79. Thomsberry J M, Goodman M M, Doebley J. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286-289
    80. Tuberosa R,Salvi S,Sanguineti M C,Landi P,Maccaferri M,Conti S. Mapping QTL regulating morpho-physiological traits and yield: cage studies, shortcomings and perspectivesin drought-stressed maize. Ann Bot, 2002, 89: 941-963.
    81. Tuinstra M R, Ejeta G, Goldsbrough P B. Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet, 1997, 95: 1005-1011
    82. Weck E A, Beckman D, Mead D. Near-isogenic line localization of maize dwarf mosaic virus resistance to chromosome 6s. Maize Genetic Cooperation Newsletter, 1990, 64:99-101
    83. Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: I. grain yield and yield components. Crop Sci, 1996, 36: 1310-1319
    84. Veldboom L R, Lee M, Woodman W L. Molecular marker-facilitated studies in an elite maize population: Linkage analysis and determination of QTL for morphological traits. Theor Appl Genet, 1994, 88:7-16.
    85. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hones M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res, 1995, 23: 4407-4414
    86. Walker K L, Smith L G. Investigation of the role of cell-cell interactions in division plane determination during maize leaf development through mosaic analysis of the tangled mutation. Development, 2002,129, 3219-3226
    87. Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucl Acid Res,1990,18:7213-7218
    88. Wu J Y, Ding J Q, Du Y X, Chen W C. Identification and molecular tagging of two com-plementary dominant resistance genes to maize dwarf mosaic virus. Acta Genet Sin, 2002, 29(12): 1095-1099
    89. Wu J Y, Tang J H, Xia Z L, Chen W C. Molecular tagging of a new resistance gene to maize dwarf mosaic virus using microsatellite markers. Acta Bot Sin, 2002, 44(2): 177-180
    90. Xi Z Y, He F H, Zeng R Z, Zhang Z M, Ding X H, Li W T, Zhang G Q. Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome, 2006,49(5): 476-484
    91. Xia X C, Melchinger A E, Kuntze L, Lübberstedt T. Quantitative trait loci mapping of resistance to sugarcane mosaic virus in maize. Phytopathology, 1999, 89: 660-667
    92. Xiao J, Li J, Grandillo S. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics, 1998, 150: 899-909
    93. Xu M L, Melchinger A E, Xia X C, Luebberstedt T. High- resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markers. Mol Gen Genet, 1999, 261: 574-581
    94. Yamamoto T, Kuboki Y, Lin S Y, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet, 1998, 97: 37-44.
    95. Yan J B, Tang H, Huang Y Q. Quantitative trait loci mapping and epistemic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica, 2006, 149: 121-131.
    96. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. Plant Cell, 2000,l (12): 2473-2484
    97. Yano M, Kojima S, Takahashi Y, Lin H, SasakiT. Genetic control of flowering time in rice, a short-day plant. Plant physiology, 2001, 127:1425-1429
    98. Yoshimura S, Yoshimura A, Iwata N, McCouch S R, Abenes M L, Baraoilan M R, Mew T W, Nelson RJ. Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol Breeding, 1995, 1(4): 375-387.
    99. Young N D, Tanksley S D. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Thero Appl Genet, 1989, 77(1):95-101
    100. Yuan L X, Duβle C M, Melchinger A E, Utz H F, Lubberstedt T. Clustering of QTL conferring SCMV resistance in maize. Maydica, 2003, 48: 55-62.
    101. Yuan L X., Duβle C M., Muminovic J, Muminovic J, Melchinger A E, Lübberstedt T. Targeted BSA mapping of Scmv1 and Scmv2 conferring resistance to SCMV using PstI/MseI compared with EcoRI/MseI AFLP markers. Plant Breeding 2004, 123, 434-437.
    102. Zhou Y, Li W, Wu W. Genetic dissection of heading time and its components in rice. Theor Appl Genet, 2001, 102: 1236-1242
    103. Zuber M S., Hilderbrand E S., Loesch P J. Prediction of reactions to maize dwarf mosaic virus in double cross hybrids based upon single cross reaction. Crop Sci. 1973, 13(2): 172-175.
    104.包劲松,舒庆尧,吴殿星,崔海瑞,朱立煌,夏英武.水稻Wx基因(CT)_n微卫星标记与稻米淀粉品质的关系研究.农业生物技术学报, 2000, 8 (3): 241-244
    105.曹如槐,王晓玲,任建华.玉米对矮花叶病抗性遗传的初步研究.植物病理学报, 1988, 17(2):119-120
    106.陈旭,李新海,郝转芳,王振华,田清震,李明顺,白丽,张世煌.玉米抗矮花叶病QTL定位.作物学报, 2005, 31(8): 983-988
    107.邓启云,袁隆平,梁凤山,李继明,李新奇,王乐光,王斌.野生稻高产基因及其分子标记辅助育种研究.杂交水稻, 2004, 19 (1):6-10.
    108.冯芳君,罗利军,李荧,周立国,徐小艳,吴金红,陈宏伟,陈亮,梅捍卫.水稻InDel和SSR标记多态性的比较分析.分子植物育种,2005,3(5):725-730
    109.高会林,高伟,杨桂英.玉米育种试验调查记载项目及标准。农业与技术,2003,23(4):40-46
    110.郝岗平,吴忠义,陈茂盛.拟南芥CBF4基因位点的单核苷酸多态性(SNP)变化与抗旱表型的相应性.农业生物技术学报, 2004, 12(2):122-131
    111.何风华,席章营,曾瑞珍, Akshay Talukdar,张桂权.利用高代回交和分子标记辅助选择建立水稻单片段代换系.遗传学报, 2005, 32(8):825-831
    112.兰进好,李新海,高树仁,张宝石,张世煌.不同生态环境下玉米产量性状QTL分析.作物学报, 2005, 31(10): 1253-1259
    113.李建生.玉米分子育种研究进展.中国农业科技导报, 2007, 9 (2): 10-13
    114.李湘阳.杉木单染色体的PCR扩增和SCAR分子标记的开发.南京林业大学博士论文,2003.
    115.李晓辉,李新海,李文华. SSR标记技术在玉米杂交种种子纯度测定中的应用.作物学报,2003,29(1):63-68
    116.李新海,刘贤德,李明顺,张世煌.玉米雌雄开花间隔天数、结实率与产量的数量性状位点(QTL)分析.植物学报,2003, 45(7):852-857.
    117.梁荣奇,张义荣,唐朝晖,刘守斌,李保云,尤明山,刘广田.利用Wx基因分子标记辅助选择培育面条专用优质小麦.农业生物技术学报, 2001, 9(3): 269-273
    118.林肯恕.玉米矮花叶病抗性鉴定的研究.中国农业科学, 1989, 22(1):57-61.
    119.刘斌美.水稻显性半矮秆基因的SCAR标记及初步定位.安徽农业大学硕士论文,2005.
    120.刘传光,张桂权,水稻单核苷酸多态性及其应用.遗传, 2006,28(6):737~744
    121.刘冠明,李文涛,曾瑞珍,张桂权.水稻亚种间单片段代换系的建立.中国水稻科学, 2003, 17 (3): 201-204
    122.刘贤德.水分胁迫条件下玉米开花期及产量性状的基因定位. 2002,山东农业大学硕士研究生论文
    123.刘小红,张红伟,张红梅,郑祖平,荣廷昭,王富荣,谭振波.玉米抗矮花叶病QTL的定位分析. 2006, 28(4): 544-548
    124.柳李旺,朱协飞,郭旺珍,张天真.分子标记辅助选择聚合棉花Rf1育性恢复基因和抗虫Bt基因.分子植物育种, 2003, 1(1):48-52
    125.吕香玲,李新海,谢传晓,郝转芳,吉海莲,史利玉,张世煌.玉米抗甘蔗花叶病毒基因的比较定位.遗传, 2008, 30(1): 101-108
    126.吕香玲.玉米甘蔗花叶病毒主效抗病QTL的发掘、验证与候选基因鉴定.沈阳农业大学博士毕业论文. 2007
    127.马西青.玉米株高杂种优势遗传基础剖析.中国农业大学硕士学位论文. 2005
    128.马占鸿.玉米矮花叶病传播机制及抗病遗传研究.北京:中国农业科学院,1997
    129.毛传澡,程式华.水稻农艺性状QTL定位精确性及其影响因素的分析.农业生物技术学报, 1999, 7(4):386~394
    130.邱丽娟,常汝镇.大豆抗孢囊线虫种质rhg1和Rhg4位点的单核苷酸多态性(SNPs).植物遗传资源学报,2003,4(2):89-93
    131.闰双勇,谭振波,刘学军,苏京平,马忠友,孙林静,卢百关.水稻抽穗期控制候选基因的SNP/InDel多态性分析.分子植物育种,2005,3(3):335-341
    132.沈圣泉,舒庆尧,吴殿星,崔海瑞,包劲松.利用分子标记辅助选择育成抗螟虫籼稻不育系科龙A.杂交水稻, 2008, 23(2): 15-18
    133.石红良,姜艳喜,王振华,李新海,李明顺,张世煌.玉米抗丝黑穗病QTL分析.作物学报, 2005,31(11): 1449-1454.
    134.孙世贤.种植业结构调整中的玉米生产问题.华北农学报, 2000, 15(15):1-3.
    135.王帮太,申灿庭,张建尊,席章营.玉米微量PCR反应体系.玉米科学, 2009,第4期
    136.王凤格,刘贤德,王振华,张世煌,李新海,袁力行,韩晓清,李明顺.玉米抗甘蔗花叶病毒QTL的初步研究.作物学报, 2003a, 29(1): 69-74
    137.王凤格,赵久然,佘花娣,郭景伦,陈刚,廖琴,孙世贤,陈如明.中国玉米新品种DNA指纹库建立系列研究Ⅲ.多重PCR技术在玉米SSR引物扩增中的应用.玉米科学, 2003b, 11(4) : 3-6
    138.王立秋,赵永锋,薛亚东,张祖新,郑用链,陈景堂.玉米衔接式单片段导入系群体的构建和评价.作物学报, 2007,33(4):663-668
    139.王心宇,陈佩度,张守忠.小麦白粉病抗性基因的聚合及其分子标记辅助选择.遗传学报,2001, 28(7): 640-646
    140.王玉民.玉米染色体片段代换系群体的筛选和QTL定位.河南农业大学硕士论文. 2008
    141.王振华,李新海,李明顺,李文华,张世煌.玉米抗甘蔗花叶病毒的遗传分析.作物学报, 2004, 30(2): 95-99
    142.吴建宇,丁俊强,杜彦修,陈伟程.两个玉米矮花叶病显性互补抗病基因的发现和定位.遗传学报, 2002, 29(12):1095-1099.
    143.席章营,吴建宇.作物次级群体的研究进展.农业生物技术学报, 2006,14(1):128-134
    144.席章营.基于水稻单片段代换系的QTL鉴定与定位.华南农业大学博士论文,广州, 2004
    145.席章营,张书红,李新海,谢传晓,李明顺,郝转芳,张德贵,梁业红,白丽,张世煌.一个新的抗玉米矮花叶病基因的发现及初步定位.作物学报,2008, 34(9): 1494-1499
    146.向道权,曹海河,曹永国,杨俊品,黄烈健,王守才,戴景瑞.玉米SSR遗传图谱的构建及产量状基因定位.遗传学报,2001,28 (8):778-784.
    147.徐建龙,薛庆中,罗立军,黎志康.水稻单株有效穗数和每穗粒数的QTL剖析.遗传学报,2001, 28(8):752-759
    148.严建兵,黄益勤,郑用琏, Subhash Chande,李建生.玉米产量及构成因子主效和上位性QTL的全基因组扫描分析.科学通报, 2006, 51(12):1413-1421.
    149.严建兵,汤华,黄益勤,郑用琏,李建生.玉米和水稻重要性状QTL的比较研究.遗传学报,2004,31(12):1401-1407.
    150.严建兵,汤华,黄益勤,郑用琏, Subhash Chander,李建生.玉米产量及构成因子主效和上位性QTL的全基因组扫描分析.科学通报, 2006,51(12):1411-1421.
    151.杨俊品,荣廷昭,向道权,唐海涛,黄烈健,戴景瑞.玉米数量性状基因定位,作物学报,2005, 31(2):188~196.
    152.杨俊品,荣廷昭.玉米数量性状RFLP分子标记研究进展.玉米科学, 1999,7(1):18-24.
    153.曾长英,徐芳森.从QTL到QTG的路还有多远?.遗传,2006,28(9):1191-198.
    154.张帆,万雪琴,潘光堂.玉米分子遗传图谱的构建.玉米科学,2006, 14(3):6-9
    155.张书红,席章营.快速提取玉米叶片DNA的新方法.安徽农业科学, 2007, 35(13) :3776-3801
    156.张书红.玉米单片段代换系群体的构建和玉米矮花叶病抗病基因的定位.河南农业大学硕士论文. 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700