船用电控柴油机燃油共轨系统建模与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为满足日益苛刻的排放法规,以及提高船用柴油机燃油经济性、运行可靠性和操作灵活性,对船用柴油机的控制提出了越来越高的要求。而提高船用柴油机运行性能和降低排放的关键在于改善燃烧过程,其中燃油系统起着非常重要的作用,因此燃油共轨喷射技术成为船用柴油机燃油系统发展的方向之一。而通过对柴油机燃油共轨系统的仿真可以有效解决燃油共轨系统研发设计中的许多技术难题,通过仿真计算的模型可指导台架试验,还可以应用于模拟器的开发设计,可作为船员训练平台,而且在柴油机燃油共轨系统的研发设计中可缩短周期,大量节约人力、物力和财力。
     本文围绕船用柴油机燃油共轨系统展开仿真研究。重点阐述了Sulzer RT-flex柴油机共轨系统,即包括燃油系统、起动空气系统和排气阀驱动系统,并详细介绍了燃油共轨系统的主要部件(供油单元、共轨单元和喷射控制单元)和瓦锡兰柴油机控制系统(WECS-9500控制系统)的工作原理、组成以及与柴油机、气缸相关的控制功能。
     利用流体力学的基本原理建立了燃油共轨系统的数学模型,包括计算燃油轨压力、燃油喷射控制阀(包括控制阀运动方程和量油活塞运动方程以及喷油量)、高压油泵的泵油量、喷嘴和喷油嘴的喷油量。
     利用Matlab/Simulink 7.0建模仿真软件对柴油机燃油共轨系统进行模块化建模,仿真模型包括燃油轨模块、燃油轨阀模块、喷油嘴模块、喷油定时模块和喷射控制模块。其中,将气缸压缩压力、喷油定时和喷油量作为边界条件,通过查表方法进行线性插值得到不同工况下的相关参数。
     通过仿真得到了典型工况下燃油共轨系统燃油轨压力曲线和喷嘴腔压力曲线,反应了不同工况下轨压波动情况、喷油定时以及喷油时长,并通过仿真计算得到燃油轨工作压力、喷油量和共轨管容积对轨压力波动的影响。
     本文通过对燃油共轨系统的仿真研究,得到了较为准确的燃油共轨系统模型,对运用于仿真计算、优化设计、模拟器开发和船员培训具有一定的参考价值。
In order to meet the increasingly stringent emission regulations, as well as improve the economical efficiency, operational reliability and flexibility, the requirement on the control of marine diesel engine is higher and higher. The key point in improving the operational performance and reducing the emission is improving the combustion process, in which the fuel system plays a very important role. So common rail injection technology has become one of the inevitable trends of fuel system of marine diesel engine. Through the simulation of common rail system of marine diesel engine can solve many technical problems in the research and development of common rail system effectively. The simulation model can not only guide bench scale test, applied to the development and design of the simulator, used for crew training platform, but also shorten the cycle in the development and design of common rail system and save a lot of manpower, material resources and financial resources.
     This paper selects the study on simulation of the fuel common rail system of marine diesel engine as its main topic. It mainly interprets Sulzer RT-flex common rail system of marine diesel which includes the fuel system, starting air system and exhaust valve drive system, and introduces the main components of the fuel common rail system (supply unit, common rail unit and Injection controll unit ) and Wartsila Engine Control System (WECS-9500 control system)'s composition, working principle, and the control functions refer to the diesel engine and cylinder.
     Establishing a mathematical model of the fuel common rail system on the basis of the basic principles of fluid mechanics, including the calculation of the fuel rail pressure, the fuel injection control valve (including the control valve motion equation,fuel quantity piston motion equation and the fuel injection quantity), the pump quantity of high pressure oil pump, the fuel injection quantity of the nozzle and fuel injection nozzle.
     Making modular modeling of common rail diesel fuel system in use of Matlab / Simulink 7.0 software, simulation models include fuel rail module, fuel rail valve module, fuel injection nozzle module, injection timing module and injection control module. By taking the cylinder compression pressure, injection timing and fuel injection quantity as boundary condition and making linear interpolation with look-up method, it comes to the relevant parameters under different operating conditions.
     Obtaining fuel rail pressure curve and injection cavity pressure curve of the fuel common rail system under typical operating condition through simulation, which reflect the rail pressure fluctuation, injection timing and injection duration under different operating conditions. It concludes how the the fuel rail operating pressure, injection quantity and common rail volume affect rail pressure fluctuations.
     Based on the common rail fuel system simulation, this paper obtains relatively accurate model of the fuel common rail system, which is valuable for simulation calculation, optimization design, simulators development and crew training.
引文
[1]黄少竹.船舶柴油机[M].大连:大连海事大学出版社,2005.
    [2]孙明,卢永然.船用智能柴油机的发展与应用[J].航海技术,2005,(1):44-45.
    [3]高勇军,黄连忠.船用智能柴油机的最新技术特点和管理[J].世界海运,2007,30(4):39-40.
    [4]张坚,李善从.船用低速大功率智能型柴油机的发展[J].船舶物资与市场,2006,(1):26-30.
    [5]侯勤春.船用大功率柴油机产业发展初步分析[J].船舶工程,2008,30(3):10-12.
    [6]牛金章.新型ME型系列智能柴油机[J].造船技术,2007,277(3):27-31.
    [7]李积轩.MAN B&W柴油机公司推出首台ME系列柴油机[J].柴油机,2003,(6),55-57.
    [8]黄加亮,蔡振雄,陈景锋,等.RTA-T系列船用柴油机非标定工况下的柔性设计与效能优化.集美大学学报(自然科学版),2004,9(2):170-175.
    [9]金江善.柴油机高压共轨燃油喷射系统仿真研究[D].北京:中国舰船研究院,2004.
    [10]王尚勇,杨青.柴油机电子控制技术[M].北京:机械工业出版社,2005:12-88.
    [11]平涛,方文超,浦卫华,等.船用柴油机高压共轨技术的发展[J].上海造船,2009,79(3):34-37.
    [12]黄加亮,蔡振雄.船用大型低速柴油机燃油共轨系统的应用及发展趋势[C]//福建省科协第四届学术年会论文集.厦门:厦门大学出版社,2004:78-81.
    [13]黄加亮,蔡振雄,张天野.电控共轨船用低速柴油机燃油系统的特点及管理.航海技术,2005,(1):41-43.
    [14] Schuckert M.共轨柴油喷射系统的设计[J].国外内燃机,1999,(3):28-35.
    [15] P.Digesu,A.Ficarella,D.Laforgia,et al. Diesel Electro Injector:A Numerical Simulation Code[J].SAE Paper,1994,(1):93-96.
    [16] R.J.Woermann,H.J.Theuerkauf,A.Heinrich. A RealTime Model of a Common Rail Diesel Engine[J].SAE Paper,1999,(8):62-66.
    [17] Keiki Tanabe.用计算机模拟分析共轨系统的喷射特性[J].国外内燃机,2000,(5):36-39.
    [18]李正帅.高压共轨式电控燃油喷射系统的计算机仿真[D].西安:西安建筑科技大学,2001.
    [19]李正帅,陆耀祖.高压共轨电控燃油喷射系统的计算机仿真[J].长安大学学报(自然科学版),2002,(1):66-69.
    [20]虞金霞,郭海涛,卓斌.共轨式喷油系统数学模型[J].上海海运学院学报,2002,(2):30-34.
    [21]王好战,肖文雍.高压共轨电控柴油机稳态油压模拟计算及分析[J].内燃机工程,2002,(6):9-11.
    [22]吴健.柴油机共轨式电控喷射系统喷射过程的模拟计算和研究[D].长沙:湖南大学,2002.
    [23]孙建清.柴油机电控泵管嘴燃油喷射系统仿真研究[D].哈尔滨:哈尔滨工程大学,2006.
    [24]何建元.柴油机共轨式燃油系统及电控喷油器的仿真研究[D].哈尔滨:哈尔滨工程大学,2007.
    [25]平涛,徐建新,方文超,等.船用柴油机高压共轨系统动态特性研究Ⅰ[J].船舶工程,2009,31(3):7-10.
    [26]平涛,徐建新,方文超,等.船用柴油机高压共轨系统动态特性研究Ⅱ[J].船舶工程,2009,31(4):16-19.
    [27]高献坤.柴油机高压共轨系统模拟计算与仿真[D].保定:河北农业大学,2005.
    [28]刘峰.柴油机高压共轨系统燃油喷射系统仿真计算研究[D].北京:北京交通大学,2009.
    [29]陆金华.柴油机高压共轨系统电控燃油喷射系统喷射过程模拟与试验研究[D].南昌:南昌大学,2009.
    [30]王宏明,谢荣.Sulzer RT-flex型柴油机共轨技术[J].天津航海,2004,(2):17-19.
    [31]李斯钦,杨国豪,徐轶群,等.Sulzer RT-flex系列船用柴油机WECS-9500控制系统[C]//第二届海洋工程与航海技术国际学术会议(OMET 2009)论文集.大连:大连海事大学出版社,2009:405-408.
    [32] Lino Paolo, Maione Bruno, Rizzo Alessandro.A Control -OrientedModel of a Common Rail Injection System for Diesel Engines[C]//IEEE Conference Proceedings on Emerging Technologies and Factory Automation, Bari Italy.2005:557-563.
    [33]焦生杰等.工程机械机电液一体化[M].北京:人民交通出版社,2000.
    [34]李峰.柴油机高压共轨喷射系统的仿真研究[D].大连:大连理工大学,2007.
    [35]李颖,朱伯立,张威.Simulink动态系统建模与仿真基础[M].西安:西安电子科技大学出版社,2004.
    [36]王沫然.Simulink4建模与动态仿真[M].北京:电子工业出版社,2002:175-199.
    [37]郭海涛,冒晓建.共轨式喷油系统的开发过程及零部件设计要点[J].内燃机燃油喷射与控制,2001,(1):14-18.
    [38]胡林峰,张建新.高压共轨喷射系设计中应考虑的一些因素[J].内燃机燃油喷射和控制,2001,(3):19-23.
    [39]刘疆.关于柴油机高压共轨电控燃油喷射开发系统设计[J].柴油机设计与制造,2001,(3):38-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700