基于导入系的玉米产量相关性状QTL的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导入系(Introgression Lines,ILs)是利用多代回交和分子标记辅助选择构建的永久定位群体,是进行QTL遗传分析的理想材料。与传统的定位群体相比,单片段导入系具有遗传背景清楚、群体遗传稳定、QTL定位和鉴定的精确度和灵敏度高、QTL遗传效应分析准确等优点。鉴定玉米产量相关性状基因位点及包含有利等位基因的导入系,可为了解产量性状形成的遗传基础及针对玉米自交系产量性状的分子设计提供参考和依据。
     本研究以QB80和Qi319为供体亲本,掖478为轮回亲本,从BC1开始,每个回交世代取不少于50个单株的混合花粉与掖478连续4代回交,得BC4F1,BC4F1自交形成240-300个单株BC_4F_2。根据产量性状与掖478存在的差异实施定向选择BC_4F_2单株连续自交2代形成61个和72个家系的基础导入系群体。通过2年4点田间试验,利用完备复合区间作图进行产量及其相关性状的QTL(Quantitative Trait Locus, QTL)分析。主要研究结果包括:
     1.四个环境下,在QB80为供体的导入系群体中,共检测到10个性状的55个QTLs;在Qi319为供体的导入系群体中,检测到10个性状的49个QTLs。在2个及以上环境中均检测到的QTLs有18个。QB80与掖478间的遗传差异较Qi319更大,QB80为供体的导入系群体中能检测更多的产量性状QTL。
     2.同一性状在不同环境下所检测的QTL定位在相同的染色体区域,不同性状的QTL也定位于在相同或临近的染色体区域,形成多个QTL富集区。QTL富集区是为产量性状基因的克隆提供可供参考的重要染色体区域。两个群体所检测的QTL位点具有较少的一致性,说明2个供体材料中含有不同的有利基因位点。
     3.导入片段中含有利基因的导入系,其相关性状明显得以改良,这些导入系可用于QTL聚合以改良掖478的产量相关性状。
Introgression Lines(ILs)was a permanent mapping population, which was developed using advance-backcross and marker-assisted selection, which is a novel materials for quantitative trait locus (QTL) genetic analysis. Comparing with the traditional population, there were more advantages in SSILs, such as knowable genetic background and steady genetic base; the accuracy and sensitivity of QTL mapped and identified were improved; genetic effects of QTL can be exactly analyzed. The purpose of this investigation was to identify QTL (Quantitative Trait Locusi) for maize yield related traits and those introgression lines containing favorable alleles.
     The two maize inbred lines, QB80 and Qi319 were used as the donor parents, respectively, and the Ye478 as the recurrent parent, two introgression line populations consisting of 61 and 72 family lines were constructed by backcrossing combined with directional selection, respectively. The two introgression line populations were evaluated across 4 environments in 2 years. The QTLs for yield and related traits were detected by stepwise regression (RSTEP-LRT) using Windows QTL ICI Mapping software. The results were as follows:
     1. Total of 55 QTLs for 10 traits were identified in the population with QB80 as the donor, and 49 QTLs for 10 traits were identified in the population with Qi319 as the donor under four environments. Of which 18 QTLs were detected across not less than two environments. The genetic difference between QB80 and Ye478 are more than that of Qi319 and Ye478, therefore, more yield trait QTL can be detected in the population with QB80 as the donor.
     2. In addition, some QTL for same trait detected in different environments were located in the same chromosome regions, and those QTL for diverse traits were also located in the same or adjacent chromosome region, forming several multiple QTL-rich regions. The detected QTL-rich regions have given a subset of important chromosome regions for fine mapping and cloning of genes for yield associated traits.The less consistent QTL was detected in two populations, indicating that the two donors contain different set of favorable alleles.
     3. The yield associated traits of those lines containing favorable introgression segments or alleles were significantly improved, implicating those lines are available for improving of Ye478 by QTL pyramiding.
引文
[1] Bennetzen J. Opening the door to comparative plant biology[J]. Science,2002,296:60-63.
    [2] World Agricultural Supply and Demand Estimates (WASDE), http://usda.mannlib.cornell.edu/ reports/waobr/wasde-bb/2001/wasde377.txt.
    [3]高世斌.玉米耐旱相关性状QTL分析[D].四川农业大学博士学位论文,2004.
    [4]陈卫国.利用SSR标记分析27个玉米群体的遗传关系[D].山西农业大学硕士学位论文,2005.
    [5]戴景瑞.发展玉米育种科学迎接21世纪的挑战[J].作物杂志,1998,6:1-4.
    [6]戴景瑞.我国玉米遗传育种的回顾与展望[A]. 21世纪玉米遗传育种展望——玉米遗传育种国际学术讨论会文集[C].长春:玉米遗传育种国际学术讨论会,2000,1-7.
    [7] Duvick . In: Coors CJ, Pandey S, eds. Genetics and exploitation of hetorosis in crops. Madison, WI, USA: CSSA, ASA. 1999.
    [8] Kearsey. The principles of QTL analysis (a minimal mathematics approach)[J]. Journal of Experimental Botany 1998,49:1619-1251.
    [9]汤华.玉米产量和农艺性状的数量遗传研究及玉米铝离子胁迫的基因差异表达研究[D].华中农业大学博士学位论文,2004.
    [10] Wu W R, Tang D ZH, Li W M. Genetic Dissection and Molecular Dissection of Quantitative Traits[J]. Acta Agronomica Sinica,2000,26(4):501-507.
    [11]沈金雄,易斌,傅廷栋,等.植物数量性状基因定位研究概述[J].植物学通报,2003,20(3): 257-263.
    [12]梅德圣,李云昌,王汉中,等.作物产量性状QTL定位的研究现状及应用前景[J].中国农学通报,2003,19(5):83-88.
    [13]席章营,朱芬菊,台国琴,等.作物QTL分析的原理与方法[J].中国农学通报,2005,21(1): 88-99.
    [14] Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics,1989,121:185-199.
    [15] Zeng Z B. Precision mapping of quantitative trait loci[J]. Genetics,1994,136:1457-1468.
    [16] Zeng Z B. Theoretical basis of separation of multiple linked gene effectsonmapping quantitative trait loci[J]. Proc Natl Acad Sci USA,1993,90:10972-10976.
    [17] Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping[J]. Genetics,2007,175:361-374.
    [18] Li H, Ribaut J M, Li Z, et al. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations[J]. Theor Appl Genet,2008,116:243-260.
    [19]朱军.运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报(工学版),1999, 33(3):327-335.
    [20]朱军.复杂数量性状基因定位的混合线性模型方法[A].王连铮,戴景瑞.全国作物育种学术讨论会论文集[C].北京:中国农业科技出版社,1998,11-20.
    [21]王建康.数量性状基因的完备区间作图方法[J].作物学报,2009,35(2):239-245.
    [22] Zhang L, Li H, Li Z, et al. Interactions between markers can be caused by the dominance effect of QTL[J]. Genetics,2008,180:1177-1190.
    [23]彭勃,王阳,李永祥,等.玉米籽粒产量与产量构成因子的关系及条件QTL分析.作物学报,2010,36(10):1624?1633.
    [24]赵秀琴,徐建龙,朱苓华,等.利用高代回交导入系定位水、旱条件下影响水稻根系及产量的QTL.中国农业科学,2008,41(7):1887-1893.
    [25] Liu X H, He S L, Zheng Z P, et al. Identification of the QTLs for grain yield using RIL population under different nitrogen regimes in maize[J]. African Journal of Agricultural Research,2010,5(15): 2002-2007.
    [26] Zhang K P, Tian J C, Zhao L, et al. Mapping QTLs with epistatic effects and QTL×environment interactions for plant height using a doubled haploid population in cultivated wheat[J]. Journal of Genetics and Genomics,2008,35(2):119-127.
    [27]惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较[J].作物学报,1997,23(2): 129-136.
    [28] Stuber, Lincoln, Wolff, et al. Identification of genetic factors contributing to hetersosis in a hybrid from elite maize inbred lines using molecular markers[J]. Genetics,1992,132:823-839.
    [29] Ajmone Marsan P, Gorni C, ChittòA, et al. Identification of QTLs forgrain yield and grain-related traits of maize (Zea mays L.) using an AFLP map, different testers, and cofactoranalysis[J]. Theor Appl Genet,2001,102:230-243.
    [30]汤继华,马西青,滕文涛,等.利用“永久F2”群体定位玉米株高的QTL与杂种优势位点[J].科学通报,2006,51(24):2864-2869.
    [31] Austin D F, Lee M, Veldboom L R. Genetic mapping in maize with hybrid progeny across testersand generations: plant height and flowering[J]. Theor Appl Genet,2001,102:163-176.
    [32]祁新.超甜玉米可溶性糖含量及产量因子QTL分析[D].吉林农业大学博士学位论文,2006.
    [33]吕秀清.玉米籽粒油分QTL定位及其效应分析[D].中国农业大学硕士学位论文,2005.
    [34] Bohn M, Khairallah M, Gonzalez D, et al. QTL mapping in tropical maize 1. Genomic regions affecting leaf feeding resistance to sugarcane borer and other traits[J]. Crop Sci,1996,36: 1352-1361.
    [35] Melchinger, Kuntze, Gumber, et al. Genetic basis of resistance to sugarcane mosaic virus in European maize germplasm[J]. Theor Appl genet,1998,96:1151-1161.
    [36]王阳,刘成,王天宇,等.干旱胁迫和正常灌溉条件下玉米产量性状的QTL分析[J].植物遗传资源学报,2007,8(2):179-183.
    [37]刘宗华,汤继华,王春丽,等.氮胁迫与非胁迫条件下玉米不同时期株高的动态QTL定位[J].作物学报,2007,33(5):782-789.
    [38] Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato[J]. PNAS,1996, 93: 15503-15507.
    [39] Davis G L, McMuLlen M D, Baysdorfer C, et al. A Maize Map Standard With Sequenced Core Markers, Grass Genome Reference Points and 932 Expressed Sequence Tagged Sites (ESTs) in a 1736-Locus Map[J]. Genetics,1999,152(3):1137-1172.
    [40] Senior M L, Heun M. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer[J]. Genome,1993,36:884-889.
    [41] Lee M., Sharopova N., Beavis W., et al. Expanding the genetic map of maize with the intermated B73×Mo17 (IBM) popuLation[J]. Plant Mol Biol,2002,48:453-461.
    [42] Edwards M D, Helentiaris T, Wright S, et al. MolecuLar-marker-facilitated investigations of quantitative trait loci in maize[J]. Theor Appl Genet,1992,83:765-774.
    [43]兰进好,李新海,高树仁,等.不同生态环境下玉米产量性状QTL分析[J].作物学报, 2005,31(10):1253-1259.
    [44] Baker T G, Rocheford T R. Quantitative trait loci for flowering, plant and ear height, and kemel traits in maize[J]. Crop Sci,1995,35(6):1542-1549.
    [45] Shon C C, Melchinger A E, Boppenmaier J, et al. RFLP mapping in maize: quantitative trait loci affecting testcross performance of elite. Europen flint lines[J]. Crop Sci,1994,34(2):378-389.
    [46] Frova C, Krajewski P, N di Fonzo, et al. Genetic analysis of drought tolerane in maize bymolecular markersⅠYield components[J]. Theor Appl Genet,1999,99:280-288.
    [47] Agrama H A S, Muonir E. Mapping QTL for drought tolerance in maize (Zea mays L) [J]. Euphytica,1996,91: 89-97.
    [48]李新海,袁力行,李晓辉,等.利用SSR标记划分70份我国玉米自交系的杂种优势群[J].中国农业科学,2003,36(6):622-627.
    [49]汤继华,严建兵,马西青.利用“永久”F2群体剖析玉米产量及其相关性状的遗传机制[J].作物学报,2007,33(8):1299-1303.
    [50] Ragot M, Sisco P H, Hoisington D A. MolecuLar-marker-mediated characterization of favorable exotic alleles at quantitative loci in maize[J]. Crop Science,1995,35(5):1306-1315.
    [51]严建兵,汤华,黄益勤,等.玉米产量及构成因子主效和上位性QTL的全基因组扫描分析[J].科学通报,2006,51(12):1413-1421.
    [52] Yan J B, Tang H, Huang Y Q, et al. Quantitative trait loci maping and epistatic analysis for grain yield and yield compontents using molecular markers with an elite maie hybrid[J]. Euphytica,2006, 149:121-131.
    [53] Ma X Q, Tang J H, Teng W T, et al. Epistatic interaction is an important genetic basis of grain yield and its components in maize[J]. Mol Breed,2007,20:41-51.
    [54] Beavis W D, Lee M, Grant D, et al. The influence of random mating onrecombination using a single F2 popuLation[J]. Maize Gen Coop Newsl,1992,66:52-53.
    [55]李新海,袁力行,李晓辉,等.利用SSR标记划分70份我国玉米自交系的杂种优势群[J].中国农业科学,2003,36(6):622-627.
    [56] Sahai Maroof M A, Biyashev R M,Yang G P. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal location and population dynamics [J]. PNAS, 1994, 91:5466-5470.
    [57] Wang J K, Wan X Y, Crossa J, et al. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines[J]. Genetical Research,2006,88:93-104.
    [58] Borevitz J O, Chory J. Genomics tools for QTL analysis and gene discovery[J]. Current Opinion in Plant Biology,2004,7:132-136.
    [59]李灿东,刘春燕,蒋洪蔚,等.染色体片段导入系在作物遗传育种中的应用.生物技术通报,2008增刊:25-29.
    [60]刘冠明,李文涛,曾瑞珍,等.水稻单片段代换系代换片段的QTL鉴定[J].遗传学报,2004, 31(12):1395-1400.
    [61] Howell P M, Marshall D F, Lydiate D J. Towards developing intervarietal substitution lines in Brassica napus using markerassisted selection. Genome,1996,39:348-358.
    [62]何风华,张桂权,席章营,等.利用单片段代换系定位水稻抽穗期QTL[J].中国农业科学, 2005,38(8):1505-1531.
    [63]席章营.作物次级作图群体的研究进展[A],全国玉米种质扩增、改良、创新于分子育种学术会议论文集[C]. 2004:260-269.
    [64] Paterson A H, Deverna J W, Lanini B, et al. Fine Mapping of Quantitative Trait Loci Using Selected Overlapping Recombinant Chromosomes, in an Interspecies Cross of Tomato[J]. Genetics,1990,124:735-742.
    [65] Eshed Y, Zamir D. An Introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield associated QTL[J]. Genetics,1995,141: 1147-1162.
    [66] Li Z K, Fu B Y, Gao Y M, et al. Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.)[J]. Plant Molecular Biology,2005,59:33-52.
    [67] Yamanaka N, Watanabe S, Toda K, et al. Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line[J]. Theoretical and Applied Genetics.2005,110:634-639.
    [68] Von Korff M, Wang H, Leon J, et al. Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as dono[J]. Theoretical and Applied Genetics, 2004,109:1736-1745.
    [69]曾瑞珍, Akshay Talukdar,刘芳,等.利用单片段代换系定位水稻粒形QTL[J].中国农业科学,2006,39(4):647-654.
    [70]赵芳明,刘桂富,朱海涛,等.用单片段代换系对不同时期水稻分蘖数QTL的非条件和条件定位[J].中国农业科学,2008,41(2):322-330.
    [71]赵芳明,张桂权,曾瑞珍,等.用单片段代换系(SSSLs)研究水稻株高及其构成因素QTL加性及上位性效应[J].作物学报,2009,35(1):48-56.
    [72]唐绍清,胡培松,罗炬,等.利用回交重组自交系定位稻米赖氨酸含量的基因座位[J].中国水稻科学,2008,22(4):435-438.
    [73]郑天清,徐建龙,傅彬英,等.回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J].作物学报,2007,33(8):1380-1384.
    [74]余传元,江玲,肖应辉,等.籼型染色体置换片段在杂交粳稻中的配合力分析[J].作物学报,2008,34(8):1308-1316.
    [75] Rae A M, Howell E C, Kearsey M J. More QTL for flowering time revealed by substitution lines in Brassica oleracea[J]. Heredity,1999,83:586-596.
    [76] Szalma S J, Hostert B M, LeDeaux J R, et al. QTL mapping with near-isogenic lines in maize[J]. Theoretical and Applied Genetics,2007,114(7):1211-1228.
    [77]李永祥,王阳,石云素,等.玉米籽粒构型与产量性状的关系及QTL作图[J].中国农业科学,2009,42(2):408-418.
    [78]王帮太,吴建宇,丁俊强,等.玉米产量及产量相关性状QTL的图谱整合[J].作物学报, 2009,35(10):1836-1843.
    [79] Tuberosa R, Salvi S, Sanguineti MC, et al. Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize[J]. Ann Bot,2002,89:941-963.
    [80]刘宗华,汤继华,卫晓轶,等.氮胁迫和正常条件下玉米穗部性状的QTL分析[J].中国农业科学,2007,40(11):2409-2417.
    [81] Melchinger AE, Utz H, Schoen CC. Quantitative trait locus(QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects[J]. Genetics,1998(149):383-403.
    [82] Austin D, Lee M . Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize[J]. Theoretical and Applied Genetics,1996,92(7): 817-826.
    [83]万建民.作物分子设计育种[J].作物学报,2006,32:455-462.
    [84] Austin D, Lee M. Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and non-stress environments[J]. Crop Science,1998,38:1296-1308.
    [85] Wang Y, Yao J, Zhang Z F, et al. Comparative analysis of QTL integrated mapping and statistical analysis of QTLs affecting plant height in maize[J]. Chin Sci Bull,2006,51(15):1776-1786.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700